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The pair-correlation function g�r� of an interacting, unpolarized electron gas is modelled by using the
geminal representation and effective potentials for the two-electron relative motion. We put forward a gener-
alization of the impurity-related Fumi theorem, in order to obtain the scattering-mediated part of the kinetic
energy change. Considering the high-density limit, where a perturbatively exact expression for the ground-state
energy is available, a rigorous constraint on the effective interactions in the even and odd channels is deduced.
The constraint is implemented by using physically motivated one-parametric potentials in these channels.
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I. INTRODUCTION

Modern density functional theory �DFT� has had a major
impact on electronic structure calculations.1 By far, the most
popular approximation for this theory is the local density
approximation �LDA� for the exchange-correlation energy.
The success of the resulting simple computational scheme
rests, physically, on a rigorous relation between the
exchange-correlation energy and the pair-correlation
function.2 More precisely, the normalization condition for the
exchange-correlation hole continues to hold when the LDA
is made for the exact density depletion around an electron.
Due to the nature of LDA, the finer microscopical details of
the underlying pair-correlation problem of an interacting
electron gas are, however, not transparent in this scheme.

A local functional for the exchange-correlation energy,
which depends on the local density of occupied states, was
introduced recently.3 The proposed local parametrization also
rests on the homogeneous electron gas model and uses the
decomposition of its exchange-correlation hole in scattering
states of different relative energies. In this framework, the
key quantity is the energy change exc�k ,n0� of an electron
pair with relative momentum k in a system of density n0,
when the antisymmetrization is imposed and the interaction
between particles is switched on.3

The idea of pair-approximation to realize the important
short-range correlation in the model system directly by using
effective �screened� interactions in a two-body Schrödinger
equation for the spatial part of two-electron wave functions
�geminals� has attracted a considerable interest.4–12 Based on
the effective potential concept, and focusing on the important
pair-correlation function g�r�, the description of the standard
many-body system can be simplified by transferring a part of
complexities from the total wave function to a model Hamil-
tonian. This intuitive treatment of complexities via effective
potentials for particle-interaction is quite similar to the one
used in nuclear physics.13

A combination of the above ideas is appealing and physi-
cally transparent. An approach based on geminals can be

useful to discuss the details of the energy change exc�k ,n0�
�ex�k ,n0�+ec�k ,n0�. The main goal of the present paper is
to describe this quantity in the high density limit. It is this
limit in which exact results, in first order of the coupling
constant ��e2, exist for the on-top value �g�r=0�� of the
pair-correlation function and the potential �exchange� energy
��x�n0�� per particle.

These exact results, should provide natural constraints for
describing the g�r� and ec�k ,n0� quantities via geminals and
effective interparticle interactions. Similarly as in recent at-
tempts to formulate density matrix functional theory,14,15 the
prototype many-body system can play here a crucial role in
understanding the physical details of dynamical correlation.

The embedded-pair approximation4–12 rests, basically, on
the scattering aspects of correlated motions. Therefore, simi-
larities and differences in comparison with well-known re-
sults obtained for the screening problem of a charged-
impurity are conceptually important.

The rest of the paper is organized as follows. Section II
contains a brief summary of the Hartree-Fock approximation
in order to show the links to an effective potential approach.
In this section, our basic constraint for the kinetic energy
change at the high-density limit is formulated using the scat-
tering approach for geminals. The explicit results, obtained
by implementing the approach via model potentials, are
given there as well. Section III is devoted to a short summary
and discussion. We shall use Hartree atomic units in the pa-
per unless otherwise stated.

II. METHOD AND RESULTS

The antisymmetry of the state-function under permutation
of identical fermions leads to a special correlation between
the positions of two such particles whose spins are parallel,
even if there is no interaction between the particles. The
system is described by a single Slater determinant of mo-
mentum eigenstates, i.e., plane waves. In this noninteracting
case one has,5 in a partial-wave representation for the gemi-
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nals, the following expression for the so-called ideal �g0�r��
pair distribution function:

g0�r� =
3

2 �
odd l
l=1

�

�2l + 1��jl
2�kr�� +

1

2 �
even l

l=0

�

�2l + 1��jl
2�kr�� .

�1�

The averages in Eq. �1�, denoted by �¯�, are obtained by
weighting over the normalized, ideal distribution function
P0�k� of the relative momenta13,16

P0�k� = 24
k2

kF
3 	1 −

3

2

k

kF
+

1

2

 k

kF
�3� , �2�

where kF= �3�2n0�1/3 is the Fermi momentum.
The pair distribution functions are averages for the mov-

ing particles. An electron at r=0 is not fixed; the reference
point moves with the electron. In a geminal-based represen-
tation the relative motion is apparent. With g0�r� the electron
charge density and the hole-density are −n0g0�r� and
n0�g0�r�−1�, respectively. The hole-density is normalized to
−1, and thus one may consider an electron with its hole as a
quasiparticle.17 We stress the point, that this depletion is pre-
scribed solely by the Pauli’s exclusion principle; the Hartree-
Fock hole is not the result of an electrostatic repulsion.

The perturbative potential energy, the exchange energy
per particle �x�n0�, is given by

�x�n0� =
1

2



0

�

4�r21

r
n0 �g0�r� − 1�dr . �3�

By employing standard results from trigonometry

�
odd l
l=1

�

�2l + 1�jl
2�kr� =

1

2

1 −

sin 2kr

2kr
� , �4�

�
even l

l=0

�

�2l + 1�jl
2�kr� =

1

2

1 +

sin 2kr

2kr
� , �5�

we can, after a straightforward manipulation, rewrite Eq. �3�
as a function of the relative momentum

�x�rs� =
n0

2



0

kF

dk P0�k�ex�k� . �6�

In this equation 2ex�k�=−4� / �2k�2, and the Wigner-Seitz pa-
rameter rs is defined from n0=3/ �4�rs

3�. At the perturbative
first-order there is no other contribution to the ideal kinetic
energy �kin

0 �rs�= �3/10�kF
2 .

To obtain the same form for �x�rs� from the more
conventional18 Wigner-Seitz expression

�x�rs� = −
1

n0

 d3k1d3k2

�2��6 nk1

0 4�

�k1 − k2�2 nk2

0 , �7�

one should use the k= �k1−k2� /2 and s= �k1+k2� /2 vari-
ables and perform integrations over these variables under the

constraint19 of �s+k��kF. In Eq. �7� nki

0 refers �i=1,2� to
ideal Fermi distribution functions.

The Hartree-Fock wave functions for the homogeneous
system are plane waves, thus the above approximation asso-
ciates interacting particles with a wave function of noninter-
acting ones and results in the ideal g0�r�. Of course, the
interaction among particles causes their positions to be cor-
related, even if there was no symmetrization postulate. Con-
ventionally, the term dynamical correlation is used to name
this effect.

Clearly, it is possible to arrange g�r��g0�r�+�g�r� so
that the normalization condition

4�

0

�

drr2n0�g�r� = 0, �8�

is still obeyed, yet the potential energy from Eq. �3� is lower
�i.e., larger negative value� than the one found in the Hartree-
Fock approximation. This arrangement will usually cost
some kinetic energy change ��kin�, so that one cannot just
adjust �g�r� to maximize the potential energy gain ��pot�
alone. Furthermore, these changes are at least second order
in the coupling constant � and, in addition, they should sat-
isfy the virial theorem.20,21

The pair approximation via effective potentials rests5 on
the following mathematical observation. The jl�kr� partial
waves, which are used to the expansion for geminals in Eq.
�1�, are scatteringlike �free� solutions of the simple radial
Schrödinger equation,


T +
l�l + 1�
2�r2 � jl�kr� =

k2

2�
jl�kr� . �9�

In this equation, T= �−1/ �2�r����d2 /dr2�r�, and the reduced
mass is �=1/2.

The intuitive treatment, i.e., the direct approach for an
interacting homogeneous system,4–12 consists of replacing
the noninteracting functions jl�kr� by interaction-based func-
tions Rl�k ,r� in Eq. �1� and using the P0�k� distribution of
Eq. �2�. The symmetry-preserving Rl�k ,r� functions are scat-
tering solutions of the


T + V±�r� +
l�l + 1�
2�r2 �Rl

±�k,r� =
k2

2�
Rl

±�k,r� , �10�

Schrödinger equation. Here V±�r�= �� /r�f±�r� are screened
potentials in even ��� and odd �	� channels.8 This choice
for the effective potentials is motivated, mainly, by the ap-
parent role of parity in Eq. �1�.

By using for R0
+�k ,r=0� the Lippmann-Schwinger integral

equation22 and taking the perturbative substitution �j0�kr��
→R0

+�k ,r��� in its kernel, one gets

R0
+�k,0� = 1 −

�

k



0

�

dr�V+�r��sin�2kr�� . �11�

Based on the rigorous23,24 high-density expression for the
on-top pair-function 2g�r=0,rs�=1−
rs with 
=0.732, it is
easy to show via Eq. �11� that this form is guaranteed by
using a one-parametric screened potential with screening pa-
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rameter �kF. A bare Coulomb potential gives, from the per-
turbative Lippmann-Schwinger equation, the 2g�r=0,rs�=1
−6� / �5kF� expression. This is clearly an overestimation for

.

The rigorous result was obtained by many-body perturba-
tion theory �up to second order in the coupling,23 for the
energy� via the static structure function, and by a special
double-perturbation approach24 for �g�r�. This method re-
sults in an everywhere nonpositive �g�r� thus the normaliza-
tion condition for the pair correlation function is not satis-
fied. The effect leads to overcorrelation.24 In the present
work, we shall use the exact on-top value for g�0,rs� as a
constraint on V+�r�.

Now, let us turn to the exciting problem of characterizing
the k dependence of the energy change ec�k ,n0� to the key
quantity of a local functional3 based on exc�k ,n0��ex�k�
+ec�k ,n0�. This is the input to the equivalent of Eq. �6� for
�xc�rs� to describe a ground-state characteristic of a homoge-
neous, interacting system.

Motivated by the above discussion on the effect of a re-
arrangement via �g�r�, we shall apply the following decom-
position: ec�k ,n0��ekin�k ,n0�+epot�k ,n0�. The term describ-
ing the potential-energy change is related �in the investigated
high-density limit� to an e2-order change ��g�r��e2� in the
pair function and to the switching-on of the true Coulomb
interaction. This term is, already, at least second order in the
coupling constant.

The only remaining term which still may scale linearly
with the coupling ��e2 in the effective pair approximation
for the high density electron gas with certain screened inter-
particle interactions, is ekin�k ,n0�. Obviously, the correct
second-order scaling20,21 of the kinetic energy change can
prescribe a nontrivial constraint on the geminal-based ap-
proach for this system.

In the applied scattering description for �g�r� and
�kin�n0�, first we outline how one can rewrite the important
normalization condition, Eq. �8�, in terms of eigenphase
shifts �l

±�k� of even and odd channels. The standard
expression8,25 on the volume integral


 d3r ��Rl
±�k,r��2 − �jl�kr��2� =

2�

k2

d

dk
� l

±�k� , �12�

provides the desired link. By changing the order of k and r
integrations in Eq. �8�, after employing Eqs. �1� and �2�, one
can easily arrive at the following constraint:

�n− + �n+ = 0, �13�

for which the channel terms are as follows:

�n−

n0
=

3

2 �
odd l
l=1

�

�2l + 1�� 2�

k2

d

dk
� l

−�k�� ,

�n+

n0
=

1

2 �
even l

l=0

�

�2l + 1�� 2�

k2

d

dk
� l

+�k�� . �14�

In these expressions, the averages over P0�k� are denoted, as
before, by �¯�. Further simplifications can be made by em-
ploying partial-integrations in making the prescribed aver-
ages.

For comparison, in the screening problem of a static em-
bedded charge �Z�, say antiproton, in a paramagnetic gas,
one has the following Friedel sum on the total induced elec-
tron charge ��n�:

�n = �
l=0

�

�2l + 1�
2

�2��3 
 d3k nk
02�

k2

d

dk
�l�k� , �15�

as a normalization condition, �n=Z at consistency.
The Friedel condition ensures the charge neutrality of the

entire �grand-canonical� system in the presence of the
charged impurity. It does not say where the excess electrons
are located. This comes from self-consistent-field approxi-
mations, where the Poisson equation makes the necessary
potential-density connection.

Due to the volume-integral in Eq. �12�, there is some
similarity between the present and the impurity problems.
The essential physical difference is related to the fact that the
Hartree-Fock hole is already properly normalized in the pair-
correlation problem. The interaction results only in a rear-
rangement via �g�r�=g�r�−g0�r�.

For two particles with relative momentum k interacting
via a common potential it is well known26,27 that the interac-
tion energy, which is the shift of the energy levels of the
system produced by the potential, is given by

�Ek = −
2�

�k
�
l=0

�

�2l + 1��l�k� . �16�

In the case of an embedded impurity ��=1�, an average
of �Ek over a Fermi distribution function gives the total
energy change in the system.28 This change is related to the
number �Z� of excess electrons and their energetic redistri-
bution in the field of the external charge.18 The kinetic-
energy change in the grand-canonical system is ZkF

2 /2, due
to the excess electrons. Now we discuss how to obtain these
obvious physical results via Eq. �16� and an additional term
based on phase shifts.

Let us use, for simplicity, Eq. �10� with a common poten-
tial and Eq. �9� for the interaction-free case. Multiplying Eqs.
�9� and �10� by jl�kr� and Rl�k ,r�, respectively, and substract-
ing the resulting noninteracting forms from the interacting
ones, we perform volume integrations on both sides of the
obtained result. The kinetic-energy change ekin�l ,k� in the l
channel is given by

ekin�l,k� =
2�

�k
�l�k� +

k2

2�

2�

k2

d

dk
�l�k� , �17�

which contains now, as a first term, the corresponding �nega-
tive� interaction-energy term from Eq. �16� on the right-hand
side. The second term is based on Eq. �12�.
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Summing over l and integrating, as in Eq. �15�, over a
Fermi distribution function �using �=1� one gets

�kin�n0� =
2

�
�
l=0

�

�2l + 1�

0

kF

dk
d

dk

 k2

2
�l�k�� . �18�

The above physical statement on the �kin�n0�=ZkF
2 /2 value in

the impurity-related problem is verified, as Eqs. �15� and
�18� nicely show.

The modification via Eq. �17� to our geminal-based prob-
lem is straightforward. According to the relative-spin struc-
ture we have

ekin�k,n0� = ekin
− �k,n0� + ekin

+ �k,n0� , �19�

where the channel contributions are

k2ekin
− �k,n0�
2�

=
3

2 �
odd l
l=1

�

�2l + 1�
d

dk

 k2

2�
� l

−�k�� ,

k2ekin
+ �k,n0�
2�

=
1

2 �
even l

l=0

�

�2l + 1�
d

dk

 k2

2�
� l

+�k�� . �20�

Finally, we perform an average over the P0�k� distribution
function to obtain a general expression for the important
quantity, the kinetic-energy change

�kin�rs� =
n0

2



0

kF

dk P0�k�ekin�k,n0� . �21�

Thus, our main goal, i.e., to express these changes by scat-
tering characteristics is formulated.

The important high-density limit is treated via the first-
order Born �B� approximation. This corresponds to the use22

of the perturbative form for the phase shifts

� l
±�k� = − �2�k�


0

�

dr r2V±�r�jl
2�kr� . �22�

To arrive at the perturbative, first order in e2, equivalents of
Eqs. �13�, �14�, �19�, and �20�, we shall use the above ex-
pression for the channel phase shifts.

The high-density constraint, �kin
B �rs→0�=0, obtained in

the Born approximation, could help to avoid
overcorrelation,24 a possible drawback of modelling.15 This
averaging to zero in first approximation resembles to the
treatment used in nuclear physics to eliminate �in first order�
tensor forces in the saturation problem.13

A simple inspection of Eqs. �14� and �20� together with
Eq. �22� and Eqs. �4� and �5� shows, via order changes in
integrations and summations, that in the remaining k integra-
tion the F±�0;2k��V±�0�±V±�2k� forms will appear in our
constraints at the investigated perturbative limit. Here V±�q�
is the Fourier transform of the effective V±�r�. For example,
the equivalent of Eq. �20� in the Born limit is

k2ekin
− �k,n0� = −

3

8

d

dk
�k3F −�0;2k�� ,

k2ekin
+ �k,n0� = −

1

8

d

dk
�k3F +�0;2k�� . �23�

For further analysis, one needs a suitable potential. As we
mentioned at Eq. �10� a parity-conserving approximation and
the electronic cusp suggest a screened, but Coulombic at r
=0, potential, V±�r�= �1/r�f±�r�. The above-mentioned im-
portant role of V±�q=0� also gives an orientation in illustra-
tive modelling via the deduced, normalization and energetic
constraints.

Based on these remarks and previous experiences,10 we
implement the high-density constraints using the following29

simple potential:

V±�r� =
e2

r
e−
±r cos�
±r� . �24�

The required Fourier transform of this potential is

V±�q� = 4�e2 q2

q4 + 4
±
4 . �25�

We shall use in our problem the 
+=0.766kF value which
gives10 via Eq. �11� the constraining, 2g�0,rs→0�=1
−0.732rs, exact23,24 asymptotic form of the pair-correlation
function at the origin in the high density limit.

Notice, that at r=0 only the l=0 partial wave gives con-
tribution. With the above scaling for screening, we have
computed the g�0,rs� function for different rs parameters.
The obtained results are exhibited in Fig. 1. A calculation
based on an approximation in ladder theory,30 results of a
numerical solution of an effective Euler-Lagrange
equation,31 and the exact high-density expression are shown
in Fig. 1 as well. It is especially difficult to obtain an accu-
rate value of g�0,rs� using quantum Monte Carlo methods
due to the absence of zero-variance property and arduous
numerics.32 The ladder-based approximation gives the
2g�0,rs→0�=1−0.663rs limiting form. The agreement be-
tween the different results is quite reasonable.

After the above fixing of 
+, we have only the 
− as free
parameter but two constraints, Eqs. �13� to the norm and �21�
with �kin

B �rs�=0. Therefore, if these conditions could give
similar values for 
− an acceptable consistency will be
achieved. Remarkably, it turns out that this is indeed the
case. From the normalization constraint we get 
−=1.58
+
while from the �B�rs→0�=0 energetic constraint we obtain a

−=1.70
+ value. Notice, that the similar scaling of a screen-
ing parameter with kF was found earlier33 by investigating
the density-density response function as a solution of the
corresponding Bethe-Salpeter equation within a Hartree-
Fock-type theory.

In our parity-conserving approximation with a two para-
metric, i.e., minimal, model for effective interactions we
have 
−�
+. Therefore, in addition to the obvious effects
due to odd or even summations in l, we expect smaller
changes for �g↑↑�r� than for �g↑↓�r� under the actions of
V+�r� and V−�r�; these changes are determined mainly by the
short-range parts of effective interactions. The additive terms
to 2�g�r� are given by
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�g↑↑�r� = 2�L−�k,r�� �26�

for the parallel-spin component, and

�g↑↓�r� = �L−�k,r�� + �L+�k,r�� �27�

for the antiparallel-spin component of the total change. The
L±�k ,r� function to k averaging, have the form of

L±�k,r� = �
l

±

�2l + 1���Rl
±�k,r��2 − �jl�kr��2� , �28�

where the � refer to even ��� and odd �	� in l summations,
respectively.

In Fig. 2 we plot our first-order �g�r� /rs function, as a
function of the x= �r /rs� dimensionless variable and taking
the Born limit, i.e., rs→0. At small x values we have, by
construction, the exact limiting value, −0.732/2, for this
function. Note that our method is based on the normalization
of �g�r�; its components are not constrained separately.
These components, from Eqs. �26� and �27�, are also exhib-
ited in Fig. 2 via dotted and dashed curves, respectively. The
inset shows the above curves around the zero value in an
enhanced scale, in order to demonstrate the changes in sign.

As we mentioned earlier, the special double-perturbation
approach results in an everywhere nonpositive �g�r� and an

overcorrelation24 because the normalization condition is not
satisfied. This approach yields, with common potentials for
both the antiparallel and parallel cases, a very similar �g↑↓�r�
function for the x�1 range; see Fig. 1 of Ref. 24. The short-
range effect of Coulombic repulsion is, in both methods, the
same.

On the other hand, the corresponding �g↑↑�r� function is
quite different; see Fig. 2 of Ref. 24. It is zero, of course, at
x=0, but this function has a minimum value of −0.2 at about
x=1, and is nonpositive everywhere. The observed differ-
ence might be related to the not-normalized nature of the
approach and, partly, to the fact that in our case we have
stronger screening in odd channels than in even channels.
Clearly, in the present normalized method the deviation of
the exchange-hole from the Hartree-Fock form is very mod-
erate in first order of the true physical coupling.

Now we turn to the presentation of the obtained results for
kinetic energy changes which constitute the main motivation
to the present work in the high-density, Born limit, in which
�B�rs→0�=0 at first order of the coupling. The first-order
kF

2ekin
± �k� / �2�� changes of Eq. �23� and their sum, via Eq.

FIG. 1. Pair-correlation function at the origin g�0,rs� as a func-
tion of the electronic density parameter rs �in atomic units�. Results
obtained in this work are plotted with a solid line. The dotted line
refers to the ladder approximation and the dashed line to the exact
result in the high density limit. Solid triangles are the results of a
numerical solution of an effective Euler-Lagrange equation.

FIG. 2. Difference in the pair-correlation function with respect
to the Hartree-Fock case �g�r�=g�r�−g0�r� in the high-density per-
turbative limit, and as a function of the distance r. Both �g�r� and
r are divided by rs. The solid line is the full �g�r�, and the dashed
and dotted lines show the antiparallel �g↑↓�r� and parallel �g↑↑�r�
contributions to it, respectively. The inset provides a zoom of the
�g�r��0 region, to remark the non-negative values of both the
parallel and antiparallel contributions to �g�r�. All quantities in
atomic units.
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�19�, are plotted in Fig. 3, as a function of the dimensionless
u=k /kF variable.

The formal similarity of Eq. �6� and �21� suggest to use
the kF

2ex�k� / �2��=−1/ �2u�2 function as a reference, to un-
derstand in a quantitative way the total kinetic energy
change, kF

2ekin�k� / �2��. At small relative momenta, this os-
cillating quantity tends to zero. This limit corresponds to the
“comoving” case, kinematically. The net energy change has a
maximum value at about the biggest �u=1� relative mo-
menta, the “head-on” case, at which it almost cancels the
exchange contribution.

The solid curve crosses the zero value at intermediate, u
��1/2�, relative momenta. Here appears the nontrivial role
of oscillating potentials, via the parity weighting, as the com-

parison of the dashed and dotted curves clearly shows. These
curves rest on the ±V±�2k� forms, because V±�k=0�=0 in the
present model. Notice that the parity weighting is prescribed
solely by the Pauli exclusion principle; we are not consider-
ing a symmetry-broken state in our geminal approximation.
Finally, in the formal u→� limit one gets the
�ex�k� /ekin�k��=2 ratio.

III. SUMMARY

In conclusion, motivated by physically transparent ideas,
the feasibility of expressing the kinetic energy change of an
electron pair with given relative momentum, when the anti-
symmetrization is imposed and the interaction is switched
on, has been investigated. For the high-density electron gas,
where some exact results for strongly related characteristics
of the system are available, transparent and useful constraints
on the effective pair potentials is deduced.

The parity-conserving implementation, via parametric
model potentials, gives a consistent physical picture on the
rearrangement driven by interparticle interactions. Beyond
this perturbative limit, further numerical implementations are
needed to establish a practical and well-constrained input to
local functionals based on the concept of local density of
occupied states.

Beyond the high-density Born approximation, a minimi-
zation of the scattering mediated energy change could be a
well-motivated constraint for a variational treatment. Such a
treatment may have34 superiority over conventional
coupling-constant integration with an approximate potential
energy.

Notice, that a recently proposed extension35 of the
geminal-based idea for inhomogeneous, atomic systems rests
also on the minimization of the relative electron-electron ki-
netic energy. A natural combination of results based on these
attempts may provide a deeper understanding of the fine mi-
croscopical details of correlated electron motions, which are
usually hidden in standard DFT.
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