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We have investigated quantum critical behavior in the doped two-leg extended Hubbard ladder, by using a
weak-coupling bosonization method. In the ground state, the dominant fluctuation changes from the conven-
tional d-wave-like superconducting �SCd� state into density-wave states, with increasing nearest-neighbor
repulsions and/or decreasing doping rate. The competition between the SCd state and the charge-density-wave
state coexisting with the p-density-wave state becomes noticeable on the critical point, at which the gap for
magnetic excitations vanishes. Based on the Majorana-fermion description of the effective theory, we calculate
the temperature dependence of the magnetic response such as the spin susceptibility and the NMR relaxation
rate, which exhibit unusual properties due to two kinds of spin excitation modes. On the quantum critical point,
the spin susceptibility shows paramagnetic behavior with logarithmic corrections and the NMR relaxation rate
also exhibits anomalous power-law behavior. We discuss the commensurability effect due to the umklapp
scattering and relevance to the two-leg ladder compounds Sr14−xCaxCu24O41.
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I. INTRODUCTION

The two-leg ladder compounds, Sr14−xCaxCu24O41, which
exhibit the superconducting state1 under pressure for x�12,
have been studied intensively since superconductivity was
confirmed in a system with ladder structure.2–6 This material,
consisting of chain and ladder layers, already has holes
which are doped on the ladder layer even for the parent ma-
terial, x=0. Reflecting its ladder structure, there exists a large
gap in the magnetic excitations.7,8 It is known that Ca sub-
stitution yields an increase of the doping rate from �
�0.07 �x=0� to ��0.25 �x=12�,9 and the material becomes
favorable for the superconducting state. A recent NMR mea-
surement on superconducting materials under high pressure
reveals evidence for a large spin gap ��200 K�,10–12 which is
much higher than the superconducting transition temperature
Tc. From the measurement of the 63Cu NMR relaxation rate
T1

−1 at ladder sites, Fujiwara et al.12 suggested that there are
two excitation modes in the normal state: The one at higher
temperature is an activation-type mode due to the spin gap
and the other at lower temperature is an anomalous paramag-
netic mode. In addition to the superconducting state, inten-
sive studies have been devoted to the charge-density-wave
�CDW� state, which is found in the parent system �x=0�
from optical measurements.13–15 Further the global phase
diagram for overall hole doping16,17 shows that, with increas-
ing the hole doping, the CDW state is suppressed and disap-
pears at x�9, while the superconducting state emerges for
x�11 and under pressure. From Raman scattering
measurements,18 it has been suggested that collective modes
of the CDW state exist even in the highly doped supercon-
ducting material x=12. Thus, it is expected that, by varying x
and temperature, the competition between the superconduct-
ing �SC� state and the CDW state will become crucial in
these compounds, and nontrivial critical behavior will
emerge in the competing region.

Theoretical approaches to doped two-leg ladder systems
have been performed by using various kinds of methods. It

has been established that the d-wave-like superconducting
�SCd� state becomes the most dominant fluctuation in the
ground state of the doped two-leg Hubbard ladder and t-J
ladder systems.19–30 When the model is extended to include
parameters of several intersite Coulomb repulsions, other
fluctuations can overcome the SCd state. A global phase dia-
gram obtained from a weak-coupling g-ology approach
shows that the CDW state, s-wave-singlet state, and
d-density-wave states can also become quasi-long-range-
ordered states in parameter space.28,30,31 The CDW state has
been confirmed by studying numerically the Hubbard model
with nearest-neighbor repulsions.32 A richer phase diagram is
obtained for the system at half filling31,33 and at quarter
filling.34 Despite the huge number of theoretical works on the
ordered state, the critical behavior expected close to the
boundary between different phases is still unknown. In addi-
tion, the temperature dependence of magnetic quantities,
such as the uniform spin susceptibility and the NMR relax-
ation rate, has been examined mainly on undoped spin ladder
systems and the case with finite doping is not yet clarified.

In the present paper, we investigate electronic states both
at zero temperature and at finite temperature for the two-leg
extended Hubbard model with finite doping, where special
attention is focused on states near the phase boundary be-
tween the SCd state and the density-wave state. Based on the
Majorana-fermion description, which is used for the low-
energy effective theory of the spin degrees of freedom, we
demonstrate the unconventional temperature dependence of
both the spin susceptibility and the NMR relaxation rate
close to the quantum critical region and also on the critical
point, including logarithmic corrections.

This paper is organized as follows. In Sec. II, we intro-
duce a model Hamiltonian for doped ladder systems and de-
rive an effective theory describing low-energy physics, using
weak-coupling g-ology supplemented by bosonization and
refermionization. In Sec. III, we investigate the ground-state
phase diagram by using the renormalization-group �RG�
method, and clarify that the system exhibits a quantum criti-
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cal behavior on the boundary between the SCd state and the
coexisting state of CDW and p-density wave. In Sec. IV, the
temperature dependence of both the spin susceptibility and
the NMR relaxation rate is examined to clarify their anoma-
lous behavior in the proximity to the quantum critical point.
Finally in Sec. V, we give a summary and discuss the com-
mensurability effect due to umklapp scattering and the rel-
evance of the present calculation to the experimental results
for Sr14−xCaxCu24O41.

II. MODEL HAMILTONIAN AND FORMULATION

We consider a model of a doped two-leg Hubbard ladder
with on-site and intersite Coulomb repulsions. The Hamil-
tonian is given by

H = H0 + Hint. �2.1�

The first term H0 describes electron hopping along and be-
tween the legs:

H0 = − t��
j,�,l

�cj,l,�
† cj+1,l,� + H.c.�

− t��
j,�

�cj,1,�
† cj,2,� + H.c.� , �2.2�

where cj,l,� annihilates an electron of spin � �=↑ , ↓ � on the
jth rung and lth leg with l=1, 2. The Hamiltonian Hint rep-
resents interactions between electrons:

Hint = U�
j,l

nj,l,↑nj,l,↓ + V��
j,l

nj,lnj+1,l + V��
j

nj,1nj,2,

�2.3�

where U ��0�, V� ��0�, and V� ��0� are coupling con-
stants for the on-site repulsion, the nearest-neighbor repul-
sion on respective chains, and the nearest-neighbor repulsion
on a rung, respectively. The density operators are nj,l,�
=cj,l,�

† cj,l,�, and nj,l=nj,l,↑+nj,l,↓.
Considering the two-particle interactions Hint as a weak

perturbation, we first diagonalize the single-particle hopping
part H0. The diagonalization can be performed in terms of
the the Fourier transform, c��k�= �2N�−1/2� j,le

−ik�j−ik�lcj,l,�

where k= �k� ,k�� with k�=0,�, and the lattice spacing
a is set equal to 1. Then H0 is rewritten as H0
=�k,���k�c�

†�k�c��k�, where

��k� = − 2t�cos k� − t�cos k�. �2.4�

Here we consider the hole doping � for t�	2t�cos2��� /2�
where both the bonding �k�=0� and antibonding �k�=��
energy bands are partially filled. In this case, the Fermi
points are located at k� = ±kF,0 and ±kF,� for the bonding and
antibonding bands, respectively, where

kF,0 =
�

2
�1 − �� + 
, kF,� =

�

2
�1 − �� − 
 , �2.5�

and the quantity 
 is given by


 � sin−1�t�/	2t�cos
�

2
�
� . �2.6�

The Fermi velocity of the bonding band and that of the an-
tibonding band are given by vF,0=2t�cos��� /2−
� and
vF,�=2t�cos��� /2+
�, respectively. For �=0, the Fermi ve-
locity takes the common value vF,0=vF,�=vF, where vF
=2t��1− �t� /2t��2
1/2 for arbitrary t� �	2t��. In the following,
the difference between vF,0 and vF,� is not taken into account
since we restrict ourselves to the small-doping case ����1.

Let us define order parameters of possible states. The
most favorable state in doped ladders is the SCd state whose
order parameter is given by33

OSCd = �
j

�cj,1,↑cj,2,↓ − cj,1,↓cj,2,↑� . �2.7�

Other possible ground states are density-wave states with
different angular momenta.31,33 In this paper we consider
s-density-wave and p-density-wave �PDW� states. The
s-density-wave state is nothing but the conventional CDW
state. The order parameters of the density-wave states are
given by

OA = �
k,�,±

fA�k�c�
†�k�c��k ± Q� , �2.8�

where A is the CDW or PDW, and Q= �2kF ,�� with kF

= 1
2��1−��. The form factors are given by fCDW=1 and

fPDW= i sin k�. These order parameters in real space are given
by

OCDW = 2�
j,�

�cj,1,�
† cj,1,� − cj,2,�

† cj,2,��cos 2kFRj ,

�2.9a�

OPDW = �
j,�

�cj−1,1,�
† cj,1,� − cj−1,2,�

† cj,2,� − cj,1,�
† cj+1,1,�

+ cj,2,�
† cj+1,2,��cos 2kFRj , �2.9b�

where Rj = ja. The order parameter of the PDW state corre-
sponds to that of the spin-Peierls state in the limit of �→0.
One can also consider other density-wave states such as the
d-density-wave state, the f-density-wave state, or another su-
perconducting state with s-wave symmetry, which are known
to span the finite parameter space of the ground-state phase
diagram in the extended Hubbard ladder.31,33 However, for
the case of U�V� , V��0, these unconventional states do
not become dominant.

A. g-ology

Following the standard weak-coupling approach
�g-ology�, we linearize the energy bands around the Fermi
points. The linearized kinetic energy is given by

H0 = �
k,p,�

vF�pk� − kF,k�
�cp,�

† �k�cp,��k� , �2.10�

where the index p= + �−� denotes the right- �left-�moving
electron. We introduce field operators of the right- and left-
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going electrons defined by 
p,�,+�x�=L−1/2�k�
eik�xcp,��k� ,0�

and 
p,�,−�x�=L−1/2�k�
eik�xcp,��k� ,�� where L is the length of

the chains: L=Na.
The interactions near the Fermi points are written as

Hint=�dx Hint, where

Hint =
1

4�
p,�

�
�i=±

��g1�
��̄
p,�,�1

† 
−p,�,�2

† 
p,�,�4

−p,�,�3

+ g1�
��̄ 
p,�,�1

† 
−p,�̄,�2

† 
p,�̄,�4

−p,�,�3

+ g2�
��̄
p,�,�1

† 
−p,�,�2

† 
−p,�,�4

p,�,�3

+ g2�
��̄ 
p,�,�1

† 
−p,�̄,�2

† 
−p,�̄,�4

p,�,�3


 , �2.11�

where �̄= ↑ �↓� for �= ↓ �↑� and ���1�3 and �̄��1�2. The
primed summation over �i �i=1,…,4� is taken under the con-
dition �1�2�3�4= +1, which comes from the momentum con-
servation in the transverse direction. Each g��̄ has two differ-
ent processes �e.g., for g++ one has ��1 ,�2 ,�3 ,�4�= �+, + ,
+ , + � and �−,−,− ,−�
; however, these two different pro-
cesses are given in the same form in the bosonized Hamil-
tonian and contribute to physical quantities in the same
manner, as will be shown later. Then the coupling constants
gi�

��̄ and gi�
��̄ are written in terms of interactions of the Hamil-

tonian �2.1� as

gi�
��̄ = l�V� + mi,�V� , �2.12a�

gi�
��̄ = U + l�V� + mi,�V� , �2.12b�

where l±= ±1, m1,+=−2 cos �� cos 2
, m1,−=−2 cos ��,
m2,+= +2, and m2,−= +2 cos 2
.

B. Bosonization

Here we apply the Abelian bosonization method.35–37 The
field operators of the right- and left-moving electrons are
then written as


p,�,��x� =
��,�

�2�a
exp�ipkF,k�

x + ip�p,s,��x�
 , �2.13�

where s= + �−� for �= ↑ �↓�. The chiral bosons obey the
commutation relations ��p,s,��x� ,�p,s�,���x��
= ip� sgn�x
−x���s,s���,�� and ��+,s,� ,�−,s�,��
= i��s,s���,��. The Klein fac-
tors ��,� are introduced in order to retain the correct anticom-
mutation relations of the field operators between different
spin and band indices. To relate the bosonic field � to the
physical quantity, we introduce a new set of bosonic fields
��± and ��± by

��+
p �x� =

1

4 �
s,�=±

�p,s,��x� , �2.14a�

��−
p �x� =

1

4 �
s,�=±

��p,s,��x� , �2.14b�

��+
p �x� =

1

4 �
s,�=±

s�p,s,��x� , �2.14c�

��−
p �x� =

1

4 �
s,�=±

s��p,s,��x� . �2.14d�

The phases ��± and ��± represent charge and spin fluctua-
tions, respectively, and the suffix + �−� refers to the even
�odd� sector.

In terms of bosonic fields, we can rewrite the kinetic en-
ergy as H0=�dx H0, where

H0 =
vF

�
�

�=�,�
�
r=±

���x��r
+ �2 + ��x��r

− �2
 . �2.15�

We also introduce the field ��r and its dual field ��r defined
by ��r=��r

+ +��r
− and ��r=��r

+ −��r
− . These fields satisfy the

commutation relation ���r�x� ,���r��x��
=−i���−x+x���r,r�,
where ��x� is the Heaviside step function.

In terms of these bosonic fields, the order parameters are
expressed as OA=�dx OA�x�, where

OSCd�x� = �
p,�

� 
p,↑,��x�
−p,↓,��x�

� ei��+cos ��−cos ��+cos ��−

− iei��+sin ��−sin ��+sin ��−, �2.16a�

OCDW�x� = �
p,�,�


p,�,�
† �x�
−p,�,−��x�eip2kFx

� sin ��+cos ��−sin ��+sin ��−

− cos ��+sin ��−cos ��+cos ��−,

�2.16b�

OPDW�x� = �
p,�,�

�ip�
p,�,�
† �x�
−p,�,−��x�eip2kFx

� cos ��+cos ��−sin ��+sin ��−

+ sin ��+sin ��−cos ��+cos ��−. �2.16c�

In the present paper we do not consider the 4kF CDW order
parameter. The possibility of the 4kF CDW state will be dis-
cussed later in Sec. III.

To obtain the bosonized Hamiltonian, Eq. �2.13� is substi-
tuted for the interaction term Eq. �2.11�. The phase field ��−
appears in the form cos�2��−+4
x� where 
 is given by Eq.
�2.6�. We can safely assume that t� is relevant for t� being
not very small. In this case we can discard the cos�2��−

+4
x� terms which become irrelevant. We also neglect the
cos 2��−cos 2��− term, because this cannot become relevant
due to the scaling dimension of cos 2��−cos 2��− being
equal to or larger than 2, i.e., this term is either marginal or
irrelevant. Then our Hamiltonian reduces to

H =
vF

�
�
r=±
��

p=±
��x��r

p �2 +
g�r

�vF
��x��r

+ ���x��r
− ��

+
vF

�
�
r=±
��

p=±
��x��r

p �2 −
g�r

�vF
��x��r

+ ���x��r
− ��

+
1

2�2a2 �gc−,s+cos 2��−cos 2��+
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+ gc−,s−cos 2��−cos 2��− + gc−,s−cos 2��−cos 2��−

+ gs+,s−cos 2��+cos 2��− + gs+,s−cos 2��+cos 2��−
 .

�2.17�

The coupling constants for the bilinear terms of the density
operators are given by

g�+ = +
1

2�
�=±

�g2�
+� + g2�

+� − g1�
��� , �2.18a�

g�− = +
1

2�
�=±

��g2�
+� + g2�

+� − g1�
��� , �2.18b�

g�+ = −
1

2�
�=±

�g2�
+� − g2�

+� − g1�
��� , �2.18c�

g�− = −
1

2�
�=±

��g2�
+� − g2�

+� − g1�
��� , �2.18d�

and the coupling constants for the nonlinear terms are given
by

gc−,s+ = − g1�
−+ , �2.19a�

gc−,s− = − g2�
−+ , �2.19b�

gc−,s− = + g2�
−+ − g1�

−+, �2.19c�

gs+,s− = + g1�
++ , �2.19d�

gs+,s− = + g1�
−− . �2.19e�

Since there is no cosine potential for the phase ��+ in the
Hamiltonian �2.17�, the phase ��+ is not locked even in the
low-energy limit. Then the CDW state and the PDW state
cannot be distinguished. Actually, by the translation of the
phase ��+→��++� /2, the order parameters OCDW �Eq.
�2.16b�
 and OPDW �Eq. �2.16c�
 are interchanged, while the
Hamiltonian �2.17� is invariant. Thus if the CDW state be-
comes �quasi-�long-range ordered, the PDW state also be-
comes so, and then these two states coexist: We call this
coexisting state the CDW+PDW state.

From Eqs. �2.16� and �2.17�, the CDW+PDW state and
SCd state are identified by the fixed points of gs as summa-
rized in Table I. Both states have a gap in the total spin sector
��+. The first reason, attributable to the difference between
the CDW+PDW state and the SCd state, is that of the lock-
ing position for the ��− mode and the ��+ mode, where the

solution gc−,s+
* 	0 leads to ���−�= ���+�=0 or � /2 for the

SCd state, and the solution gc−,s+
* �0 results in ���−�

� ���+� for the CDW+PDW state. The second reason is the
relevance of ��− or ��−: The CDW+PDW state is obtained
for the locking of ��− due to the relevant gc−,s−

* and gs+,s−
*

terms, while the SCd state is obtained for that of ��− due to
the relevant gc−,s−

* and gs+,s−
* terms.

C. Refermionization and effective theory for spin modes

The coupling constants in Eq. �2.11� are not independent
parameters due to the global spin-rotation SU�2� symmetry.
In terms of the coupling constants in Eq. �2.17�, the con-
straint is given by33,38

g�+ + g�− − gs+,s− = 0, �2.20a�

g�+ − g�− − gs+,s− = 0, �2.20b�

gc−,s+ − gc−,s− − gc−,s− = 0. �2.20c�

Since the SU�2� symmetry holds in the original Hubbard
Hamiltonian �2.1�, the coupling constants in Eq. �2.17� must
satisfy Eq. �2.20� in the course of renormalization.

To appreciate the SU�2� symmetry in the effective theory
�2.17�, we fermionize it by introducing spinless fermion
fields 
p,r �p=± and r=±�:


±,r�x� =
�r

�2�a
exp�±i2��r

± �x�
 , �2.21�

where the index r= + �−� refers to the total �relative� degrees
of freedom of the spin mode, and ��r ,�r��=2�r,r�. The den-
sity operators are given by 
p,±

† 
p,±ª�x��±
p /�. We then in-

troduce the Majorana fermions �n �n=1–4� by


p,+ =
1
�2

��p
2 + i�p

1�, 
p,− =
1
�2

��p
4 + i�p

3� . �2.22�

These fields satisfy the anticommutation relations

��p
n�x� ,�p�

n��x���=��x−x���p,p��n,n�. With the help of the
SU�2� constraints �2.20�, we rewrite the effective Hamil-
tonian �2.17� in terms of the Majorana fermions:

H =
vF

�
�

r
��

p

����r
p �2 +

g�r

�vF
��x��r

+ ���x��r
− ��

− i
vF

2
��+ · �x�+ − �− · �x�−� −

g�+

2
��+ · �−�2

− i
vF

2
��+

4�x�+
4 − �−

4�x�−
4� − i

gc−,st

2�a
cos 2��−�+ · �−

TABLE I. Position of phase locking and signs for the fixed-point coupling constants, which are essentially the same as in Ref. 31. The
� symbol indicates that a bosonic field is not locked. Ii are integers.

���−� ���+� ���−� ���−� �gc−,s+
* ,gc−,s−

* ,gc−,s−
* ,gs+,s−

* ,gs+,s−
* �

CDW+PDW �� /2��I0+1�+�I1 �� /2�I0+�I2 � �� /2�I0+�I3 �+,0 , + ,0 ,−�
SCd �� /2�I0+�I1 �� /2�I0+�I2 �� /2�I0+�I3 � �−,−,0 ,− ,0�
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− i
gc−,ss

2�a
cos 2��−�+

4 · �−
4 − g�−��+ · �−��+

4�−
4 , �2.23�

where �p= ��p
1 ,�p

2 ,�p
3�, and the coupling constants are

gc−,st � − gc−,s+, gc−,ss � − gc−,s− + gc−,s−. �2.24�

These coupling constants are given in terms of the Hubbard
interactions as

gc−,st = + U − V� − 2V�cos �� , �2.25a�

gc−,ss = + U − V� + 2V��cos �� + 2 cos 2
� ,

�2.25b�

g�+ = + U + 2V� + V��4 + cos ���1 + cos 2
�
 ,

�2.25c�

g�− = − V� − V�cos ���1 − cos 2
� , �2.25d�

g�+ = + U − V�cos ���1 + cos 2
� , �2.25e�

g�− = + V� + V�cos ���1 − cos 2
� . �2.25f�

Thus the effective theory for the spin sector becomes O�3�
�Z2 symmetric, i.e., the four Majorana fermions are
grouped into a singlet �4 and a triplet �. We note that the
O�3��Z2 symmetry also appears in the low-energy effective
theory of the isotropic Heisenberg ladder.39

III. PHASE DIAGRAM IN THE GROUND STATE

We investigate the low-energy behavior using perturbative
RG analysis. There are six independent RG equations for the
scaling of the coupling constants under the transformation of
the lattice constant a→aedl. From Eq. �2.23�, we obtain the
RG equations

d

dl
G�− = −

3

4
Gc−,st

2 −
1

4
Gc−,ss

2 , �3.1a�

d

dl
G�+ = − G�+

2 − G�−
2 −

1

2
Gc−,st

2 , �3.1b�

d

dl
G�− = − 2G�+G�− −

1

2
Gc−,stGc−ss, �3.1c�

d

dl
Gc−,st = − G�−Gc−,st − 2G�+Gc−,st − G�−Gc−,ss,

�3.1d�

d

dl
Gc−,ss = − G�−Gc−,ss − 3G�−Gc−,st, �3.1e�

and dG�+ /dl=0 where G�0�=g / �2�vF�. Note that these RG
equations can also be derived directly from Eqs. �2.17� and
�2.20�. Since the coupling G�+ is unchanged under renormal-

ization, the total charge sector is critical and has gapless
excitations. The asymptotic behavior of these coupling con-
stants for large l is examined by integrating the RG equations
�3.1� numerically with the initial conditions �2.25�. It is eas-
ily found that, in most cases, all the coupling constants in Eq.
�3.1� grow under renormalization and become relevant at
large l. This fact implies that all the modes except for the ��+
mode become massive in most regions of the ground-state
phase diagram.28,29,40 These stable fixed points are called the
“C1S0 phase,” where the notation CnSm denotes n massless
boson modes in the charge sector and m massless boson
modes in the spin sector.29 The characteristic energy scale
corresponding to the mass gap can be roughly estimated
from �ma�=�e−la where � is the high-energy cutoff of the
order of the bandwidth and la is determined by using the fact
that the corresponding coupling constant �Ga�l�� becomes of
the order of unity at l= la.

From Eq. �3.1�, we also find that there are two distinct
stable fixed points on the plane of the coupling constants for
the original extended Hubbard ladder model with U ��0�,
V� ��0�, and V� ��0�. Actually, from Table I, one obtains
that the coupling constants �G�− ,G�+ ,G�− ,Gc−,st ,Gc−,ss�
flow to �−,−, + ,− , + � for the CDW+PDW state and
�−,−,− , + , + � for the SCd state. This means that there are
two distinct phases in the ground states of the extended Hub-
bard ladder model, and that the system exhibits a quantum
phase transition on a critical point between two phases. In
order to examine critical properties in the ground state, we
analyze Eq. �2.23� in more detail by deriving the effective
theory for low-energy properties.

Here we assume that the mass of the charge mode of odd
sector ��− � is larger than those of the spin modes ��± �, so
that the ��− fields are locked by cosine potential below the
scale of the mass m�−. This assumption will be examined
later. The effective low-energy theory is obtained from Eq.
�2.17� by taking an average:

c�− � �cos 2��−� . �3.2�

Then we have

H� = − i
vF

2
��+ · �x�+ − �− · �x�−� − imt

0�+ · �−

− i
vF

2
��+

4�x�+
4 − �−

4�x�−
4� − ims

0�+
4�−

4

−
g�+

2
��+ · �−�2 − g�−��+ · �−��+

4�−
4 , �3.3�

where we have introduced

mt
0 �

c�−

2�a
gc−,st, ms

0 �
c�−

2�a
gc−,ss. �3.4�

Such a mean-field treatment of the charge sector has also
been utilized in the context of carbon nanotubes.41 We note
that this low-energy effective theory takes the same form as
that of the isotropic Heisenberg ladder.39 In terms of the
original Hubbard interactions these masses of Eq. �3.4� are
given by
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mt
0 =

c�−

2�a
�U − V� − 2V�cos ��
 , �3.5a�

ms
0 =

c�−

2�a
�U − V� + 2V��cos �� + 2 cos 2
�
 . �3.5b�

Thus the magnitude of the masses can be tuned by the inter-
actions and doping. It is known that, when ms

0 , mt
0�0, the

quartic marginal terms lead to mass renormalization, ms
0

→ms and mt
0→mt, where37,39

mt = mt
0 −

g�+

�vF
mt

0ln
�

�mt
0�

−
g�−

2�vF
ms

0ln
�

�ms
0�

, �3.6a�

ms = ms
0 −

3g�−

2�vF
mt

0ln
�

�mt
0�

, �3.6b�

and � is a high-energy cutoff. Then Eq. �3.3� reduces to

H� = − i
vF

2
��+ · �x�+ − �− · �x�−� − imt�+ · �−

− i
vF

2
��+

4�x�+
4 − �−

4�x�−
4� − ims�+

4�−
4 . �3.7�

Low-energy properties become more transparent by intro-
ducing four copies of the one-dimensional quantum Ising
model:

HQI = − �
j

�
l

�J� j,l
z � j+1,l

z + hl� j,l
x � , �3.8�

where � j
z and � j

x are the Pauli matrices and l=1, 2, 3, 4. This
model is equivalent to the Majorana-fermion theory with the
central charge c=1/2. The operator �, being dual to the spin
operator �, is defined as37

� j+1/2,l
z = �

i=1

j

�i,l
x , � j+1/2,l

x = � j,l
z � j+1,l

z , �3.9�

which is known as the Kramers-Wannier transformation in
the one-dimensional quantum Ising model. These variables
satisfy ��i,l

z ,� j+1/2,l
z 
=0 for i� j and ��i,l

z ,� j+1/2,l
z �=0 for i

� j. In terms of �z and �z, i.e., the Ising order and disorder
parameters, the Majorana fermions can be constructed as

� j,l = �l� j,l
z � j−1/2,l

z , � j,l = i�l� j,l
z � j+1/2,l

z , �3.10�

where �l is the Klein factor. One can easily check the anti-
commutation relation of the Majorana fermions, ��i,l ,� j,m�
= ��i,l ,� j,m�=2�i,j�l,m and ��i,l ,� j,m�=0. By using �+

l = �−�l

+�l� /�2 and �−
l = ��l+�l� /�2, and by taking the continuum

limit, the quantum Ising Hamiltonian Eq. �3.8� reproduces
Eq. �3.7� where vF=2J, mt=2�h1−J�, and ms=2�h4−J� with
h1=h2=h3. It is well known that the Ising model �3.8� exhib-
its a quantum critical point at hl=J.42 For hl	J, the ordered
state is obtained, i.e., the order parameter �l has a finite
expectation value. For hl�J, on the other hand, we have the
disordered state where the expectation value of �l becomes
zero, while the disorder parameter �l has a finite expectation
value. On the critical point hl=J, the corresponding mass in

Eq. �3.7� vanishes with its central charge c= 1
2 for each Ising

chain.43 Thus the ground-state properties are determined
from the sign of masses mt and ms. When mt	0, i.e., the
Ising model with l=1, 2, 3 is in the ordered phase, we have
��1�= ��2�= ��3��0 and ��1�= ��2�= ��3�=0, and vice
versa. In the same manner, we have ��4��0 and ��4�=0 for
ms	0, while ��4�=0 and ��4��0 for ms�0. In terms of the
Ising variables, the order parameters Eq. �2.16� are rewritten
as

OSCd � ei��+��1�2�3��4, �3.11a�

OCDW � sin ��+��1�2�3��4, �3.11b�

OPDW � cos ��+��1�2�3��4. �3.11c�

As noted in the preceding section, we find that both the
CDW and PDW states have the same structure for the spin
degrees of freedom, since the field ��+ is unlocked due to the
doping effect. When mt	0 and ms�0, the CDW+PDW
state becomes quasi-long-range ordered. In the case mt�0
and ms�0, the dominant fluctuation is the SCd state, which
is called the “Luther-Emery liquid.”44,45 The possible ground
states and those order parameters are summarized in Table II.

Let us examine the behavior in more detail using the scal-
ing equations for the coupling constants in the effective
Hamiltonian �3.3�. The scaling equations for the coupling
constants are given by33

dMt

dl
= Mt − 2MtG�+ − MsG�−, �3.12a�

dMs

dl
= Ms − 3MtG�−, �3.12b�

dG�+

dl
= − G�+

2 − G�−
2 − Mt

2, �3.12c�

dG�−

dl
= − 2G�+G�− − MtMs, �3.12d�

where dl=da /a, Mt=mt
0a /vF, Ms=ms

0a /vF, and G�±
=g�± /2�vF. The couplings Mt and Ms are relevant, while
G�± are marginal. These RG equations, which are analyzed
in a way similar to Ref. 33, have two kinds of stable fixed
point Mt

*= ±�. The ground-state phase diagram, which is
summarized in Table II, is shown in Fig. 1 on the plane of
U / t and V / t �t� = t�� t ,V� =V��V�. The SCd quasi-long-
range-ordered state, which is obtained for V=0, is destabi-

TABLE II. Possible phases and related quantities: the signs of
masses �mt and ms� and order parameters. We have assumed c�−

����−�=0 mod � in Eq. �3.4�.

mt ms Order parameters

CDW+PDW − + ��1,2,3��0, ��4��0

SCd + + ��1,2,3��0, ��4��0
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lized by the intersite Coulomb repulsion and changes into the
CDW+PDW state. The ground-state phase diagram on the
plane of the doping � and the ratio V /U is shown in Fig. 2,
where the SCd state is stabilized due to the suppression of
the intersite repulsion by the doping.

Here we discuss the possibility of the 4kF CDW state. It is
known that the 4kF CDW state also becomes quasi-long-
range ordered in the whole region of the phase diagrams,
Figures 1 and 2, since the correlation function 4kF CDW
state decays27,28 as 1 /r2K�+ where K�+ is the Tomonaga-
Luttinger parameter for the total charge sector, K�+
���2�vF−g�+� / �2�vF+g�+�
1/2. Since the correlation func-
tion of the CDW and PDW states decays as 1/rK�+/2, we find
that the 4kF CDW state is still a subdominant fluctuation in
the CDW+PDW state. On the other hand, in the SCd state,
the 4kF CDW can become the dominant fluctuation for K�+
	1/2, since the exponent of the SCd correlation function is
given by 1/2K�+. However, at close to half filling, it has been
confirmed that the exponent K�+ in ladder systems reaches a
universal value K�+

* →1 as �→0.46–48 Thus in the SCd state
of the phase diagram, we find that the correlation function of
the SCd state becomes dominant and that of the 4kF CDW
state is subdominant close to half filling.

The doping dependences of the gaps,49 which are roughly
estimated from �ma�=�e−la, are shown in Fig. 3. The Majo-

rana triplet gap mt collapses on the boundary between the
CDW+PDW state and the SCd state where the system is
strongly fluctuating due to the competition between these
two states. From the perturbative RG method, we cannot
determine the precise magnitude of the gaps; however, the
qualitative features of the gap associated with the phase tran-
sition �i.e., mt in the present case� can be captured close to
the quantum critical point �QCP�. The critical properties are
described by the SU�2�2 Wess-Zumino-Novikov-Witten
�WZNW� model37,39,50,51 and is also characterized by the
C1S 3

2 state.28 In the present analysis, we have assumed
m�−� �ms , �mt�� to derive the effective low-energy theory Eq.
�3.3�. Actually, by using Eq. �3.1�, we find that m�− becomes
the largest among the three m�−, mt, and ms. However, m�− is
not much larger than the Majorana singlet gap ms, but is of
the same order as ms; we find from the above rough estima-
tion that m�− /ms�1.4–1.6 for �=0.1–0.4. From the recent
theoretical studies on the multicomponent one-dimensional
systems, it has been proposed that52–54 a symmetry, which is
broken even in the microscopic Hamiltonian, can be restored
nontrivially at low energies, due to coupling terms between
different modes. This mechanism is called a dynamical sym-
metry enlargement �DSE� whose possibility has also been
examined by the nonperturbative approach.54 Once the DSE
is realized, the resultant gaps for different modes become
identical. Based on these theories, the present results with
m�−�ms may suggest the occurrence of the DSE between
the charge sector ��− � and the Majorana singlet sector where
excitations form an O�3� multiplet. However, the study of the
DSE is beyond the naive perturbative RG approach52 and
thus the DSE in the present case remains unclear.

FIG. 1. The ground-state phase diagram on the plane of U / t and
V / t where t� t�= t� and �=0.2.

FIG. 2. The ground-state phase diagram on the plane of doping
rate � and ratio V /U where V�V� =V� and U / t=3 with t� t�= t�.

FIG. 3. The doping dependence of the energy gaps mt and ms

with U / t=3, V� / t=V� / t=0.7, and t= t� = t�=1. The quantum criti-
cal point �QCP� is at �=�c�0.18. The CDW+PDW quasi-long-
range-ordered state is obtained for �	�c, while the the d-wave SC
quasi-long-range-ordered state is obtained for ���c.
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IV. SPIN SUSCEPTIBILITY AND NMR
RELAXATION RATE

In this section we study the uniform spin susceptibility
and the NMR relaxation rate at finite temperature from two
different approaches by extending previous calculations on
the single chain55,56 or on the undoped Heisenberg
ladder.57–60 One approach is the random-phase approxima-
tion �RPA� combined with the renormalization group method
and another is direct calculation in terms of the low-energy
effective Hamiltonian �3.7�. The former has the advantage of
reproducing high-temperature behavior, while the latter is
appropriate for describing the low-temperature asymptotics.

First we introduce the spin-1
2 operator:

S�q� �
1

2 �
k,�1,�2

c�1

† �k + q���1,�2
c�2

�k� , �4.1�

with q= �q� ,q�� and the Pauli matrices ��1,�2
. The general-

ized spin susceptibility is given by

��q,i n� �
1

2L
�

0

!

d"�T"S
#�q,"�S#�− q,0��ei n". �4.2�

Equation �4.2� is independent of # due to the spin-rotational
SU�2� symmetry, where # stands for the orientation of the
magnetic field. The noninteracting susceptibility �i.e., Eq.
�4.2� without interactions
 is given by

�0�q,i n� =
1

4L
�

k�,k�

f„��k + q�… − f„��k�…
i n + ��k� − ��k + q�

, �4.3�

where f��� is the Fermi distribution function f���
=1/ �e!��−��+1
, and  n and � are the Matsubara frequency
and the chemical potential, respectively. In the continuum
limit, we can split the spin operator into a uniform part vary-
ing slowly in space and a staggered oscillation part, as

S�x,q�� = Jr�x� + �− 1�x/anr�x� , �4.4�

where r= + �−� for q�=0 ���. The uniform part �q� �0� of
the spin operator is given by

J+�x� =
1

2�
p,�

�
�1,�2


p,�1,�
† �x���1,�2


p,�2,��x� , �4.5a�

J−�x� =
1

2�
p,�

�
�1,�2


p,�1,�
† �x���1,�2


p,�2,−��x� , �4.5b�

where 
p,�,��x� is given by Eq. �2.13�. By using Eqs. �2.13�,
�2.21�, and �2.22�, the spin operator J±�x� is expressed in
terms of the Majorana fermions as

J+�x� = +
i

2�
p

�p�x� � �p�x� , �4.6a�

J−�x� = − i�
p

�p�x��p
4�x� , �4.6b�

where J±= �J±
x ,J±

y ,J±
z �= �J±

1 ,J±
2 ,J±

3�. The staggered part �q�

�2kF and q�=�� of the spin operator is given by

n−�x� =
�− 1�x/a

2 �
p,�

�
�1,�2


p,�1,�
† �x���1,�2


−p,�2,−��x� .

�4.7�

Here we do not consider the component with �q� ,q��
��2kF ,0�, which would become irrelevant in the low-energy
limit due to the relevant t�.61 By using Eq. �2.13�, the opera-
tor n− is rewritten as

n−
x�x� =

− 2i

�a
�cos �̃�+cos ��−sin ��+cos ��−

− sin �̃�+sin ��−cos ��+sin ��−� , �4.8a�

n−
y�x� =

− 2i

�a
�cos �̃�+cos ��−cos ��+cos ��−

+ sin �̃�+sin ��−sin ��+sin ��−� , �4.8b�

n−
z �x� =

2

�a
�cos �̃�+cos ��−cos ��+sin ��−

− sin �̃�+sin ��−sin ��+cos ��−� , �4.8c�

where �̃�+=��+−��x. Here we note that n−�x� expresses the
incommensurate spin-density wave.

A. Uniform spin susceptibility

Here we calculate the uniform spin susceptibility. In terms
of the spin operators J±, the spin susceptibility ��q , i n� for
small q� is given by

�uni�q,i n� �
1

2L
�

0

!

d"�T"Jr
#�q�,"�Jr

#�− q�,0��ei n", �4.9�

where r= + �−� in the right-hand side �RHS� corresponds to
q�=0��� in the LHS and # denotes the orientation of the
magnetic field. First we calculate �uni�q , i n� within the RPA
by using the formulation of g-ology �2.11�. The magnetic
susceptibility ��q� ,q� , i n� for small q� is calculated from
the diagrams of the RPA given in Fig. 4. We note that the
same result would be derived from the path integral
formalism.56 The explicit forms for the susceptibility are
given by

FIG. 4. The spin susceptibility ��q� ,q� , � with q�=0 �upper
diagram� and � �lower diagram�, and small q�. The subscript
p= + �−� refers to right- �left-�moving electrons, while �= + �−�
refers to electrons on the bonding �antibonding� band.
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�uni�q�,0,i n� =
��0

+�q�,0,i n� + �0
−�q�,0,i n�
 + 2�g1�

++ + g1�
−− ��0

+�q�,0,i n��0
−�q�,0,i n�

1 − �g1�
++ + g1�

−− �2�0
+�q�,0,i n��0

−�q�,0,i n�
, �4.10a�

�uni�q�,�,i n� =
��0

+�q�,�,i n� + �0
−�q�,�,i n�
 + 2�g1�

+− + g1�
−+ ��0

+�q�,�,i n��0
−�q�,�,i n�

1 − �g1�
+− + g1�

−+ �2�0
+�q�,�,i n��0

−�q�,�,i n�
, �4.10b�

where �0
p�q� ,q� , i n� is given by the noninteracting spin sus-

ceptibility per branch p= + �−�:

�0
p�q,i n� �

1

4L
�

k��pkF

�
k�

f„��k + q�… − f„��k�…
i n + ��k� − ��k + q�

.

�4.11�

It is crucial to take into account the effect of curvature of the
dispersion in the noninteracting susceptibility �0

p, i.e., the
explicit form of ��k� given in Eq. �2.4� is retained in the
calculation, to obtain a reasonable temperature dependence.

By using Eq. �4.10a� with the relations Eqs. �2.19� and
�2.20�, the uniform spin susceptibility �s�T�
=�uni�q� ,0 ,0��q�→0 is calculated as

�s�T� =
�0�T�

1 − g�+�0�T�
, �4.12�

where �0
+�0,0�=�0

−�0,0����0�T� /2
. We note that the
susceptibility �0�T� for T=0 is given by �0�0�= �vF,0

+vF,�� / �4�vF,0vF,��, which reduces to �0�0�→1/ �2�vF� in
the limit of a single chain because vF,0 ,vF,�→vF.

All the diagrams given in Fig. 4 are nonsingular because
only the small-q� components are taken into account. The
effect of the one-dimensional fluctuations appears through
logarithmic corrections to g�+. This process can be accom-
plished by replacing the coupling constant g�+ with the
renormalized one with the cutoff for finite temperature, i.e.,
g�+�l=ln � /T�. Then the uniform spin susceptibility is given
by

�s�T� =
�0�T�

1 − g�+�l��0�T�
, �4.13�

where g�+�l� ��2�vFG�+�l�
 is obtained by solving the RG
equation Eq. �3.1b� or �3.12c�. This formula is valid at the
temperature above the energy scale of the gap �mt�, since the
coupling g�+ which describes the fluctuation of the Majorana
triplet sector �see Eq. �3.3�
 is treated perturbatively.

The overall temperature dependence of the uniform spin
susceptibility is shown in Fig. 5. At sufficiently high tem-
perature, the uniform susceptibility �s�T� exhibits behavior
similar to the one-dimensional susceptibility both in the pres-
ence and in the absence of interactions. With decreasing tem-
perature, �s�T� and �0�T� for the ladder system become
larger than those of a single chain due to the enhancement of
the density of states by interchain hopping. However, �s�T�
shows activation behavior below �mt�. In order to compre-
hend such low-temperature behavior, we estimate the spin

susceptibility based on the effective theory for the spin
mode, i.e., the Majorana-fermion theory. Below the energy
scale of the gap �mt�, we could ignore the fluctuation effects
due to g�+ in Eq. �3.3�, which would merely yield the mass
renormalization given in Eq. �3.6a�. Thus we can use the
effective theory given by Eq. �3.7�, although there remain
some discussions on g�+.59 By using Eq. �4.6� and after a
straightforward calculation, we obtain the uniform suscepti-
bility as

�s�T� = ��uni�q�,0,0��q�→0 =
1

8�T
� dk sech2 �k

t

2T
,

�4.14�

where �k
t = �vF

2k2+mt
2�1/2. For low T ���mt��, Eq. �4.14� is re-

written as

�s�T� �
1

vF

� �mt�
2�T

e−�mt�/T. �4.15�

Thus we obtain the exponential decay of the spin suscepti-
bility in the doped Hubbard ladder, which is the same low-
temperature asymptotics as in the undoped Heisenberg
ladder.57,62

The susceptibility at the QCP exhibits quite different be-
havior from that of V=0. Figure 6 shows the ladder �s�T� at
low temperature for the doping near the QCP. Except for the
QCP, the susceptibility exhibits activation behavior at low

FIG. 5. The temperature dependence of several spin suscepti-
bilities �s�T� and �0�T� for U / t=4, V� =V�=0, and �=0.1, with t�

= t�=1, where �0 denotes �s in the absence of interactions. The
Majorana triplet gap is mt�0.03. For comparison, the correspond-
ing susceptibilities of a single chain are also shown.
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temperature. On the QCP, the susceptibility shows paramag-
netic temperature dependence for the whole temperature re-
gion due to the absence of the gap mt.

B. NMR relaxation rate

In this section, we calculate the temperature dependence
of the NMR relaxation rate T1

−1. We use the general formula
of the NMR relaxation rate63

T1
−1 =

T

2L
�

q

���q, 0�
 0

, �4.16�

where �� is the imaginary part of the magnetic susceptibility
and  0 is the nuclear resonance frequency having a small
energy of the order of millikelvins. Here we do not write the
coefficient of the RHS of Eq. �4.16� by neglecting the mo-
mentum dependence of the hyperfine coupling constant,
since the hyperfine coupling for the ladder-63Cu site in
Sr14Cu24O41 originates mainly in the on-site hyperfine inter-
action and thus depends weakly on the momentum q.7 Since
the interaction process between electrons near Fermi points
is considered to play an important role for weak coupling,
the integral over q� in Eq. �4.16� can safely be split into two
parts,

T1
−1 = �T1

−1�uni + �T1
−1�stag, �4.17�

where �T1
−1�uni and �T1

−1�stag are the contributions from small
q� and large q�, respectively. Thus �T1

−1�uni denotes the uni-
form contribution to the NMR relaxation rate, while �T1

−1�stag

is the antiferromagnetic staggered contribution. The explicit
formulas are given by

�T1
−1�uni =

T

4�
�
q�

�
q��0

dq�

�uni� �q, 0�
 0

, �4.18a�

�T1
−1�stag =

T

4�
�
q�

�
q��±2kF

dq�

���q, 0�
 0

. �4.18b�

These two contributions �T1
−1�uni and �T1

−1�stag show different
temperature dependence. It has been discussed which
contribution becomes dominant in Heisenberg ladder

systems,57,58,64,65 but the problem is still controversial. We
treat these two contributions separately in the following.

1. Uniform part: Contribution from small q¸

Now we examine the uniform contribution �T1
−1�uni, by

using the RPA calculation combined with the RG method at
high temperature and by performing a direct calculation in
terms of the low-energy effective theory at low temperature.

First we focus on the high-temperature behavior of
�T1

−1�uni. In order to obtain �T1
−1�uni from Eq. �4.18a�, we cal-

culate the imaginary part of the susceptibility �uni� . In the
noninteracting case, one easily finds from Eq. �4.11� that the
imaginary part of the noninteracting susceptibility becomes

�0��q�,0, � =
1

4�
p

pq��� − pvFq�� , �4.19a�

�0��q�,�, � =
1

8�
p,�

�pq� + 2�
��� − pvFq� − 2�vF
� ,

�4.19b�

where �0��q� ,q� , ��$p=±Im �0
p�q� ,q� , � and we have ne-

glected the curvature of the dispersion and used the linear-
ized dispersion ��k� ,k��→vF�pk� −kF,k�

� in Eq. �4.11�. Since
�0��q , � is proportional to  due to the � function, the inte-
gral in Eq. �4.18a� is determined by the contribution being
linear in �0� in �uni�q� ,0 , � �Eq. �4.10a�
. Further, by neglect-
ing the q� and  dependence of Re �0

p�q� ,0 , � �which is a
nonsingular quantity� in Eq. �4.10a�, the imaginary part of
�uni�q� ,0 , � for small q� and small  is given by

�uni� �q�,0, � �
�0��q�,0, �

�1 − g�+�0��0,0,0�
2

�
1

4

�s
2�T�

�0
2�T��p

pq��� − pvFq�� , �4.20�

where �0��q� ,q� , ��$p=±Re �0
p�q� ,q� , � and �0�T�

����0,0 ,0�. In the second equality of Eq. �4.20�, we have
used Eqs. �4.13� and �4.19a�. On the other hand, there is no
correction to the q�=� component, i.e., �uni� �q� ,� , �
=�0��q� ,� , �. By inserting Eqs. �4.20� and �4.19b� into Eq.
�4.18a�, the uniform contribution �T1

−1�uni at T�ms , �mt� is
given by

�T1
−1�uni =

T

8�vF
2

�s
2�T�

�0
2�T�

+
T

8�vF
2 . �4.21�

The first �second� term in the RHS of Eq. �4.21� comes from
processes with momentum transfer q�=0 �q�=��. The con-
tribution with q�=�, which takes the same form as in the
noninteracting case, shows the Korringa law T1

−1�T, while
the contribution with q�=0 is enhanced by the spin fluctua-
tions yielding a factor �s

2�T� /�0
2=1/ �1−g�+�T��0�T�
2. The

contribution of q�=0 shows a relation between the uniform
part of the relaxation rate and the uniform spin susceptibility
�s�T�.

Next we calculate �1/T1�uni at low temperature by using
the low-energy effective spin Hamiltonian �3.7�, which is

FIG. 6. The temperature dependence of the spin susceptibility
for U / t=3, V� =V�=0.7 with t� = t�=1. The critical value of the
doping is given by �c�0.18.
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valid at T�m�−. By using Eqs. �3.7� and �4.6�, we obtain

�T1
−1�uni =

1

16�vF
2�

�mt�

�

d�
�2 + mt

2

���2 − mt
2���� +  0�2 − mt

2

sech2 �

2T

+
1

16�vF
2�

max��mt�,ms�

�

d�
�2 + mtms

���2 − mt
2���2 − ms

2�
sech2 �

2T
,

�4.22�

where �k
z = �vF

2k2+mz
2�1/2 with z= t ,s and we have set  0→0

in the second term of the RHS. The first term in the RHS of
Eq. �4.22� is a contribution from the processes with momen-
tum transfer q�=0, which is given by the Majorana triplet-
triplet bubble in the diagram.57 On the other hand, the second
term is a contribution from processes with q�=� and corre-
sponds to the Majorana triplet-singlet bubble. In the limit of
high temperature, Eq. �4.22� reduces to �T1

−1�uni=T /8�vF
2

+T /8�vF
2 corresponding to the Korringa law. The enhance-

ment factor in the first term of the RHS of Eq. �4.21� is not
reproduced since the spin fluctuation has been neglected in
Eq. �4.22�. At low temperature � 0�T� �mt��, the most
dominant term reads

�T1
−1�uni �

1

4�vF
2�

�mt�

�

d�
��2 + mt

2�e−�/T

���2 − mt
2���� +  0�2 − mt

2


�
�mt�

4�vF
2 e−�mt�/TK0	 0

2T



�
�mt�

4�vF
2 e−�mt�/T�ln	4T

 0

 − %� , �4.23�

where K0�z� is the modified Bessel function and % is Euler’s
constant. Equation �4.23� is equal to the formula obtained in
the undoped two-leg Heisenberg ladder60,62 and in the spin-1
Haldane spin chain.66

The overall temperature dependence of �T1
−1�uni can be

obtained by the interpolation between Eqs. �4.21� and �4.22�.
We show the temperature dependence of �T1

−1�uni in the
CDW+PDW phase in Fig. 7. In the SCd phase, �T1

−1�uni

shows behavior qualitatively similar to Fig. 7. The dashed
curve represents the q�=0 contribution while the dotted
curve represents the q�=� contribution. The q�=� contri-
bution exhibits activation behavior at temperatures below ms,
while the q�=0 contribution shows T-linear dependence at
temperatures above �mt�. For T� �mt�, the NMR relaxation
rate �T1

−1�uni is governed by the first term in Eq. �4.22� and
exhibits an activation behavior given by Eq. �4.23�. The
component with q�=0 is always larger than that with q�

=� in the whole temperature region, in contrast to the results
in Ref. 57. It is found that the total �T1

−1�uni clearly exhibits
behavior consisting of two components and thus the result
cannot be fitted by a single activation energy.

2. Staggered part: Contribution from large q¸

We calculate the antiferromagnetic contribution �T1
−1�stag

given by Eq. �4.18b�. As is known in the single-chain case,55

both the spin and charge degrees of freedom contribute to

�T1
−1�stag. The critical charge mode in our theory is the total

sector ��+, whose Hamiltonian is given by

H�+ =
v�+

2�
� 1

K�+
��x��+�2 + K�+��x��+�2� , �4.24�

where v�+=vF�1− �g�+ /2�vF�2
1/2 and K�+= ��2�vF

−g�+� / �2�vF+g�+�
1/2�1−G�+. For simplicity, we will ne-
glect the normalization of the velocity and set v�+→vF.

First we study �T1
−1�stag at high temperature, i.e., T�m�−.

For the noninteracting case, the real part �0� becomes loga-
rithmic singular, i.e., �0��2kF+q� ,� , ,T���4�vF�−1ln�� /x�
where x=max��vFq�� , � � ,T�, while the imaginary part �0� is
nonsingular. The imaginary part of �0 for � ��T is given by

�0��2kF + q�,�, ,T� �
 

32vFT
sech2	vFq�

4T

 . �4.25�

By using the fact ��0��� ��0��, the imaginary part of � is given
by55

���2kF + q�,�, ,T� = �̄stag�q�, ,T��0��2kF + q�,�, ,T� ,

�4.26�

where �̄ is an auxiliary function associated with the real part
of �:

�̄stag�q�, ,T� � 4�vF
� Re ��2kF + q�,�, ,T�

� ln��/x�
,

�4.27�

with x=max�� � , �vFq�� ,T�. The staggered part of the NMR
relaxation rate can be obtained by inserting Eq. �4.26� into
Eq. �4.18b�. Since �0��2kF+q� ,� , ,T� has a sharp peak
around q� =0 with the exponential decay for large q�, we
rewrite �̄stag�q� , ,T� as �̄stag�T� in Eq. �4.26� by neglecting
the q� and  dependence in �̄stag�q� , ,T�. Then the staggered
part �T1

−1�stag is given by

FIG. 7. The temperature dependence of the uniform contribution
of the NMR relaxation rate, with U / t=3, V� / t=V� / t=0.7, t� t�

= t�=1, and �=0.1. The dashed and dotted curves denote the q�

=0 and � contributions, respectively, and the solid curve denotes
the total �T1

−1�uni.
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�T1
−1�stag =

T

8�vF
2 �̄stag�T� . �4.28�

In order to examine �̄stag�T�, we calculate the correlation
function for n−�x� �Eq. �4.4�
 which denotes the spin operator
with momentum transfer q� �2kF and q�=�. By applying
the RG method to the spin-spin correlation function R�x ,"�
= �T"n−

#�x ,"�n−
#�0,0��, the RG equation for �̄stag is obtained as

d

dl
ln �̄stag�l� =

1

2
G�+ −

1

2
G�− +

1

2
G�+ −

1

2
G�−

+
1

2
Gc−,st +

1

2
Gc−,ss �4.29�

where l=ln�� /T� and �̄stag�0�=1. To obtain the temperature
dependence of �T1

−1�stag from Eq. �4.28�, we first solve the
RG equations �3.1� for the coupling constants, and next sub-
stitute those into Eq. �4.29�. We note that, for the noninter-
acting case, the auxiliary function is given by �̄stag�l�=1 and
then �T1

−1�stag=T /8�vF
2 , which has the same temperature de-

pendence as the uniform part �Eq. �4.21�
 in the noninteract-
ing limit.

At temperature below the charge gap m�−, i.e., for l� l�−,
the field ��− can be replaced by its average value ���−�. With-
out losing generality, we can assume that ��− is locked at
���−�=�I where I is integer. Then the spin operators are
given by

n−
x�x� � cos �̃�+ sin ��+ cos ��−, �4.30a�

n−
y�x� � cos �̃�+ cos ��+ cos ��−, �4.30b�

n−
z �x� � cos �̃�+ cos ��+ sin ��−, �4.30c�

where �̃�+ is defined just after Eq. �4.8�. The RG equation for
�̄stag�T� is given by

d

dl
ln �̄stag�l� =

1

2
+

1

2
G�+ +

1

2
G�+ −

1

2
G�− + Mt + Ms,

�4.31�

where the coupling constants are calculated from Eq. �3.12�.
Thus the NMR relaxation rate �T1

−1�stag in the region of
max��mt� ,ms��T�m�− is given by Eqs. �4.28� and �4.31�.
However, in the present system, we find ms�m�−, and then
this asymptotic behavior would not be realized.

Next we calculate the antiferromagnetic contribution to
the relaxation rate at low temperature by using the effective
spin Hamiltonian �3.7�. In this case, the staggered compo-
nents of the spin operators �4.30� are rewritten as

n−
x�x� � cos �̃�+��1�2�3��4, �4.32a�

n−
y�x� � cos �̃�+��1�2�3��4, �4.32b�

n−
z �x� � cos �̃�+��1�2�3��4, �4.32c�

where the Klein factors have been omitted. We follow the
calculation performed in Refs. 58, 67, and 68. If the spin-
spin correlation function at zero temperature exhibits power-
law behavior with exponent �, i.e., �n−�x�n−�0���x−�, it can
be shown that the temperature dependence of the NMR re-
laxation rate is given by �T1

−1�stag�T�−1, by using the confor-
mal mapping technique.68 If �mt� , �ms��T�m�− is realized,
the exponent is �= 1

2K�++1 and then we obtain

�T1
−1�stag � TK�+/2. �4.33�

This behavior, however, would not be observed since ms
�m�−. For �mt��T� �ms� in the SCd or CDW+PDW phase,
we can replace �4 by its average value ��4��0 in Eq. �4.32�
and then the exponent of the spin-spin correlation function
becomes �= 1

2K�++ 3
4 . Thus we have

�T1
−1�stag � T−1/4+K�+/2. �4.34�

In the limit of low temperature �T� �mt� , �ms� ,m�−�, the relax-
ation rate exhibits thermally activated behavior. In the SCd
phase �mt�0�, we obtain �see the Appendix�

�T1
−1�stag � �

�=±
�

−�

� d 

2�
cosh	i�

�

2
� +

 

2T

	2�T

vF

�−1

B	�

2
− i�

 

2�T
,1 − �


� �
−�

� d�1

2�

d�2

2�

d�3

2�

2��„E��1� − E��2� + E��3� +  …

8 cosh�E��1�/2T
cosh�E��2�/2T
cosh�E��3�/2T

coth2	�1 − �2

2

 , �4.35�

where E���= �mt�cosh � is the rapidity representation of dis-
persion, B�x ,y� is the beta function, and �=K�+ /2. In
the low-temperature limit T�mt, the staggered part of the
NMR relaxation rate in the SCd state is given by �see the
Appendix�

�T1
−1�stag � T1+K�+/2exp�− 2mt/T� , �4.36�

showing the activation behavior with a gap 2mt. On the other
hand, in the CDW+PDW state �mt	0�, by considering two
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magnon process, the NMR relaxation rate would be given by
�see the Appendix�

�T1
−1�stag � TK�+/2exp�− �mt�/T�ln T . �4.37�

In Fig. 8, we show the staggered part of the NMR relax-
ation rate, �T1

−1�stag at low temperature, which is calculated
based on Eqs. �4.33�, �4.34�, and �4.36�. The enhancement of
�T1

−1�stag in the interval region of �mt�	T	ms, which is simi-
lar to that of single chain, originates in the antiferromagnetic
fluctuations. The rapid decrease of �T1

−1�stag at temperature of
T	 �mt� shares the common feature with �T1

−1�uni and �s. We
note that the relative magnitude of �T1

−1�uni and �T1
−1�stag

depends on those of their hyperfine couplings.

C. Quantum critical behavior

Finally we focus on the temperature dependence of �s,
�T1

−1�uni, and �T1
−1�stag, just above the QCP, i.e., mt=0. Since

the g�+ term becomes marginally irrelevant in the effective
theory �3.3�, we first examine the scaling of g�+, which gives
rise to logarithmic corrections for the physical quantities.

In the effective spin Hamiltonian �3.3�, we consider the
temperature region lower than the gap in the Majorana sin-
glet sector. In this case, we can integrate out the �4 degrees of
freedom and then we can rewrite mt

0− ig�−��+
4�−

4�→mt
0. Fur-

ther we can set mt
0=0 on the critical point. Then only the g�+

term remains where the RG equation is given by

d

dl
G�+�l� = − G�+

2 �l� , �4.38�

and g�+�l�= �2�vF�G�+�l�. By solving Eq. �4.38�, we have

g�+�l� =
g�+

1 + �g�+/2�vF��l − ls�
, �4.39�

where the initial value is given by g�+�ls�=g�+

��2�vF�G�+�ls�. The quantity ls corresponds to the scale of
the gap in the Majorana singlet excitation, ms��e−ls.

From Eq. �4.38�, the character of the phase transition is
determined by the sign of the initial value of G�+.31,33,51

When the initial value is given by G�+�ls��0, the coupling
constant G�+�l� decreases to zero under renormalization, and
then becomes marginally irrelevant. In this case, the effective
theory in the low-temperature limit leads to the noninteract-
ing massless Majorana fermion, and thus the system exhibits
a quantum critical behavior. On the other hand, for the initial
value being negative, i.e., G�+�ls�	0, the coupling constant
G�+�l� becomes marginally relevant due to its divergence at
lt=2�vF / �g�+�. In this case, the effective theory does not
give a quantum critical behavior due to a mass gap mt
��e−2�vF/�g�+�, even if the bare mass mt

0 reduces to zero.
From the numerical calculation of Eqs. �3.1� and �3.12�, we
have confirmed that the coupling constant G�+ at l= ls is
positive within our choice of repulsive interactions, and that
the present ladder system corresponds to the former case,
i.e., the system exhibits the quantum critical behavior. If the
sign of G�+�lt� could be changed by another type of interac-
tion in the microscopic Hamiltonian,31,33 the first-order tran-
sition would be obtained instead of the QCP within the
present framework.

In the following we examine the temperature dependence
of �s�T�, �T1

−1�uni, and �T1
−1�stag, separately by using Eq. �4.39�

with l=ln�� /T� where � is a high-energy cutoff of the order
of the bandwidth. We note that at low temperature, i.e., for
large l, the renormalized coupling constant shows g�+�l�
�2�vF / ln�� /T�.

1. The uniform spin susceptibility �s„T…

We can use the formula �4.13� for calculating the uniform
spin susceptibility since mt=0 at the QCP. By inserting Eq.
�4.39� into Eq. �4.13�, the temperature dependence of �s�T�
is obtained with the low-temperature asymptotics,

�s�T� �
1

2�vF
�1 +

1

ln��/T�� . �4.40�

Figure 6 shows the temperature dependence of �s�T� where
�=�c corresponds to the QCP. Equation �4.40� is compared
with the spin susceptibility for the S= 1

2 Heisenberg single
chain given by69

�s
1D�T� �

1

2�v
�1 +

1

2

1

ln��/T�� , �4.41�

where v=�J /2 and J is the exchange interaction. The results
�4.40� and �4.41� are consistent with the susceptibility in the
SU�2�k WZNW critical theory with marginally irrelevant
operators, which gives the logarithmic correction
�1+k / �2 ln�� /T�
� where k is the level of SU�2� algebra.70

Note that k=2 for a two-leg ladder, while k=1 for the S= 1
2

single chain.

2. The NMR relaxation rate: „T1
−1
…uni and „T1

−1
…stag

The temperature dependence of �T1
−1�uni can be obtained

by inserting Eq. �4.40� into Eq. �4.21�. The second term of
the RHS of Eq. �4.21� can be discarded since this would
show the exponential decay at temperature below ms as seen
from the dotted curve of Fig. 9. For the low-temperature
limit, we have

FIG. 8. The temperature dependence of the NMR relaxation rate
�T1

−1�stag for U / t=3, V� / t=V� / t=0.7, t� t� = t�=1, and �=0.1.
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�T1
−1�uni �

T

8�vF
2 �1 +

2

ln��/T�� . �4.42�

The overall temperature dependence of �T1
−1�uni at the QCP is

shown in Fig. 9. For the single chain with S= 1
2 , we have

�T1
−1�uni

1D �
T

4�vF
2

��s
1D�T�
2

�0
2�T�

�
T

4�vF
2 �1 +

1

ln��/T�� ,

�4.43�

where the first equality is obtained in Ref. 55.
The logarithmic correction to the staggered part �T1

−1�stag

can be obtained as follows. If one neglects the marginally
irrelevant g�+, the staggered part �T1

−1�stag is given by Eq.
�4.34�. In order to retain the renormalization effect of g�+, we
use Eq. �4.28�. In a way similar to the derivation of Eq.
�4.38�, the scaling equation of the auxiliary field �̄stag�T� on
the QCP at temperature below ms is given by

d

dl
ln �̄stag�l� =

3

4
+

1

2
G�+ +

1

2
G�+�l� , �4.44�

where G�+ is independent of l and the factor 3 /4 in the RHS
is determined from the scaling dimension of the spin opera-
tor Eq. �4.32�, i.e., �2−2 dim�cos �̃�+
−2 dim��1�2�3
�
=3/4. By solving Eq. �4.44� with K�=1−G�+, we have

�̄stag�T� = 	 T

�

−5/4+K�+/2�1 +

g�+

2�vF
ln	�

T

 . �4.45�

From Eqs. �4.28� and �4.45�, we obtain the low-temperature
asymptotics of �T1

−1�stag as

�T1
−1�stag � T−1/4+K�+/2�ln	�

T

 . �4.46�

This result is compared with the staggered component of T1
−1

for the single chain, which is given by

�T1
−1�stag

1D � TK��ln	�

T

 . �4.47�

We note that, in the insulating state �K�→0�, Eq. �4.47� is
reduced to �T1

−1�stag
1D →�ln�� /T� reproducing the result of the

S= 1
2 Heisenberg spin chain,71 while Eq. �4.46� leads to

�T1
−1�stag→T−1/4�ln�� /T�, which is consistent with the result

obtained in Ref. 58 except for the logarithmic correction.

V. CONCLUSIONS AND DISCUSSION

In the present paper, we have examined the ground-state
phase diagram and the temperature dependence of the sus-
ceptibility and the NMR relaxation rate for the extended two-
leg Hubbard model away from half filling, by using the
weak-coupling bosonization method. In the ground state, we
have clarified the competition between the SCd state and the
CDW+PDW state and have shown the quantum critical be-
havior close to the transition point where the SCd state
changes into the CDW+PDW state with increasing the
nearest-neighbor repulsion and/or decreasing doping rate. At
finite temperature, the magnetic response exhibits character-
istic property coming from two modes of spin excitations.
Especially on the quantum critical point, we found that the
spin susceptibility shows paramagnetic temperature depen-
dence with logarithmic corrections and the NMR relaxation
rate exhibits anomalous power-law behavior.

Here we discuss the commensurability effect due to the
umklapp scattering, which would play an important role
close to half filling. At half filling, the umklapp scattering is
given by33

Humklapp =
1

4�
p,�

�
�i=±

��g3�
��̄
p,�,�1

† 
p,�,�2

† 
−p,�,�4

−p,�,�3

+ g3�
��̄ 
p,�,�1

† 
p,−�,�2

† 
−p,−�,�4

−p,�,�3


 , �5.1�

where g3�
��̄= l�V�+m3,�V� and g3�

��̄ = �U+ l�V�+m3,�V�� with
the numerical factors l±= ±1, m3,+=−1, and m3,−=−2. In
terms of bosonic fields, Eq. �5.1� is rewritten as

Humklapp =
1

2�2a2 �gc+,c−cos 2��+cos 2��−

+ gc+,s+cos 2��+cos 2��+

+ gc+,s−cos 2��+cos 2��−

+ gc+,s−cos 2��+cos 2��−
 , �5.2�

where the coupling constant are gc+,c−=−g3�
−+ , gc+,s+=−g3�

+−

+g3�
−−, gc+,s−=−g3�

+− , and gc+,s−= +g3�
−− . For the rung-singlet

state at half filling, the renormalized coupling constants in
Eq. �5.2� are given by gc+,c−

* 	0, gc+,s+
* 	0, gc+,s−

* 	0, and
gc+,s−

* =0. Even in the presence of a few holes, the renormal-

FIG. 9. The temperature dependence of the NMR relaxation rate
with U / t=3, V� / t=V� / t=0.7, t� t� = t�=1, and �=�c�0.18. The
power-law behavior is retained even in the limit of low temperature
due to the vanishing of the Majorana triplet mass, i.e., mt=0. The
dashed and dotted curves correspond to the contributions with q�

=0 and �, respectively, while the solid curve denotes the total
�T1

−1�uni.
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ized umklapp scattering would remain finite unless at ex-
tremely low energy scale. Then here we fix the amplitude of
the umklapp scattering and discuss the effect of the finite
doping. In terms of phase variable, the particle number op-
erator is given by

N = �
j,l,�

	cj,l,�
† cj,l,� −

1

2

 =

2

�
���+��� − ��+�− ��
 .

�5.3�

From Eq. �5.3�, the injection of a single electron or hole
corresponds to the formation of the � /2 soliton or antisoliton
in the ��+ mode. In order to avoid the increase of energy, the
� /2 soliton in the ��+ mode is always accompanied by the
� /2 solitons in the ��+, ��−, and ��− modes. This fact im-
plies that the � /2 soliton in the ��+ mode involves the ap-
pearance of local spin at the same rung. On the other hand,
the � soliton in the ��+ mode, which corresponds to N=2, is
not accompanied by solitons in the spin and other modes.
Thus, if a � /2 soliton in the ��+ mode is created in the
system, the free spin appears at the same rung in the bulk
rung-singlet state and the spin-charge separation does not
take place. This picture would connect with the strong-
coupling one in the sense that holes can destroy spin singlets
in the two-leg ladder systems.2

Finally we compare the present results with the experi-
mental ones on the two-leg ladder compounds
Sr14−xCaxCu24O41, which have the characteristic features of
the spin-gapped normal state and the superconducting state.
For x=12 and under a pressure of 3.5 GPa, the NMR mea-
surements show two excitation modes above the SC state,
where T1

−1 decreases rapidly at higher temperature and
T-linear dependence is found at lower temperature.12 This
result resembles the present result of Figs. 7 and 9. The de-
crease for T�ms comes from the formation of the spin gap
in the spin-singlet excitations while the linear dependence
for �mt�	T	ms appears due to the gapless mode with the
freedom of spin-triplet excitations. Such an interval region is
enlarged close to the QCP since mt→0 at the QCP, as seen
from Fig. 3. From the NMR shifts, it is shown that the uni-
form magnetic susceptibility decreases slowly for 30	T
	200 K and stays constant for T	30 K. The former re-
sembles Fig. 5 where the slow decrease below T / t	0.3 is
due to the band effect. The latter would correspond to Fig. 6
with �=0.1, where �s is almost independent of temperature
for 0.07	T / t	0.01. Thus the present scenario of two spin
excitations could be relevant to experiments although the
present approach is based on weak-coupling theory.
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APPENDIX: STAGGERED PART OF THE NMR
RELAXATION RATE IN THE LOW-TEMPERATURE

LIMIT

In this appendix, we derive the staggered part of the NMR
relaxation rate �T1

−1�stag in the low-temperature limit �Eqs.
�4.35�–�4.37�
, based on the Majorana-fermion description of
the effective theory.

In the temperature region T� ��ms� ,m�−�, the staggered
component of the spin operator �Eq. �4.32�
 is rewritten as

n−
x � cos �̃�+��1�2�3� , �A1a�

n−
y � cos �̃�+��1�2�3� , �A1b�

n−
z � cos �̃�+��1�2�3� , �A1c�

where �̃�+=��+−��x. In terms of these operators, the NMR
relaxation rate is given by

�T1
−1�stag � �

−�

�

dt S�t� , �A2�

where S�t�= �n−
#�x=0, t�n−

#�0,0�� is the local correlation func-
tion at finite temperature. We will estimate this correlation
function by using the effective Hamiltonian �3.8� and �4.24�.
Since the charge and spin degrees of freedom are decoupled,
the correlation function can be rewritten as

S�t� = S�+�t�SIsing�t� , �A3�

where

S�+�t� � �cos ��+�0,t�cos ��+�0,0�� , �A4a�

SIsing�t� � ���0,t���0,0��2���0,t���0,0�� . �A4b�

One can easily find that all the correlation functions
�n−

#�0, t�n−
#�0,0�� for #=x ,y ,z become identical, since the

system has spin-rotational symmetry.
The local correlation function for the charge fields is

given by67

S�+�t� =
1

2
e−i��/2�� sgn�t�� �Ta/v

sinh��T�t����

= �
−�

� d 

2�
e−i t�

�=±

a

2v
e−i��/2��	2�Ta

v

�−1

�B	�

2
− i�

 

2�T
,1 − �
 , �A5�

where �=K�+ /2 and B�x ,y� is the beta function B�x ,y�
=&�x�&�y� /&�x+y�. In the second equality, we have per-
formed the Fourier transformation.67

The correlation function for the Ising fields at finite tem-
perature can be calculated following Ref. 72. The asymptotic
behavior of the Ising correlation function depends on
whether the system is in the ordered phase or in the disor-
dered phase, i.e., depends on the sign of the mass mt.

In the SCd phase �mt�0�, the Ising systems �i �i=1, 2, 3�
are in the disordered phase; thus �i has a nonzero expecta-
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tion value. In this case, the dominant contribution in the
low-temperature limit is58

SIsing�t��mt�0 � �
�,�3=±

�
−�

� d�1

2�

d�2

2�

d�3

2�

� f���1�f−���2�f�3
��3�coth2	�1 − �2

2



� e−i��E��1�−�E��2�+�3E��3�
t, �A6�

where E���= �mt�cosh � and f����= �1+e−�E���/T
−1. By insert-
ing Eqs. �A5� and �A6� into Eq. �A3�, and inserting it into
Eq. �A2�, we obtain Eq. �4.35�.

In the CDW+PDW phase �mt	0�, the Ising systems are
now in the ordered phase; thus �i has a nonzero expectation
value. In this case the dominant contribution at low tempera-
ture reads

SIsing�t��mt	0 � �
�=±
�

−�

� d�1

2�

d�2

2�

� f���1�f−���2�e−i��E��1�−E��2�
t. �A7�

Then the NMR relaxation rate for mt	0 is given by

�T1
−1�stag � �

�=±
�

−�

� d 

2�
cosh	i�

�

2
� +

 

2T



�	2�T

vF

�−1

B	�

2
− i�

 

2�T
,1 − �


��
−�

� d�1

2�

d�2

2�

2��„E��1� − E��2� +  …

4 cosh�E��1�/2T
cosh�E��2�/2T

.

�A8�

The low-temperature asymptotic forms of �T1
−1�stag �Eqs.

�4.36� and �4.37�
 are obtained as follows. The  integral in
Eq. �4.35� or Eq. �A8� is cut by the temperature ±T, since by
performing the summation with respect to � �=± � in Eq.
�4.35� or Eq. �A8� one obtains �for � ��T�

�
�=±

cosh	i�
�

2
� +

 

2T

B	�

2
− i�

 

2�T
,1 − �


� sin����&�1 − ��	 � �
2�T


�−1

exp	−
� �
2T


 . �A9�

This can easily be verified by using the asymptotic form of
the beta function:

B	�

2
− iS,1 − �
 � &�1 − ���− iS��−1 �for S → ± �� .

�A10�

Thus we have for mt�0

�T1
−1�stag � T��

−�

�

d�1d�2d�3coth2	�1 − �2

2



��„E��1� − E��2� + E��3�…

�e−�E��1�+E��2�+E��3�
/2T

� T1+�exp�− 2mt/T� , �A11�

which reproduces Eq. �4.36�. For mt	0 we have

�T1
−1�stag � T��

−�

�

d�1d�2�„E��1� − E��2�…

�e−�E��1�+E��2�
/2T

� T�exp�− �mt�/T�ln T , �A12�

which reproduces Eq. �4.37�.
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