PHYSICAL REVIEW B 72, 075118 (2005)
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The analytical zero-temperature phase diagram of the double exchange model for classical background spins
as a function of the carrier density and Hund’s coupling in the entire range of these parameters is presented. By
constructing a continuum field theory we explore the possibility of a continuous phase transition from ferro-
magnetic state to a gently varying textured state. We find such a transition in and below two dimensions and
show that the emerging stable state is a spin-spiral which survives the tendency towards phase separation into

commonly considered phases, and is also energetically favored to the canted state, for low carrier density.
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I. INTRODUCTION

The double-exchange model (DEM) describes the motion
of noninteracting itinerant electrons through a lattice of clas-
sical spins to which the electron spins are coupled. This
model is relevant, e.g., to the manganites, which show colos-
sal magnetoresistance. Although electron-phonon interac-
tions play an important role in the manganites through a
Jahn-Teller effect,' some of the key features of the strongly
coupled spin, charge, and lattice degrees of freedom are cap-
tured by a DEM with lattice-distortion effects. Another class
of materials for which the DEM is relevant are the dilute
magnetic semiconductors, such a GaAs doped with Mn,
which are important for spintronics applications.” In these
materials, the §=5/2 local moments on the Mn sites are
exchange coupled to the hole carriers generated by substitut-
ing Mn for Ga. While a more realistic model would include
the effects of disorder®* arising from the random substitution
of the Mn atoms, as well as spin-orbit coupling effects,’® a
careful study of the DEM is a necessary first step.

Thus, the DEM is a paradigm for a wide class of materials
that show a strong coupling between the charge and spin
degrees of freedom. Pioneering work on this model focused
on the ferromagnetic and canted antiferromagnetic phases at
nonzero temperature.” Over the past few years, the DEM has
received renewed attention, stimulated in part by the numeri-
cal studies reported in Refs. 8 and 9, where the zero-
temperature phase diagram of the simple DEM has been ex-
plored. More elaborate extensions of the DEM—intended to
move it closer to real systems by augmenting it with physical
processes such as the super-exchange and Coulomb interac-
tions, disorder, and Jahn-Teller distortions, etc.—have also
been investigated over the past few years. For example, the
stability of a spin spiral state in one extension of the model
was examined in Ref. 10 and was contrasted with the stabil-
ity of the canted state. The ground state of a model aug-
mented with Coulomb interactions and large Hund coupling
was addressed in Ref. 11. The instability of the homogeneous
canted state with respect to phase separation, for large Hund
coupling in a model that includes tunable super-exchange
interaction, was studied in Ref. 12. The phase diagram of a
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three-dimensional model in the infinitely large Hund-
coupling limit was studied in Ref. 13, and near the Curie
temperature an instability with respect to spontaneous trans-
lational symmetry breaking was proposed, as was the possi-
bility of phase separation. Recently, Ref. 14 addressed the
stability of the spin spiral state as the ground state of the
DEM in the large-S limit.

In spite of the considerable amount of theoretical and nu-
merical work on the DEM, the continuous phase transition
from the ferromagnetic phase to a spin-textured phase re-
mains incompletely understood. Considerable attention has
been paid to the model in the infinite Hund-coupling regime,
motivated by the fact that in the manganites, the Hund cou-
pling is large, compared with the electronic bandwidth. The
zero-temperature phase diagram has been recently studied in
Ref. 15 within dynamical mean field theory (DMFT) for the
entire range of carrier concentrations and Hund coupling. It
was shown that the stable ground state in different regions of
parameter space is either a ferromagnet, or a commensurate
antiferromagnet, or some incommensurate phase with an in-
termediate wave vector. Moreover, a second-order phase
transition (from the ferromagnetic to the incommensurate
phase) and a first-order transition (from the antiferromag-
netic phase to a region of phase separation) were identified.

In this paper, we address the magnetic ordering of the
single-band DEM with classical background spins at zero
temperature (ignoring orbital or charge ordering). In contrast
to previous work, which involved either a numerical
approach® or the DMFA,'>1¢ we use a continuum field theory
and a gradient expansion to determine the critical line of
continuous phase transitions separating the ferromagnetic
and textured phases in the parameter space of electron den-
sity and Hund coupling. This approach allows us to consider
all possible long wavelength textures that can emerge from
the DEM. We argue that the spin spiral is the energetically
favored one from amongst this class of textures. As is well
known, the ground state of the DEM is phase separated at
large values of the Hund coupling. However, by explicitly
comparing the energetics of phase separation for commonly
considered textures, we argue that there is a region of phase
space in which the continuous transition survives the ten-
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FIG. 1. Lowest-order Feynman diagrams (1 and 2): solid lines
represent aligned electron propagators, dashed lines represent anti-
aligned electron propagators, curly lines represent A,, and dotted
lines represent d,fi- d, 0.

dency towards phase separation. We also show that the spin
spiral state is favored, energetically, over the canted state,
thereby making precise the nature of the emergent “incom-
mensurate state” found in earlier works.®1>1¢ We present the
phase diagram of the model, after including the commonly
considered candidate phases for a preemptive phase separa-
tion at high Hund coupling. Our phase diagram looks quali-
tativly identical to the numerical and DMFA diagrams.1>16
The one-dimensional DEM with quantum background spins
(S=1/2) was analyzed via DMRG, and was also found to
have a similar, but somewhat more complicated, phase dia-
gram, which also includes a spin spiral phase.!” In systems
for which the Hund coupling is small (e.g., the cobaltates,
diluted magnetic semiconductors, etc.) and the disorder is
low, the approach used here may be of relevance.

The present paper is organized as follows. In Sec. II a
continuum version of the DEM is derived. The symmetries
of this continuum version are considered and the electronic
degrees of freedom are integrated out, yielding an effective
Hamiltonian for the background spins within a gradient ex-
pansion. A line of continuous phase transitions is determined,
and it is shown that the spin-spiral state is the emergent
stable state. In Sec. III the issue of whether the phase tran-
sition from the ferromagnetic states to the spin spiral state is
preempted by another transition (to either an antiferro/
ferrmagnetic microphase-separated state or to a canted ferro-
magnetic state) is considered. It is shown that there is a re-
gion of the phase diagram in which the spin spiral state is a
stable state.

II. DOUBLE-EXCHANGE MODEL; ANALYTICAL
STRATEGY

The double-exchange model describes noninteracting itin-
erant electrons moving on a lattice of static “background”
spins whose moments are typically large compared to that of
the electron spins, and hence may be treated classically. The
Hamiltonian is taken to be
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FIG. 2. Ferromagnetic stiffness in dimension d for d=1.5 (dot-
ted), d=2 (solid), and d=3 (dashed). Here, Jy=1 and J,z=0. Note
that for d=2, the stiffness becomes zero at u=Jy but does not
become negative.
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where the first, second, and third terms respectively describe
electronic hopping, double-exchange, and super-exchange
couplings. Here, S; is the background spin at lattice site i,
which we approximate as a classical vector, Jy/S is the
strength of the ferromagnetic Hund coupling, and J /S is
the strength of the antiferromagnetic coupling between the
localized spins. Aspects of the microscopic origin of this
Hamiltonian are discussed, e.g., in Refs. 5, 18, and 19. We
shall explore the Jy vs. electron density phase-diagram, con-
sidering J,r to be vanishingly small. However, for technical
reasons to be explained later, we shall need J,f to be non-
zero. Earlier work has mostly focused on the Jf vs. electron
density phase diagram of the model in the regime in which
Jy is very large, so that the electrons are aligned with the
background spins.

It is convenient to transform to a new spin basis at each
lattice site, so that the local part of the Hamiltonian (i.e., the
part that dominates at large Jy) is diagonal. To this end, we
rewrite Eq. (2.1) in terms of the new operators {d!,d;} and
{el,e;} which are, respectively, the creation and annihilation
operators associated with the spin basis aligned and anti-
aligned with the background spin direction at site j:

Cri d.
( T’)=(vj 7f)< ’>,
€lj €j
where the spinors y; and v+ are defined in terms of the the

polar and azimuthal angles of the background spin direction
at site j, i.e., 6; and ¢,, and are given by

(2.2)

e cos
Y= e”X./ S (2321)

€+uf)j/2 sin

S
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FIG. 3. Arrangements of background spins on the 2X2
plaquettes that are considered in the text.
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v and y, form an orthonormal local basis corresponding to
the aligned and antialigned spin states. This mapping is de-
fined up to a phase factor x;, which is a gauge freedom.”!
Note that in the aligned antialigned spin basis, the Hund’s
term is diagonal. The kinetic energy term in this basis is

— 12 (dly; ydi ey vie+dly - ve
i
+ejyil*

We derive the continuum limit of the Hamiltonian,2? defined
on a hypercubic lattice, by expanding the kinetic energy term
up to second order in gradients of the angles 6, ¢, and x and
the electronic operators d and e. In the continuum limit, the
Hamiltonian is (up to the corresponding gauge transforma-
tion) given by

H=- f dx[ w(x)((aa —iA)2+ i(aﬁﬁ - i) - JH> (x)
1
- @T(X)<(<9a +iA,) @(x) + (960 950 + JH) o(x)
+ (W(X)Aa(x)f?w(x) + %W(X)(ﬂaAa(X))QD(X) + h-C-)

— JAp(dgh - ﬁﬁﬁ)} , (2.3)
where /(x) and ¢(x) are, respectively, the field (annihilation)
operators describing locally aligned and antialigned elec-
trons, X is the position vector, i(x) is the unit vector along
the background spin direction, and A and A are vector po-
tentials originating from a Berry phase and are defined by

A, (%)= % cos 0(x)d,p(x), (2.6a)

A (x) == 3,0(x) + i sin O(x)d,P(x). (2.6b)

Note that AZAazaﬁﬁ-&Bﬁ. Also note that in passing to the
continuum limit we have retained only the lowest-order
terms in the gradient expansion of the field operators. As a
result, the electron kinetic energy, and hence the band struc-
ture that corresponds to it, is of a simple parabolic form.
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FIG. 4. (Color online) Dependence of the ground state of the
double exchange model on the carrier density and the Hund cou-
pling at zero antiferromagnetic coupling. At low carrier densities
and high Hund couplings ferromagnetism is favored. In certain
other regions, distinct homogeneous states are favored, including
spin spiral (see Fig. 6), A- and G-type antiferromagnetism (see Fig.
3). In yet other regions several types of FM/AFM microphase-
separated states are favored. As explained in the text, the boundaries
indicated for microphase-separated states are in fact stability limits;
the true boundaries must lie within these stability limits. Only in
undotted region can one be certain that the spin-spiral state is the
favored state.

A. Symmetries of the continuum Hamiltonian

1. Local gauge invariance

The mapping from a vector (representing a classical spin)
in three-dimensional space to a spinor in SU(2) is defined up
to an angle y(x), an overall phase factor, which is a U(1)
gauge freedom,?! i.e., under the simultaneous transforma-
tions

AKX) - AX)+ Vx(x) Ax)— eziX(X)A(x),

P(x) — XNyY(x),  P(x) — e N ep(x),

the Hamiltonian is invariant.

(2.7)

2. Global spin rotation invariance

The Hamiltonian is also invariant under rotation of all the
background spins by a global angle. One can show that the
effect of a global rotation is identical to a gauge transforma-
tion. For example, let us consider rotations about the x axis
by a small angle w. The unit vector 7(x) transforms to 7’(x)
where 0’ (x) = 6(x) — w sin ¢p(x) and ¢’ (x) = @(x)
—w cot O(x)cos ¢(x). Notice that the above transformation
leaves ﬁﬁﬁﬁﬁﬁ invariant, but the vectors A(x) and A(x)
transform, up to first order in w, in the following manner:

®_[cos ¢
Ay — A= 70, — ;
2 sin 6

(2.8a)
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FIG. 5. Background spin configuration in the canted ferromag-
netic state.

A, — exp(—iw cos ¢/sin O)A,,. (2.8b)
On identifying the factor —w cos ¢/2 sin § with the gauge
parameter x [see Eq. (2.7)], we see that Eq. (2.8a) describes
a gauge transformation corresponding to rotations. A similar
analysis can be carried out for rotations about the y axis; for
rotations about the z axis the transformation is trivial. There-
fore, global rotational invariance corresponds to the gauge
freedom in the model.

B. Effective Hamiltonian

In this section we derive an effective Hamiltonian H g
governing the spatially dependent background spin orienta-
tion (texture), in the limit that the texture varies on length
scales much bigger than the inverse Fermi wave vector. To
do this, we integrate out the electronic degrees of freedom,
assuming that the zeroth-level description corresponds to a
system in the presence of a spatially uniform texture. The
contribution due to any inhomogeneity of the texture is then
treated as a perturbation via a gradient expansion. The de-
merit of this continuum approach is that background spin
configurations that change abruptly from one site to another
(e.g., canted states or antiferromagnetic state) are excluded
from consideration.

The effective Hamiltonian that results from this approach
is a functional of A(x), A(x), and fi(x) and their derivatives.
Working at fixed chemical potential u, the effective Hamil-
tonian is defined as

CXp(— ﬁHeff[A’ A’ﬁ’ M])

= J Dy Dy exp{— B(H[ . ¢,A,A 1] — uN)}

=JD¢D¢> exp{Hol 4, @.u] + H [, 0, A, A 0]}, (2.9)

where N= [dx[ ¢ (x)(x)+ ¢ (x)@(x)], H, is the free Fermi
gas Hamiltonian, and the perturbation H; is a functional of
A, A, and di, each of which has one spatial derivative [see
Eq. (2.6a) and (2.6b)], and therefore is small in the sense of
our approximation scheme. The form of H.y is constrained
by gauge invariance. Thus, keeping allowed terms to quartic
order in gradients, but for now setting J,r to zero, we find
the following form, arranged in increasing order:
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FIG. 6. Spin spiral configuration of background spins, with cone
angle y and wavevector a.

Heff[A(-x)’ﬁ(x)aA(x)] = f dx[a(/-l’)aaﬁ : &aﬁ

+ b(M)(aaﬁ ! aaﬁ)z + C(M)FaﬁFuzB
+d()|D oA + e(w)|D oA gl’]

+ o (2.10)

where the coefficients a(u), b(u), c(u), d(u), and e(u) are
evaluated by computing the corresponding Feynman dia-
grams. Not surprisingly, the results are compactly expressed
in terms of the following quantities: F,z=d,Ag(x)
—dgA ,(x) and D,=d,~2iA ,; note that the combination DA,
is gauge invariant.

The Feynman diagrams contributing to the lowest-order
terms in the gradient expansion are shown in Fig. 1. The
amplitudes of these diagrams are both proportional to (9*fh)>.
Therefore, their coefficients, p; and p,, add to give the stiff-
ness of the ferromagnetic state p; when p goes negative, the
ferromagnetic state becomes linearly unstable. The depen-
dence of the corresponding limit of stability on d, u, and Jy
is among the central results of this paper. The contributions
from these two diagrams compete with one another. The first
gives a positive contribution to the energy, because a spatial
variation of the background spins decreases the hopping am-
plitude, via the Anderson-Hasegawa mechanism: ¢
—1cos(0,;/2) where O,; is the angle between the nearest-
neighbor spins i and j in the discrete version of this model.
The second diagram gives a negative contribution; spatial
variations in the background spin orientation allow for mix-
ing of aligned and anti-aligned bands, thereby lowering the
energy. The contributions to the stiffness [i.e., the coefficient
of (d,0)?] are

(e I + (=IO (u = Jyy)

_ .11
P 22 T(d)2) (2.11a)
(I = (= J) PO (- )
Pr= T a g Ly D (v di2)
(2.11b)

where I'[-] is the gamma function, O[-] is the Heaviside step
function, and d is the dimension of space (see Appendix B).

By examining the stiffness as a function of wu and d (see
Fig. 2) we observe that d=2 is a threshold dimension, in the
sense that the instability occurs for dimensions less than two
(but not for dimensions greater than two). We emphasize that
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Fermi Surface

2

FIG. 7. Band structure in the presence (solid line) and absence
(dashed line) of the spin-spiral magnetic state in two dimensions.
Notice that the Fermi surface just touches the bottom of the anti-
aligned band for the optimal spin-spiral state.

the precise location of the transition, as well as the threshold
dimension, depends on the form of the bare electronic band
structure, which we have taken to be parabolic. Corrections
to the parabolic electronic dispersion relation would alter
both the location of the transition and the threshold dimen-
sion.

In particular, in two dimensions the contributions combine
to give the stiffness

Ti— 1
32mly

(2.12)

This shows that in two dimensions and at zero temperature
there is a critical chemical potential u.=Jy above which the
ferromagnetic phase loses stability and, as we shall see, un-
dergoes a transition to a “textured” phase. This critical
chemical potential coincides with the bottom of the anti-
aligned electron band. To investigate how the instability of
the ferromagnetic state is resolved, it would therefore be nec-
essary to raise the chemical potential above its critical value,
which would begin populating this band. However, as the
gradient expansion is an expansion powers of Geywre/ kEre it
would not converge, as kPP would be very small. We ap-
proach this dilemma by noting that these results were ob-
tained in the absence of an antiferromagnetic term in the
original Hamiltonian 2.1, i.e., for Jo,p=0. The precise loca-
tion u.(Jy,d) of the instability of the ferromagnetic state is
perturbed, and in general shifted to lower value, in the pres-
ence of a positive Jp, thus creating a region in the (u,Jzp)
plane in which the ferromagnetic state has become unstable
and yet u is still smaller than Jp, so that the upper band
remains unoccupied. This scheme opens up a region of the
phase diagram in which our gradient expansion remains
valid and, at the same time, a textured state is preferred.

In order to investigate the form of the (stable) textured
state that replaces the (unstable) ferromagnetic state at
chemical potentials immediately greater than the critical one
(given in two dimensions by u=Jy), we expand the effective
Hamiltonian density to fourth order in gradients of n and
minimize it with respect to all textures that vary only on
length scales longer than the Fermi wavelength. Via the ex-
tension to quartic order of the diagrammatic expansion de-
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scribed in the present section, and for the case of two dimen-
sions, we find the effective Hamiltonian to be

Ja-wt o, wUn+ud)
eff = - ((?an)2 + H—3([?an)4
32wy 256mJy
3Ty + ) — i
+ H( H IU;) M Fa'BFaﬁ
48Ty
(Ju + 1) (20— ) Ja— 1 «
3 |DaAﬁ|2_ 3 |DaA |2
1927y S6mJy
— JAr(,0)%, (2.13)

where the terms associated with J,p arise from the antiferro-
magnetic term in Eq. (2.1).

The details of making this extension to quartic order are
straightforward, and follow along the lines of Appendix B.
For w larger than its critical value, the coefficient of the first
term in Hg (e.g., the ferromagnetic stifness) is negative, and
therefore it is favorable for the ground state to have a non-
uniform texture. We now show that the remaining terms,
which are fourth order in gradients and serve to restabilize
the textured state, are all positive definite whenever 0<u
<Jy. The coefficients of (d,f)* and F,zF .z are positive for
0<u<Jy, ensuring that these terms are indeed positive
definite. If we neglect the surface terms, the forth and fifth
terms can be recast in the following form:

J2 2 P
M(H M)|DQAB|2+ H
48

643,

’;
.
B sin20|Vox V.
mly

(2.14)

In this form, the coefficients of each of these terms is posi-
tive for 0 <<u<<Jy, and therefore all the fourth-order terms
are indeed positive definite. Keeping only the first two terms,
it is easy to check from the differential equation for the
ground state, which follows from varying H.g with respect to
the fields 6 and ¢, that a spin spiral state (e.g., #=7/2 and
¢=q-x, where q is a suitably chosen wave vector) mini-
mizes the energy. The third, forth, and fifth terms vanish for
the spiral state. Hence, the spiral state is a local minimum of
the energy, as small perturbations around it would certainly
increase the contribution from the first two terms, and the
remaining terms can only give a positive contribution to the
energy (as they are positive definite and zero to begin with).
The implication of this analysis is as follows: in the double-
exchange model there is a region of the zero-temperature
(w,Jy) phase diagram in which a spin spiral state is (at least
locally) a stable ground state. This state emerges on the high-
w (or, equivalently, low-Jy) side of the continuous phase
transition line, on the other side of which the ferromagnetic
state is the stable state. By using the fourth-order terms to
restabilize the instability caused by the negative stiffness and
including the effects of J g, we find that the wave vector a of
the spiral is given by
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J inN-j iN

FIG. 8. Feynman diagrams associated with the Hamiltonian
(2.5), contributing to the free energy up to fourth order in gradients
of the background spin texture. Solid lines represent aligned elec-
tron propagators; dashed lines represent anti-aligned electron propa-
gators; the remaining lines are labeled.

4 — pe)
1- 167T(JAF/JH) ’

(2.15)

o 4T3 ( 2 = J5 + 3270 4] Ap) _
(i +Jiy)

where u=J5(1-327/yJp). The approximate form holds
for u=pu..

Here, we note that if J,p is greater than zero, then the
spin-spiral would not persist to arbitrary small carrier den-
sity, as the antiferromagnetic state becomes stable. Is such a
continuous transition preempted by a first-order transition
into a microphase-separated state? We explore this possibil-
ity in the next section.

II1. PHASE SEPARATED AND CANTED STATES
A. Collinear magnetic states

In this section we compare the energies of several com-
monly studied types of microphase-separated states*’ in
double-exchange magnetic systems, with the aim of compar-
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ing their stability relative to the spin spiral state. By mi-
crophase separated we mean states that have mesoscale
structure (magnetic and/or electronic) controlled by a com-
petition between long-range interactions and interfacial ener-
gies. Prior work®2%?? has focused on the competition be-
tween the super-exchange and double-exchange coupling
strengths, and has commonly assumed the latter to be infi-
nite, or at least very large. In the present setting, we are
concerned with the entire range of double-exchange coupling
strengths, but only with small super-exchange coupling
strengths.

In order to have the coexistence of the ferromagnetic and
antiferromagnetic microphases associated with the mi-
crophase separation that we are considering, their thermody-
namic and chemical potentials should coincide with one
another.!” These condition are necessary for microphase co-
existence, but they are not sufficient in settings involving
long-range interactions, such as those due to distinct charge-
densities in the coexisting microphases, or interface energies
associated with regions separating microphases. However, by
examining the complement of the regions of the phase dia-
gram that satisfy the aforementioned necessary conditions or
are antiferromagnetic, we can locate the regions in which the
homoegenous ferromagnetic state or the textured state have a
chance of being stable. (As we shall be limiting our consid-
eration to the various types of antiferromagnetic ordering
listed in Fig. 3, we may fail to exclude some regions of the
phase diagram that we shall be calling ferromagnetic or tex-
tured.)

We proceed by locating those regions of the (Jy,n) phase
diagram in which either the conditions for microphase coex-
istance are satisfied or there is an antiferromagnetic state of
lower energy than the ferromagnetic state. The single-
electron band structure of the DE Hamiltonian (2.1) for fer-
romagnet (F), G-type (G), and A-type (A) antiferromagnet
are given by

(F) &= +Jyx2tcosk,+2tcosk,—pu, (3.1a)

(G) == \/J%, +41%(cos k, + cos ky)2 —m, (3.1b)

R
(A) €= =21cos k,+ \Jj + 4% cos? ky—p. (3.1c)

For both antiferromagnetic arrangements (G and A), all the
eigenvalues are doubly degenerate. The energy density and
the electron density at zero temperature are given by

2

k
E= . me(fk)fk, (323)
N= ﬁe( ) (3.2b)
gy am |

where for the antiferromagentic cases the Brillouin zone
should be halved (in each direction), relative to the ferrmo-
agnetic case.

From these ingredients we find numerically the lines in
the (u, (/) plane at which the A-AFM/FM and G-AFM/FM
phase transitions occur. On these phase boundaries, for each
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pair of competing states we calculate a pair of lines n (Jy)
corresponding to the density of each state. On the (Jiy,n)
phase diagram these lines bound the regions depicted in Fig.
4 inside which the two competing microphases have a
chance of coexisting.

B. Uniform canted magnetic states

Next we consider the instability of the ferromagnetic state
with respect to the canted ferromagnet state, in order to de-
termine the phase boundary between them. Repeating the
proceedure of the previous subsection, we find the single-
electron band structure of Eq. (2.1)

€.=—2tcos k,

- V/le{ +272(1 + cos 2k,) + 4Jyt cos k, cos 6,
(3.3)

where 6 is the canting angle of the background spin with
respect to the z axis, as shown in Fig. 5. To find the phase
transition line in the (w,Jy) diagram, we determine when the
stiffness of the ferromagnetic state with respect to canting
becomes zero. The resulting phase-boundary line is shown in
Fig. 4. From the diagram, it appears that the canted state is
always preempted by a microphase-separated state.

IV. CONCLUDING REMARKS

To study smoothly varying textures of the double-
exchange model, we have followed the familiar program of
expanding the free energy of the model in powers of gradi-
ents of the background spin texture and tracing out the elec-
tronic degrees of freedom. This program has wide applica-
bility to the study of long wavelength patterns in lattice
models such as the double-exchange model. The main result
of our paper is the phase diagram 4 for the double-exchange
model, which we have obtained analytically as a function of
the carrier density and the Hund coupling Jy between the
carrier spins and the lattice of classical backgropund spins.
Through the application of this program, we find that the
spin-spiral state is indeed a stable state for low carrier-

Hyp = f (e/ﬁ(k)qﬂ(k))(

—a-ksiny

On diagonalizing this Hamiltonian and calculating the effec-
tive energy for the spin spiral state, we find that the critical
chemical potential is equal to the Hund coupling. The re-
sponse of the band structure to the spin-spiral state is shown
in Fig. 7. When pu is larger than Jy the ferromagnetic state is
unstable with respect to the formation of a spin spiral state.
For y=m/2 and pu<Jy the energy has the form

K+a-kcos y+d?l4—JTy—p
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densities and has a continuously varying wave vector «
~ | = |"?. By direct diagonalization we also find that the
transition from the ferromagnetic state to the canted state is
essentially preempted by phase separation into different
types of antiferromagnetic states.
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APPENDIX A: SIMPLE MODEL OF SPIN SPIRAL
TEXTURE IN TWO DIMENSIONS

In this appendix, we solve for the exact ground-state en-
ergy of the DEM for the spin spiral state as the background
spin texture. We confirm that in two dimensions the critical
line for the transition lies at u=Jy, as stated in Sec. II B. The
integrating-out of the electronic degrees of freedom, which
we have carried out in the main text to determine the ground-
state energy, becomes more transparent through this ex-
ample, in which the process is nonperturbative. The simpli-
fication ensues when on restricts attention to a specific class
of background spin configurations, viz., spin spirals, which
have the form

0x)=x; Px)=a-x, (A1)

where « is a constant wave vector (Fig. 6). With this choice,
A(x)=a/2 cos x, A(x)=iasin y, and (é’ﬂﬁ)2=a2 sin? y. The
Hamiltonian (2.5) then reduces to

—a-ksin k) \ d*k
2 X )(tﬂ( ))_. (A2)
K —a-kcos y+ a4+ Ty — ) \@k) ) 47>
|
Jor + 2 J2 2 JZ + 2
Eeff:_( H ,LL) +a2 H™ M +a4#( H lj) (A3)
8w 32wy 256 Ty
For pu>Jy, minimizing E. with respect to a gives
4 (2= T3
2 H(,U« 1-[) (A4)

o)

which determines the pitch of the stabilizing spin spiral.
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APPENDIX B: EVALUATION OF FEYNMAN DIAGRAMS

In this appendix we present a sample diagram calculation
by considering the two diagrams of lowest (i.e., second) or-
der in the gradient expansion that determine the stiffness
[i.e., a(u) in Eq. (2.10); see Sec. Il B]. We have computed
the higher order diagrams in the same fashion, but specializ-
ing to two spatial dimentions.

The Matsubara Green functions for aligned () and anti-
aligned (¢) electrons are

1
ipn_(pz_lu_JH),

G yp.ip,) = (B1)

1
Pu— (PP —p+Jy)

Go(p.ip,) = : (B2)

The two diagrams that contribute to the ferromagnetic stiff-
ness are diagrams 1 and 2 in Fig. 8. The amplitude corre-
sponding to the first diagram is

1 | .
iqn

where @q stands for d’q/(2m)?. The integral over the internal
momentum results in the following expression, which is es-

AL(K)A(K)(q +k/2) (g +K2),
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sentially the the sum of the volumes of two d-dimensional
spheres of respective radii Vu—Jy and \u+Jy:

2_1_d’7T_d/2 dr2

A drn
dAT(d)2) [O(u+ Jy) (e + Jp)

+O(u—Jy) (- JH)d/z] f dx(f9ﬁﬁ : f7ﬁﬁ)- (B4)

The amplitude corresponding to the second diagram is
1 . :
/—32 aqakG ,(q +k,iq,)G /(q,ig,)
iqy
XA (K)AK) (g +K2) (g +k/2), (B5)

1
=—> | dqak
B iq,,

A (KA, (K)(g +k/2) (g +k/2),
lig,— (¢ = w—Jw)lig, - (k+q* - w+Jy)]
(B6)

On applying the standard Feynman trick and simplifying, the
previous amplitude becomes

1 1
B% qudkfo 0= )iy (4~ i~ T+ 2lig, — (I + = o+ Tp) T

(B7)

A (KA (K)g,q,

1 1
~— dqdk | dz ,
ﬂ% J ! Jo lig, — ¢* + p— Kz + k2> + Ju(1 - 22) ]

(B8)

where in the final step we have dropped terms of higher order in k, as they do not contribute to the stiffness. This follows from
the obsevation that A A ,=dgh- 3. Reversing the order of summation and integration, and simplifying further by noting that
the denominator sums to a 6 function in the zero-temperature limit, we obtain

1
f dqdk J dzA ,(K)A(K)(q,q,) - ¢* + p— K2+ k2> + Jy(1 - 22)] (B9)
0

= O(p—Ju) (= Jp)"" " + O Uy + ) Uy + w)'

which simplifies to the expressions (2.11) in the text.

222 (2 +d/2)

J dx(dgh - Igh), (B10)
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