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The exchange-correlation kernel in the spin channel in an electron liquid has the structure

fxc,−
L,T �q ,�� →

q→0
A��� /q2+BL,T��� in the limit of the long wavelength. Here L denotes the longitudinal component

and T the transverse component relative to the direction of the wave vector q. A collection of exact results for
A��� and BL,T��� is obtained at limiting low and high frequency, respectively, in two dimensions. Based on
these results, we further give approximate interpolations for A��� and BL,T��� at all frequencies in the para-
magnetic case.
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I. INTRODUCTION

Two-dimensional �2D� electron systems, particularly
those realized at the interfaces of semiconductor
heterostructures,1 present a field for the study of many-body
effects in the electron liquid with variable density. Extensive
progress has been made in this field.1,2 But the difficult sub-
ject of the exchange-correlation �xc� effects in many-electron
systems continues to be a challenge, particularly due to the
enhanced correlation effects in comparison to the traditional
three-dimensional �3D� electron liquid.

In most theoretical studies,3–5 the xc effects in the homo-
geneous electron liquid are taken into account by the use of
the local-field factor GL,T�q ,�� or the more specific spin-
resolved one of G���

L,T �q ,��, where L and T denote the longi-
tudinal and transverse components relative to the direction of
q, respectively; �=1 for ↑ spin and �=−1 for ↓ spin. This
approach is conventionally taken in the studies of the 2D
case as well. The local-field factor also plays a central role in
time-dependent �spin� density functional theory
�TD�S�DFT�6–9 and the recently proposed scheme of time-
dependent �spin� current-density functional theory
�TD�S�CDFT�,10–13 in which the homogeneous electron-
liquid model is normally taken as a reference system. In
TD�S�DFT �or TD�S�CDFT�, one frequently uses, instead,
the equivalent xc kernel, defined as

fxc,���
L,T �q,�� = − v�q�G���

L,T �q,�� . �1�

Here v�q� is the Fourier transform of the Coulomb interac-
tion, and v�q�=2�e2 /q in 2D. The scheme of TD�S�CDFT
was proposed to overcome several intrinsic difficulties in the
conventional TD�S�DFT and has recently found interesting
applications in the studies of optical spectra of solids,14 the
polarizability of long polymer chains,15 and the excitation
energies for molecules16 and oligomers.17

It has been shown that,18,19 in both 3D and 2D, the xc
kernel in the spin channel, defined as

fxc,−
L,T �q,�� = �

���

n�n��

n2 ���fxc,���
L,T �q,�� , �2�

where n� is the spin-resolved density and n=n↑+n↓ is the
charge density, has a singular structure, as follows:

fxc,−
L,T �q,�� =

A���
q2 + BL,T��� + ¯ , �3�

in the limit of small q. It has been further shown that A��� is
well behaved in 3D,18 but that the real part of it is logarith-
mically divergent at high frequency in 2D.19 Correspond-
ingly, its imaginary part goes as a constant at high frequency
in 2D. Several other interesting results for A��� and BL,T���
at limiting high frequency in 2D have also been exactly
found for arbitrary spin polarization in Ref. 19. Some other
properties are found in Refs. 20 and 21.

In the studies of the local-field factor or the equivalent xc
kernel, one usually resorts to fully perturbative calculations
�for example, in Refs. 22 and 23�, or some self-consistent
calculations �for example, in Refs. 24 and 25�. Such calcu-
lations are, however, usually rather complicated and must be
carried through with some approximations that are not al-
ways controllable. There is an approach18,26–29 at variance
with the fully perturbative calculations, in which some exact
or definitely reliable limiting results and sum rules for the
local-field factor are established, and further interpolated into
approximate expressions. Such an approach turns out to be
rather efficient. In this paper, we attempt to take this ap-
proach to obtain approximations to fxc,−

L,T �q ,�� for arbitrary
frequency at long wavelength in a paramagnetic 2D electron
liquid.

The high-frequency structures of A��� were obtained ana-
lytically in Ref. 19, while the low-frequency structure of
Re A��� was obtained in Ref. 30. In this paper, we will cal-
culate analytically the low-frequency limit of Im A���,
which is found to be ��3 ln � /EF, where EF is the Fermi
energy.

The infinite frequency limit of Re BL,T��� has been ob-
tained in Ref. 19. Part of this paper is devoted to studying
several other properties of BL,T���. To this end, we evaluate
Im BL,T��� analytically and find it to decrease as 1/� at large
�. This asymptotic behavior is exact at high frequency. The
zero-frequency limits of Re BL,T��� and low-frequency limits
of Im BL,T��� are also obtained in this paper.

These limiting properties enable us to further obtain ap-
proximate interpolations for the imaginary parts Im A��� and
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Im BL,T��� at all frequencies. The corresponding real parts
are then calculated from them via the Kramers-Krönig dis-
persion relations. By the use of these interpolations and those
for the charge channel in Ref. 29, we further calculate the
limiting small momentum structures of plasmon dispersion,
static structure factor, and static local-field factor, and com-
pare them with the results reported in the literature.

The analytical results obtained in this paper reflect defini-
tive progress in the study of the 2D many-electron systems.
These results and the approximate interpolations for A���
and BL,T��� are also useful in the practical implements of
time-dependent spin-density functional theory in two-
dimensional or quasi-two-dimensional systems.

We organize the paper as follows: The exact properties for
A��� and BL,T��� are summarized in Sec. II. The derivations
for the newly established properties are given in Sec. III. In
Sec. IV, we present our interpolations for both A��� and
BL,T���. We summarize the paper in Sec. V. In the Appendix,
we calculate the plasmon dispersion, the static structure fac-
tor, and the static local-field factor in the small momentum
regime, and compare them with previous calculations.

II. EXACT PROPERTIES

In this section, we list the exact properties of A��� and
BL,T��� in 2D. The details of derivations leading to them will
be presented in the next section.

A. Exact properties for A„�…

The high-frequency behavior of Im A��� is �Ref. 19�

Im A��� →
�→�

−
1

2
�2me4. �4�

In other words, Im A��� goes as a constant at large fre-
quency. Correspondingly, the real part Re A��� diverges
logarithmically at large frequency as �Ref. 19�

Re A��� →
�→�

�me4 ln �/EF. �5�

We note that the preceding result is accurate only to the
leading logarithmic order.

In addition, Re A��� vanishes at zero frequency as �2,30

lim
�→0

Re A��� = 0, �6�

1 − lim
�→0

n Re A���
m�2 =

1 + F1
s /2

1 + F1
a/2

, �7�

where Fl
s and Fl

a are the spin-symmetric and spin-
antisymmetric Landau parameters, respectively. At the high-
density limit,

Im A��� →
�→01

3
� m2e2

�n�2kF + ks�
�2

�3 ln
�

EF
, �8�

where ks is the screening wave vector, ks=2/a0, kF is the
Fermi wave vector, and a0 is the Bohr radius.

B. Exact properties for BL,T
„�…

The high-frequency behavior of Im BL,T��� is

Im BL,T��� →
�→�

− cL,T�2e4

�
, �9�

where cL=9/32, cT=3/32.
The infinite frequency limit of Re BL,T��� is �Ref. 19�

Re BL,T��� = �L,T tc

n
−

�L,T

2
	 drv�r�g−�r� , �10�

where �L=3, �T=1; �L=− 5
8 , �T= 1

8 ; tc is the correlation ki-
netic energy per particle, and g−�r�
=�����n�n�� /n2����g����r�, with g����r� the spin-resolved
pair-correlation density.

The zero-frequency limits of Re BL,T��� are related to the
Landau parameters as follows:

Re BL�0� =
EF

4n

F2
a + 4F0

a − 3F1
s

1 + �F1
s /2�

, �11�

and

Re BT�0� =
EF

4n

F2
a − F1

s

1 + �F1
s /2�

. �12�

It was proved in Ref. 18 that Im BL,T���=Im fxc
L,T�q=0,�� in

3D. The proof also simply holds in 2D. Thus, from the result
of Eq. �15� in Ref. 29, we have the following low-frequency
behavior of Im BL,T���:

lim
�→0

Im BL,T���
�

= − 
me2

n�
�2

SL,T, �13�

where

SL =
1

6
�−

�

4
+

3 − �2

2 − �2 ln�� + 1� −
�

1 + �
+

1

2 − �2 f���� ,

�14�

and

ST = SL. �15�

In the preceding expression, �=2kF /ks, and

f��� = 2�1 − �2 tan−1 �1 − �

1 + �
	�1 − ��

+ ��2 − 1 ln
�� + 1 − �� − 1
�� + 1 + �� − 1

�	�� − 1� . �16�

Equation �13� is perturbative, and therefore strictly valid
only in the high-density limit. However, the following rela-
tion:

lim
�→0

Im BT���
�

= lim
�→0

Im BL���
�

�17�

is nonperturbative and, as such, is expected to hold at all
densities. We note that a relation similar to Eq. �17� holds in
3D �see Eq. �23� in Ref. 18�.
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III. DERIVATIONS

A. Low-frequency limit of Im A„�…

The high-frequency results for Im A��� and Re A���,
shown in Eqs. �4� and �5�, respectively, have been derived in
Ref. 19. The results of Eqs. �6� and �7� are established in Ref.
30. Here, we only briefly give the derivation for Eq. �8�—the
low-frequency limit of Im A���. Equation �8� is established
within the mode-decoupling approximation, which is exact
only in the high-density limit.13,22,31 The analytic form of this
approximation to Im A��� is given by Eq. �14� of Ref. 13,
which, in the paramagnetic case, reduces in 2D to

Im A��� = −
2

n2

�
q

vq
2q2	

0

� d��

�

�
Im �0↑�q,� − ���Im �0↑�q,���



�q,� − ���
2

�q,���
2
��1 + ��q,�

− ����

��1 + ��q,���� − ��q,� − �����q,���� , �18�

where 
�q ,�� is the dielectric function; ��q ,��=2v�q�
��−Re �0↑�q ,��+v�q�
�0↑�q ,��
2�; and �0↑�q ,�� is the
Lindhard function for just one spin component. In the para-
magnetic case,

Im �0↑�q,�� =
m

2�q2 �	 �kF
2q2 − �m�

+ q2/2�2��kF
2q2 − �m� + q2/2�2 − 	 �kF

2q2

− �m� − q2/2�2��kF
2q2 − �m� − q2/2�2� .

�19�

To leading order in �, for small �, in Eq. �18� simplies to

Im A��� = −
2

n2

�
q

vq
2q2 1



�q,0�
2	0

� d��

�
Im �0↑�q,�

− ���Im�0↑�q,��� . �20�

On the other hand, for small �,

Im �0↑�q,�� = −
m2�

�q�4kF
2 − q2

. �21�

Substituting the preceding expression into Eq. �20�, one ob-
tains, after some algebra,

Im A��� →
�→0

−
1




2m2

�n
�2	

�/2

� d��

�
���� − ���

� �
q

v2�q�
1



�q,0�
2
1

4kF
2 − q2	�kFq − q2/2 − ��� .

�22�

Making use of the random-phase approximation �RPA� to the
static dielectric function, one obtains, after some straightfor-
ward calculations, the result of Eq. �8�.

B. High-frequency limit of Im BL,T
„�…

The high-frequency limit of Im BL,T��� in 3D was estab-
lished in Ref. 18. In this subsection, we extend it to the 2D
case. In fact, to leading order at high frequency, the imagi-
nary part of the xc kernel tensor Im fxc,−

ij �q ,�� in the spin
channel, where i and j are Cartesian indices, can be written
as a combination of two parts,

Im fxc,−
ij �q,�� = Im fxc,−

ij,a �q,�� + Im fxc,−
ij,b �q,�� , �23�

where

Im fxc,−
ij,a �q,�� = −

�

2q2

�
k

��� − k2/m − q2/4m�v�k − q/2��ki

− qi/2� � �v�k − q/2��kj − qj/2�

+ v�k + q/2��kj + qj/2�� , �24�

and

Im fxc,−
ij,b �q,�� =

�

4
mq2

1

�
�
k

��� − k2/m�v�k − q/2�k · q � ��

− v�k + q/2� + v�k − q/2���kiqj + kjqi� − 4v�k

− q/2�kikj� . �25�

Here, 
 is the area of the system. Equations �24� and �25�

FIG. 1. Imaginary part of A��� at rs=1,2 as functions of �. FIG. 2. Real part of A��� at rs=1,2 as functions of �.
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are formally the same as Eqs. �46� and �56� in 3D, and so are
the derivations leading to them.18 In passing, we note a typo
of missing 1

4������� in Eq. �56� of Ref. 18. We first consider
term a. From Eq. �24�, we have

Im fxc,−
L,a �q,�� = −

�

4q4

�
k

��� − k2/m − q2/4m�v2�k�
1

k4

� �4�k · q�2k4 + 3�k · q�4 − 3�k · q�2q2k2� ,

�26�

where we have ignored terms that vanish for q→0. After
carrying out the sum over k in Eq. �26�, one obtains

Im f xc,−
L,a �q,�� = −

m�2e4

8q2 �4 − 3q2/4m�� . �27�

Similarly, one can obtain the transverse component as

Im fxc,−
T,a �q,�� = −

m�2e4

8q2 �4 − q2/4m�2� . �28�

Next, we turn to term b. From Eq. �25�, we have, to the
accuracy of O�q0�,

Im f xc,−
ij,b �q,�� = −

�


mq2

1

�

�
k

v2�k���� − k2/m�
�k · q�2

k2 kikj . �29�

The longitudinal and transverse components can be further
evaluated as

Im f xc,−
L,b ��� = −

3�2e4

8�
, �30�

and

Im fxc,−
T,b ��� = −

�2e4

8�
, �31�

respectively. Combining Eqs. �27� and �28� and Eqs. �30� and
�31� yields our final results

Im f xc,−
L �q,�� = −

m�2e4

32

16

q2 +
9

m�
� , �32�

and

Im fxc,−
T �q,�� = −

m�2e4

32

16

q2 +
3

m�
� . �33�

C. Low-frequency limit of Re BL,T
„�…

The low-frequency limit of the xc kernel for the spin
channel was related to the Landau parameters in Ref. 18 in
3D. In this subsection, we extend those results to the 2D
case.

The response of spin current ja�q ,�� to the perturbation
of spin-channel vector potential Aa�q ,�� is given by

ja
L,T�q,�� = �s

L,T�q,��Aa
L,T�q,�� , �34�

where the spin-channel vector potential Aa�q ,�� is defined
as

Aa�q,�� =
1

2
�A↑�q,�� − A↓�q,��� . �35�

The derivation of the small-q limit of the response function
�s

L,T�q ,�� is formally the same as 3D. We therefore only
present the final results here,

�s
L�q,�� −

n

ms
——→

q→0 3nq2kF
2

4ms
2m*�2
1 +

2F0
a

3
+

F2
a

6
� , �36�

and

�s
T�q,�� −

n

ms
——→

q→0 nq2kF
2

4ms
2m*�2
1 +

F2
a

2
� . �37�

Here, m* is the effective mass of the quasiparticle and ms is
the spin mass �Ref. 30�,

1

ms
=

1

m*
1 +
1

2
F1

a� . �38�

On the other hand, we also have

FIG. 3. Imaginary part of A��� at rs=3,5 as functions of �. FIG. 4. Real part of A��� at rs=3,5 as functions of �.
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�s
L,T�q,�� =

�0
L,T�q,��

1 − fxc,−
L,T �q,���0

L,T�q,��q2/�2 , �39�

which implies

�0
L,T�q,�� ——→

q→0 n

m

1 + � L,TEFq2

m�2 � , �40�

where �L=3/2 and �T=1/2. Comparing the O�q0� term of
�s

L,T�q ,�� in Eqs. �36� and �37� with the corresponding term
in Eq. �40�, we find

ms

m
= 1 − lim

�→0

n Re A���
m�2 , �41�

a result established in Ref. 30. Substituting Eq. �41� back
into Eq. �39� yields

�s
L,T�q,�� ——→

q→0 n

ms
�1 + �L,T


Fq2

ms�
2 +

nq2

ms�
2BL,T���� .

�42�

Comparison of Eq. �42� with Eqs. �36� and �37�, respectively,
leads to Eqs. �11� and �12�, and to the further relation

BL�0� − BT�0� = �1

n

�2

��2
xc����
�=0

, �43�

where 
xc��� is the xc energy per particle at spin polarization
�, and

� �2

��2
xc����
�=0

= EF

F0
a − F1

s /2

1 + F1
s /2

. �44�

Equation �43� combined with the following relation for the
charge-density channel:

lim
�→0

fxc
L ��� − fxc

T ��� − �2�n
xc�/�n2

�
= 0, �45�

yields

lim
�→0

f���
L ��� − f���

T ��� − �2�n
xc�/�n��n��

�
= 0. �46�

Equation �45� is a 2D analog of Eq. �94� in Ref. 18, and
obtained following an argument similar to that in Ref. 32.

IV. INTERPOLATION FORMULAS

Based on all the exact results listed in Sec. II, we give first
an interpolation formula for Im A���. We are somehow lim-
ited by the fact of the divergence of Re A��� at limiting large
frequency. In effect, Eq. �5� can be derived from Eq. �4�, and
thus it is not an independent result. In view of this limitation,
we try the following simple formula:

Im A��� = �̄3a ln
�̄
 − 
�̄

1 + b�̄4 �2EF� , �47�

where �̄=� /2EF. Equation �47� has the right low- and high-
frequency behaviors of Eqs. �4� and �8� if one chooses the
parameters to be

a =
1

3
 rs

rs + �2
�2

, �48�

and

b = 
 2

�rs
�2

. �49�

Plots of Im A��� and Re A��� based on Eq. �47� are pre-
sented in Figs. 1–4.

Next, we present our interpolation formula for Im BL,T���,

TABLE I. �m in units of 2EF.

rs 1 2 3 4 5

�m 1.208 1.728 2.040 2.276 2.519

FIG. 5. Imaginary part of BL��� and BT��� at rs=1 in units of
Ry /n, as functions of �.

FIG. 6. Real part of BL��� and BT��� at rs=1. Notations and
units are as in Fig. 5.
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Im BL,T��� = −
Ry

n
�̃
 aL,T

1 + bL,T�̃2 + �̃2e−�
�̃
 − 
L,T�2/�L,T� ,

�50�

where �̃=� /�m, with �m the position of the “collective
peak.”18 The peak position of the contribution of plasmon
excitations to Im BL,T��� can be roughly estimated in the
same manner as in 3D. However, the estimation is not fully
the same, due to the fact that the dispersion of the plasmon

pl�k� starts with �k1/2 at long wavelength in 2D rather than
a constant. The contribution from the plasmons now starts
from �=0 instead of �=�pl, but it ends at 
pl�k�+ ��kFk
+k2� /2� /m, as in the 3D case.18 Therefore the up cutoff for
the plasmon contribution is 2
pl�kc�, where kc is the wave
vector at which the plasmon enters the electron-hole con-
tinuum. The collective-mode contribution is therefore sig-
nificant in the range 0���2
pl�kc�, and its maximum can
be expected to occur roughly at about midrange �m
=
pl�kc�. �m is given in Table I at several typical densities
for the convenience of future applications.

The parameters appearing in Eq. �50� are determined as
follows. Requiring that Eq. �50� has a peak at �m yields the
relation


L,T = 1 −
3�L,T

2
. �51�

The low-frequency limit of Eq. �13� fixes aL,T as

aL,T =
2�m

�EF
SL,T. �52�

The high-frequency limit of Eq. �9� fixes bL,T as

bL,T = 
 �m

�EF
�2SL,T

cL,T . �53�

Finally, from the Kramers-Krönig relation, we have

− � aL,T

�bL,T
+

1

2��2
L,T�L,Te−�
L,T�2/�L,T
+ ���L,T�1/2��L,T

+ 2�
L,T�2��1 + erf
 
L,T

��L,T����Ry

n
= Re BL,T�0�

− Re BL,T��� , �54�

where

erf�x� =
2

��
	

0

x

e−y2
dy . �55�

�L,T and 
L,T are further determined from Eqs. �51� and �54�.
We now present numerical results for Im BL,T��� and

Re BL,T��� at several typical densities. We use the Landau
parameters based on a Monte Carlo calculation by Kwon,
Ceperley, and Martin33 to determine BL,T�0� via Eqs. �11� and
�12�. On the other hand, BL,T��� is calculated from Eq. �10�.
We make use of the approximate correlation energy density

c proposed by Attaccalite et al.34 to calculate tc via the re-
lation

TABLE II. Parameters for Im BL��� �Eq. �50��.

rs 102aL bL �L 
L

1 4.035 0.05517 0.5940 0.1090

2 2.272 0.04444 1.082 −0.6230

3 1.446 0.03339 1.334 −1.001

5 0.7692 0.02193 2.727 −3.091

TABLE III. Parameters for Im BT��� �Eq. �50��.

rs 102aT bT �T 
T

1 4.035 0.1655 0.9710 −0.4565

2 2.272 0.1333 1.177 −0.7655

3 1.446 0.1002 1.373 −1.060

5 0.7692 0.06579 1.698 −1.546

FIG. 7. Imaginary part of BL��� and BT��� at rs=3. Notations
and units are as in Fig. 5.

FIG. 8. Real part of BL��� and BT��� at rs=3. Notations and
units are as in Fig. 5.
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tc = − 
c − rs
d
c

drs
, �56�

where 
c is the correlation energy per particle. For the spin-
resolved pair-correlation function g����r�, we use the values
obtained by quantum Monte Carlo simulations by Gori-
Giorgi, Moroni, and Bachelet in Table VIII of Ref. 35.

The values of the parameters in Eq. �50� are presented for
four values of the Wigner-Seitz radius, rs=1, 2, 3, and 5 in
Tables II and III. It is necessary to mention here that the
results for BL,T��� based on the present interpolations also
depend on the inputs, like the Landau parameters and the
pair-correlation function, whose accuracy might not be al-
ways ensured at low density.

Plots of Im BL,T��� and Re BL,T��� for rs=1,3 are pre-
sented in Figs. 5–8.

V. SUMMARY

The long-wavelength behavior of the dynamical spin-
resolved exchange-correlation kernel in the two-dimensional
electron liquid is studied. Several analytical results at limit-
ing high and low frequency for its singular A��� and regular
BL,T��� components, in the long-wavelength expansion of
Eq. �2�, are obtained. These results are summarized, with
those obtained previously in the literature, in Sec. II of this
paper.

Based on these results, we have proposed interpolation
formulas for Im A��� and Im BL,T��� for all frequencies,
from which we have also calculated Re A��� and Re BL,T���
via the Kramers-Krönig relation. These formulas could be
useful in the applications of time-dependent spin-density
functional theory to the two-dimensional electron systems.
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APPENDIX: PLASMON DISPERSION, STATIC
STRUCTURE FACTOR, AND STATIC LOCAL-FIELD

FACTOR

In this appendix, we employ the present scheme for the xc
kernel �for the charge channel, we refer to Ref. 29� to calcu-

late the plasmon dispersion, the static structure factor �SSF�,
and the static local-field factor �SLFF� of the electron liquid,
properties that can be directly measured experimentally
and/or have been extensively investigated theoretically.4,5,36

Here, we compare such calculations with those previous re-
sults which are commonly believed to be quite accurate or
relatively more reliable than random-phase approximation
�RPA�. Such a comparison can be carried out only in the
small momentum regime, since our interpolations are only
valid in this region. In fact, the comparison indicates that the
present scheme is rather accurate, at least in this region.

First, we calculate the plasmon dispersion, which is deter-
mined by the following relation:

1 − �v�q� + Re f xc
L �q,�pl��Re �0�q,�pl� = 0. �A1�

For small q, the plasmon frequency �pl in the preceding
equation can be shown to be

�pl
2 = �q + �� +

1

�
Re fxc

L �0�EF�q2, �A2�

where �=2EFe2, �=3EF /2m, and fxc
L �0�

=lim�→0limq→0fxc
L �q ,��. It is understandable that only the

charge channel of the xc kernel has effects on the plasmon
dispersion, while the spin channel does not.

A comparison with analytical STLS �A-STLS� �Eq. �48�
in Ref. 37�—which is basically equivalent to the self-
consistent approach for SSF proposed by Singwi, Tosi, Land,
and Sjölander �STLS�24 but reformulates the latter in an ana-
lytical manner—at rs=3 is shown in Fig. 9. Both the present
scheme and the STLS give a big reduction to the well-known
overestimated RPA result, which is also shown in Fig. 9 for a
comparison. It is well recognized that the STLS is more ac-
curate than the RPA. For example, it extends the rs value for
the non-negativity of the on-top pair-correlation density g�0�
to a much larger region than the RPA. Nevertheless, the clas-
sical type of framework and the use of the static local-field
factor in the STLS might introduce drawbacks in its imple-
mentations, such as the violation of the compressibility sum
rule. An issue relevant to the present subject is that the over-
estimation of the plasmon dispersion in the RPA result is
believed to be over-reduced in the STLS. To obtain a better

FIG. 9. The plasmon dispersion at rs=3. FIG. 10. The static structure factor at rs=5.
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test of the accuracy of the present scheme, we further calcu-
late the plasmon dispersion based on the quantum mechani-
cal version of the STLS �QSTLS�,38,39 in which, for small q,

�pl
2 = �q + 
� −

e2kF�

m
�q2. �A3�

Here

� = −
1

2kF
	

0

�

dq�S�q� − 1� , �A4�

and values for it at several typical rs are given in Ref. 39.
The QSTLS is aimed at overcoming the shortcomings of the
STLS, and a dynamic local-field factor is employed in it. We
hence also show in Fig. 9 the plasmon dispersion calculated
from Eq. �A3�. It turns out that the results based on the
present scheme and the QSTLS agree very well.

Next we calculate the SSF S�q�. It is well known that the
plasmons in the electron liquid exhaust the contributions to
the long-wavelength structure of S�q�,

S�q� =
q2

2m�pl
. �A5�

Since �pl
2 →�q, one has S�q�=q3/2 / �2m��� as q→0. In fact,

it was shown that the single-pair and multipair electron-hole
excitations make contributions to the order of O�q3� and
O�q4�, respectively.40 The plasmon contributions fully deter-
mine the SSF to the order of O�q5/2�. From the the
dissipation-fluctuation relation �Ref. 41�,

S�q� = −
1

�n
	

0

�

d� Im ��q,�� , �A6�

where ��q ,�� is the response function, one obtains

S�q� =
q2

2m�p0
�1 −

3

4

EFq2

m�p0
2 −

1

2
v�q�−1 Re fxc��p0�� ,

�A7�

where �p0=��q. We emphasize that the preceding result is
accurate to O�q5/2�. We compare S�q� with the result ob-
tained by Green’s-function Monte Carlo �GFMC�
calculation42 at rs=5 in Fig. 10. Our result in Eq. �A7� agrees

very well with the GFMC calculation. The RPA result, cor-
responding to putting fxc

L ��p0�=0 in Eq. �A7�, is also shown
in Fig. 10 for comparison.

Finally, we calculate the SLFF, which is defined as

G�q� = −
1

v�q�
lim
q→0

lim
�→0

fxc
L �q,�� . �A8�

To this end, it might be necessary to emphasize the fact that
�Refs. 12, 32, and 43�

lim
�→0

lim
q→0

fxc
L,T�q,�� � lim

q→0
lim
�→0

fxc
L,T�q,�� . �A9�

In fact,

lim
q→0

G�q� = −
1

v�q�
�fxc

L �� = 0� − fxc
T �� = 0�� , �A10�

where fxc
L,T��=0�=lim�→0limq→0fxc

L,T�q ,��. Similarly, for the
spin channel, one has

lim
q→0

G−�q� = −
1

v�q�
�BL�0� − BT�0�� . �A11�

We calculate, for small momentum q, G�q� and G−�q� and
compare them with the results of Davoudi et al. �DPGT�,44

which reproduce the diffusion Monte Carlo �DMC�45 data.
We plot G�q� at rs=1 and rs=5 in Fig. 11. The agreement
between the results based on our scheme and those based on
the DPGT scheme is excellent. This is understandable be-
cause in both schemes, the Monte Carlo data of Ref. 46 for

xc is employed.

In Fig. 12, we show G−�q� at rs=1 and rs=5 and compare
it with that of DPGT.44 They turn out to be rather close. The
difference arises from the fact that we have made use of the
Monte Carlo data in Ref. 33 for the Landau parameters to
calculate the quantity ��2 /��2�
xc
���
�=0 via Eq. �44�, while
DPGT calculated it by extrapolating the DMC data45 for
G−�q� to q=0.

FIG. 11. The local field factor G�q� for rs=1 and rs=5. FIG. 12. The local field factor G−�q� for rs=1 and rs=5.
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