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The optical properties of three-dimensional photonic crystals consisting of polaritonic spheres in a dielectric
host medium are studied by means of accurate numerical calculations using the on-shell layer-multiple-
scattering method. The transmission characteristics of finite slabs of these materials are related to the complex
band structure of the corresponding infinite crystals and the effect of dissipative losses is examined.
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I. INTRODUCTION

Photonic crystals, composite materials whose dielectric
function or/and magnetic permeability varies periodically in
space on a macroscopic length scale, provide impressive op-
portunities for tailoring the light-matter interaction.1,2 In re-
cent years, considerable effort has been devoted to the inves-
tigation of the so-called polaritonic photonic crystals.3–14

These are made of heteropolar semiconducting or insulating
materials which have a strongly dispersive dielectric function
in the infrared region, and exhibit new exciting physical phe-
nomena such as flux expulsion and node switching,9,10 nega-
tive effective magnetic permeability over selected regions of
frequency,13,14 etc. However, most of the above studies refer
to two-dimensional polaritonic photonic crystals. The pur-
pose of the present paper is to report a thorough investigation
of three-dimensional crystals of polaritonic spheres in a ho-
mogeneous dielectric host medium, by means of first-
principles calculations using the on-shell layer-multiple-
scattering method.15–17 This method is ideally suited for
photonic crystals with absorptive and/or strongly dispersive
constituents such as polaritonic materials. In addition to the
complex frequency band structure of the �infinite� photonic
crystal associated with a given crystallographic plane, the
method allows one to calculate, also, the transmission, re-
flection, and absorbtion coefficients of an electromagnetic
�EM� wave incident at a given angle on a finite slab of the
crystal and, therefore, it can describe an actual transmission
experiment.

The band structure of the photonic crystals under consid-
eration is characterized by flat, almost dispersionless bands
which originate from the resonance modes of the individual
spheres. We show how hybridization between such narrow
bands and a wide band corresponding to propagation in an
effective medium leads to the appearance of frequency gaps.
We find that an absolute gap can be formed by this mecha-
nism and its width increases with the fractional volume oc-
cupied by the spheres. The symmetry and optical activity of
the different bands are analyzed in conjunction with relevant
transmission spectra, and the effect of dissipative losses in
the polaritonic material is examined. Our analysis elucidates
the complex optical response of these systems and provides a
transparent picture of the underlying physical processes.

II. EIGENMODES OF A SINGLE POLARITONIC SPHERE

In usual heteropolar semiconductors or insulators, the
photon-phonon interaction leads to a strongly dispersive di-
electric function at infrared frequencies, which can be de-
scribed by the following simple yet effective model:18

�s��� = �� +
�0 − ��

1 − ��/�T���/�T + i�/�T�
, �1�

where �0 and �� are the static and optical dielectric constants,
respectively, and �T is the long-wavelength transverse opti-
cal phonon frequency. As can be seen from Fig. 1�a�, �s���
has a resonance at �T. The width of this resonance is char-
acterized by �, a damping factor accounting for absorption
which is intimately connected with a resonance. In the ab-
sence of absorption ��=0�, the above dielectric function has
an asymptote at �=�T and vanishes at �L=�T

��0 /��, the
long-wavelength longitudinal optical phonon frequency. In
the frequency region from �T to �L the dielectric function is
negative, thus not allowing EM waves to propagate in the
material, and this region is referred to as polariton gap be-
cause the quasiparticle which results from the photon-
phonon coupling is called polariton. Clearly, the power of

FIG. 1. �a� The real �thick solid line� and imaginary �dashed
line� parts of the polaritonic model dielectric function of LiTaO3

��0=41.4,��=13.4,�=0.035�T�. The �real� dielectric function in
the absence of absorption ��=0� is shown by the thin solid line. �b�
The change in the density of states �n induced by a nonabsorbing
LiTaO3 sphere of radius S=0.5c /�T in air. The shaded regions in-
dicate the frequency interval of the polariton gap.
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polaritonic materials lies in the opportunity to study the
large-� and negative-� regimes using the same physical
structure by merely choosing the frequency of light below �T
or inside the polariton gap between �T and �L. In this paper
we shall consider spheres made of a polaritonic material and
we shall use �T as the unit of frequency. For the purpose of
numerical computation we take �0=41.4, ��=13.4, and �
=0.035�T, which correspond to LiTaO3.19

We assume, to begin with, a single LiTaO3 sphere of ra-
dius S in air and we neglect losses for now. This sphere
supports states for which the EM field is mostly localized at
the sphere and leaks to some minor degree in the host region.
These states are referred to as virtual bound states. They are
obtained at the poles of the elements of the corresponding
scattering matrix T

TEl = � jl�xs��xjl�x����s − jl�x��xsjl�xs���
hl

+�x��xsjl�xs��� − jl�xs��xhl
+�x����s

�
x=�S/c;xs=��sx

,

THl = � jl�xs��xjl�x��� − jl�x��xsjl�xs���
hl

+�x��xsjl�xs��� − jl�xs��xhl
+�x���

�
x=�S/c;xs=��sx

,

�2�

c being the velocity of light in vacuum and jl�hl
+� the spheri-

cal Bessel �Hankel� functions, in the lower complex-
frequency half-plane close to the real axis at zl=�l− i�l;

20 �l
is the eigenfrequency while �l �0	�l
�l� denotes the in-
verse of the lifetime of the respective 2l-pole virtual bound
state. It can be shown that such poles of both types, electric
�pole of TEl� and magnetic �pole of THl�, exist below �T
where the dielectric function is strongly positive. An
asymptotic analysis, in the limit �→�T, leads to the follow-
ing approximate expression for the eigenfrequencies of these
modes

�nl

�T
� 1 −

2��0 − �����TS/c�2

�2

1

�n + l�2 , n = 1,2,3, . . . ,

�3�

for each value of l �l=1,2 ,3 , . . . �. For odd and even values
of n we obtain the solutions of magnetic and electric type,
respectively. It is obvious that there is an infinite number of
such solutions which are accumulated at �T. Of course, the
closer we get to �T the better the above approximation be-
comes. Virtual bound states, but only of electric type, exist
also inside the polariton gap. These are similar to the
surface-plasmon resonance states of a metallic sphere and,
for a small sphere, they are obtained at

�l

�T
�� l�0 + l + 1

l�� + l + 1
, �4�

for each value of l. It is easy to see that the above states, for
large values of l, are accumulated at �T���0+1� / ���+1�.

In Fig. 1�b� we show the change in the density of states
�n induced by a single non-absorbing LiTaO3 sphere in air.
This is calculated from20

�n��� =
d

d�
	 1

�
Im ln det�1 + T�
 . �5�

The sphere has a radius S=0.5c /�T which for �T
=26.7 THz �the value of the long-wavelength transverse op-
tical phonon frequency for LiTaO3 �Ref. 19�� corresponds to
5.6 �m. It can be seen that �n is characterized by an infinite
number of resonance peaks. We have confirmed that their
centers are approximately given by Eqs. �3� and �4�, and that
they are nicely fitted by Lorentzian curves given by20

�nl��� �
2l + 1

�

�l

�� − �l�2 + �l
2 . �6�

III. SCATTERING AND ABSORPTION BY A PLANE OF
POLARITONIC SPHERES

We now consider a square array, with lattice constant a
=1.1c /�T, of nonabsorbing LiTaO3 spheres with S
=0.5c /�T in air. Because of the two-dimensional periodicity
of the structure under consideration, the modes of the EM
field are characterized by k�, the component of the wave
vector parallel to the plane of spheres �this is taken to be the
x-y plane� reduced within the surface Brillouin zone �SBZ�.

In Fig. 2�a� we show the change in the density of states
induced by the plane of spheres in air, for k� =0. This is
calculated from the general formula20

�n��,k�� =
�

��
	 1

2�
Im ln det S
 , �7�

where S is obtained directly from the transmission and re-
flection matrices of the plane of spheres, for the given � and
k�.20 As can be seen from Fig. 2�a�, the �2l+1� degeneracy of
the virtual bound states of the single sphere is removed be-
cause of the interaction with the other spheres of the plane.
For k� =0, the states of the EM field have the symmetry of

FIG. 2. A square array, with lattice constant a=1.1c /�T, of non-
absorbing LiTaO3 spheres, with radius S=0.5c /�T, in air. Change
in the density of states of the system with respect to air for k� =0
�a�, and transmittance at normal incidence �b�. The shaded regions
indicate the frequency interval of the polariton gap. The region
about the first dipole electric and quadrupole magnetic resonances
of the single sphere below the polariton gap are shown with a
higher resolution in the right panel.
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the irreducible representations of the C4v group: �1, �2, �1�,
�2�, �5.21 The states of symmetry �1, �2, �1�, �2� are non-
degenerate and �5 are doubly degenerate. Next to Fig. 2�a�
we show in more detail the decomposition of the first dipole
electric and quadrupole magnetic virtual bound states of the
single sphere below the polariton gap. In agreement with a
group-theory analysis,22 the dipole electric mode gives a �1
and a �5 mode, while the quadrupole magnetic mode gives a
�2, �1�, �2�, and �5 mode. We note that a plane EM wave
propagating in the host region normal to the plane of spheres
�k� =0� has the �5 symmetry and, therefore, only modes of
the plane of spheres with the same symmetry can be excited
by an externally incident wave. The modes of different sym-
metry are inactive; they are bound states of the system and
decay exponentially to zero away from the plane of spheres
on either side of it. These inactive modes are delta functions
in the density of states, while the optically active modes, of
�5 symmetry, are manifested as Lorentzian resonances in the
density of states �see Fig. 2�a��. The integral of each such
Lorentzian equals 2, while its center and width determine the
eigenfrequency and inverse lifetime, respectively, of the cor-
responding virtual bound state. For example, the first dipole
electric mode of the single sphere gives a bound state of �1
symmetry at 0.836�T, and a �5 virtual bound state �the first
Lorentzian shown by dashed lines in the right panel of Fig.
2�a�� at �1=0.840�T with an inverse lifetime �1=2.26
10−3�T. On the other hand, the first quadrupole magnetic
mode of the single sphere gives three bound states at
0.846�T ��2�, 0.856�T ��1��, 0.861�T ��2��, and a �5 virtual
bound state �the second Lorentzian shown by dashed lines in
the right panel of Fig. 2�a�� at �2=0.844�T with an inverse
lifetime �2=1.9010−3�T.

In Fig. 2�b� we show the transmittance of the plane of
spheres at normal incidence. It can be seen that the transmis-
sion spectrum is characterized by resonance structures which
originate from the corresponding virtual bound states. In the
frequency region about the first dipole electric and quadru-
pole magnetic resonances of the single sphere below the po-
lariton gap, where there are two virtual bound states of the
plane of spheres �see dashed curves in the right panel of Fig.
2�a��, the resonant transmittance is described by the follow-
ing function �see Appendix�:

T =
1

2
�1 + cos�2�1��� + 2�2��� − �� , �8�

with

cos�2�i���� =
�� − �i�2 − �i

2

�� − �i�2 + �i
2 ,

sin�2�i���� =
− 2�i�� − �i�
�� − �i�2 + �i

2 , i = 1,2, �9�

�1, �2 and �1, �2 being the eigenfrequencies and inverse
lifetimes, respectively, of the corresponding virtual bound
states. As shown by the dashed line in the right panel of Fig.
2�b�, an excellent fit of the resonance structures in the trans-
mittance is obtained by Eqs. �8� and �9� using a single ad-
justable parameter, � �in the present case �=102°�.

In Fig. 3 we show the transmittance and absorbance of the
plane of spheres, taking into account dissipative losses in the
polaritonic material ��=0.035�T�. We can see that the sharp
features in the transmission spectrum, which originate from
the virtual bound states with long lifetimes, are smoothed out
by absorption, and essentially only the fundamental dipole
and quadrupole virtual bound states of the spheres manifest
themselves in the transmittance. Correspondingly, the ab-
sorption spectrum is characterized by resonance peaks in the
frequency regions of the virtual bound states.

IV. PHOTONIC CRYSTALS OF POLARITONIC SPHERES

We now consider a simple cubic �sc� crystal of nonab-
sorbing LiTaO3 spheres in air, where the fractional volume
occupied by the spheres is f =39.3%, and we view the crystal
as a sequence of �001� planes of spheres. Figure 4�a� shows
the photonic band structure normal to the �001� surface. The
symmetry of the bands along this direction
��1 ,�2 ,�1� ,�2� ,�5� is that of the C4v group.21 The bands
�1, �2, �1�, �2� are nondegenerate and �5 is doubly degen-
erate. We note that the �001� surface of the crystal under
consideration is a plane of mirror symmetry and, therefore,
the frequency bands appear in pairs kz�� ,k�� and −kz�� ,k��;
for this reason, in Fig. 4�a�, we show the bands only for
positive kz.

Away from the region of the polariton gap we obtain a
linear dispersion curve, of �5 symmetry, as expected for
propagation in a homogeneous effective medium with a
frequency-independent dielectric constant23 �̄0���= ��0����1
+2f�+2�1− f�� / ��0����1− f�+ �2+ f�� below �above� the po-
lariton gap. About the region of this gap the frequency band
structure is dominated by flat resonance bands which origi-
nate from the virtual bound states of the LiTaO3 spheres. The
�5 component of these bands hybridizes with the extended
�5 band that would be in the dielectric effective medium to
produce the �5 bands in the photonic crystal shown in Fig.
4�a�. It can be seen that frequency gaps open up due to hy-
bridization between the extended band and flat bands with
the same symmetry. The hybridization is stronger for the
fundamental dipole resonance bands, because of the larger

FIG. 3. Transmittance �solid line� and absorbance �dashed line�
of a square array, with lattice constant a=1.1c /�T, of absorbing
LiTaO3 spheres, with radius S=0.5c /�T, in air, at normal incidence.
The shaded region indicates the frequency interval of the polariton
gap.

THEORETICAL ANALYSIS OF THREE-DIMENSIONAL… PHYSICAL REVIEW B 72, 075107 �2005�

075107-3



spatial extent of the associated wave function, and the corre-
sponding gaps are wider. It should be noted that the gaps
considered in this paper are unrelated to Bragg scattering and
thus can be described, to some extent, by using effective-
medium theory: A Mie dipole resonance of electric or mag-
netic type may induce a negative effective dielectric function
or magnetic permeability, respectively, over a corresponding
region of frequency.23 However, the effective-medium theo-
ries are valid in the long-wavelength limit and rely on the
dipole approximation. They cannot describe the detailed ac-
tual photonic band structure and are unable to account for the
anisotropic properties of the crystal.

The nondegenerate bands in Fig. 4�a� arise from an appar-
ently weak interaction between the corresponding bound
states of the EM field, localized about consecutive �001�
planes of spheres �see Fig. 2�a��. In order to demonstrate the
above, we looked for the eigenmodes of the EM field, for
k� =0, in a slab of NL=8 planes of spheres, in the manner
described in Ref. 24. Over the frequency range of each of
these bands we obtain eight eigenfrequencies which, plotted
against values of the reduced wave number kz=�� / �NL

+1�a, �=1,2 , . . . ,NL, �NL=8�, reproduce the corresponding
dispersion curves of the infinite crystal, as shown by the
open circles in the lower panel of Fig. 4�a�. According to the
discussion in the previous section, the nondegenerate bands
along the �001� direction of the crystal cannot be excited by
an externally incident wave because they do not have the
proper symmetry. However, these bands survive for k��0 �at
least in the neighborhood of k� =0�, where they couple with
an incident wave of the same k� leading to measurable trans-
mittance.

We note that the total number of bands shown in Fig. 4�a�
equals the number expected from the degeneracy of the reso-
nances of the individual spheres in hybridization with a

“would be” extended effective-medium band. For example,
as can be seen in the lower panel of Fig. 4�a�, the dipole
electric virtual bound states of the individual spheres give a
threefold degenerate mode �of �15 symmetry� at k=0 which
is separated into a �1 and a �5 band along the �001� direc-
tion. Correspondingly, the quadrupole magnetic states give a
threefold degenerate ��25� mode and a doubly degenerate
��12�� mode at k=0 which are separated into a �2 and a �5

band, and into a �1� and a �2� band along the �001� direc-
tion, respectively. Two narrow gaps open up as a result of
hybridization between the extended effective-medium band
and the above �5 resonance bands.

In Fig. 4�b� we show the transmittance of a slab of the
crystal consisting of NL=8 �001� planes of spheres. The
transmittance opposite the extended band exhibits the well-
known Fabry-Perot oscillations due to multiple scattering be-
tween the surfaces of the slab. The period of these oscilla-
tions corresponds to kza /�=1/8, as expected for the given
slab thickness. In the gap regions and also within regions of
frequency where only nondegenerate bands exist the trans-
mission coefficient practically vanishes.

In Fig. 5�a� we show the photonic band structure normal
to the �001� surface of the crystal under consideration in
more detail, over a limited frequency region about the first
dipole magnetic resonance of the single sphere. Next to it, in
Fig. 5�b�, we show the transmittance over the same fre-
quency region for a wave incident normally on a slab of the
crystal consisting of NL=8 �001� planes. Apart from the or-
dinary frequency bands �kz is real� we show over the fre-
quency gap extending from 0.70�T to 0.78�T, the real-
frequency lines with the smallest imaginary part of kz. There
are two such lines over the above region which are the ana-
lytic continuations in the complex kz plane of the bands be-
low and above the gap �see Fig. 6�. It should be noted that
the real-frequency lines in the complex kz plane, for given k�,
satisfy some very interesting and beautiful theorems which
have been studied by a number of authors in relation to the

FIG. 4. �a� The photonic band structure of a sc photonic crystal
of nonabsorbing LiTaO3 spheres �S=0.5c /�T� in air, with f
=39.3%, along the �001� direction. �b� Transmittance at normal in-
cidence of a slab of NL=8 �001� planes of spheres of the above
crystal. The shaded regions indicate the frequency interval of the
polariton gap. The region about the first dipole electric and quadru-
pole magnetic resonances of the single sphere below the polariton
gap are shown with a higher resolution in the lower panel. The thick
�thin� lines refer to doubly degenerate �nondegenerate� bands.

FIG. 5. A detail view of diagrams �a� and �b� of Fig. 4 over a
limited frequency region about the first dipole magnetic resonance
of the single sphere. In the band-structure diagram �a�, over the
frequency gap, we show by broken lines the real-frequency lines
with the smallest imaginary part. The imaginary part is shown in the
shaded region. In the inset of the transmittance diagram �b� we
show the transmittance at a given frequency �=0.71�T within the
gap as a function of the thickness of the slab �filled circles�. The
straight line has a slope equal to −2a Im�kz�, where Im�kz� is the
smallest imaginary part of kz�0.71�T ,k� =0�.
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electron band structure of crystalline solids �see, e.g., Ref.
25� and which apply also to the frequency band structure of
photonic crystals. The real-frequency line of the appropriate
symmetry ��5 in the present case� with the smallest imagi-
nary part over a frequency gap determines the attenuation of
the wave field over this region; we obtain ln T���
=−2aNL Im�kz����+const., for a given value of k�. This is
demonstrated in the inset of Fig. 5�b� for a frequency within
the gap. There is also an interesting observation to be made
about the section of the real-frequency line extending from
0.72�T to 0.75�T with kz complex and −� /a	Re�kz�
�� /a. We remember that the band structure of Fig. 5�a�
applies to the infinite crystal, and what we see in Fig. 5�b�
reflects the properties of a slab of eight planes of spheres.
The resonances in the transmittance of the slab suggest that
at the corresponding frequencies there exist resonances of
some kind in the slab, and we observe that these resonances
appear within the frequency gap of the infinite crystal. These
resonances �of the slab� are clearly due to resonances of the
wave field localized on the individual spheres interacting
very weakly between them. Of course, there can not be states
of the EM field in the infinite crystal within the gap �i.e.,
with complex kz�. But in a slab of finite thickness such eva-
nescent waves may exist and may lead to resonances of the
EM field, with a high amplitude at the surfaces of the slab
�within the spheres of the surface planes� and a much smaller
amplitude in the middle of the slab �within the spheres of the
middle planes�. It is worth noting the fact that the resonances
of the slab appear at frequencies along the real-frequency
line corresponding to Re�kz�a /�=� / �NL+1�, �
=1,2 , ¯ ,NL, where NL=8 is the number of planes in the
slab, as shown by the open circles in Fig. 5�a�. Which im-
plies �and we have verified this numerically� that the number
of resonance dips over the gap region increases with the
thickness NL of the slab. It is as if in the slab the system
remembers the narrow band �due to the weakly interacting

virtual bound states of the spheres� that would be, if hybrid-
ization did not occur; in particular those states of the infinite
crystal which have been removed by the hybridization “ap-
pear”on the same real-frequency line with a complex kz �the
real part of kz is the same as before the hybridization�, and
manifest themselves as sharp dips in the transmittance of the
slab as shown in Fig. 5�b�.

In Fig. 7 we present the projection of the frequency band
structure of the EM field of the photonic crystal under con-
sideration on the symmetry lines of the SBZ of the sc �001�
surface. The shaded regions extend over the frequency bands
of the EM field: at any one frequency within a shaded region,
for given k�, there exists at least one propagating EM mode
in the infinite crystal. The blank areas correspond to fre-
quency gaps. We note that knowing the modes with k� in the
shaded area ��XM� of the SBZ and −� /a	kz�� /a is suf-
ficient for a complete description of all the modes in the
infinite crystal. The modes in the remaining of the reduced k
space are obtained through symmetry. One clearly sees that
for the given crystal one obtains an omnidirectional fre-
quency gap, extending from 1.59�T to 1.62�T. We verified
that this is indeed so by calculating the band structure at a
sufficient number of k� points in the SBZ. This gap results
from the hybridization between the resonance band which
originates from the dipole virtual bound states of the indi-
vidual spheres within the polariton gap and the extended
effective-medium band. The gap starts to appear at f �30%
and increases monotonically with f . If the dielectric constant
of the host material increases, this gap is shifted to lower
frequencies, as shown in the right panel of Fig. 7, because
the dipole virtual bound states of the spheres within
the polariton gap move to lower frequencies ��1

��T���0+2�� / ���+2���.

V. CONCLUSION

In summary, we present a theoretical study of the optical
properties of three-dimensional photonic crystals consisting
of polaritonic spheres in a dielectric host medium using the
layer-multiple-scattering method. Our results clarify aspects

FIG. 6. The complex photonic band structure of a sc photonic
crystal of nonabsorbing LiTaO3 spheres �S=0.5c /�T� in air, with
f =39.3%, along the �001� direction, over a limited frequency region
about the first dipole magnetic resonance of the single sphere. The
thick �thin� lines refer to doubly degenerate �nondegenerate� bands.
The dotted lines show the projection of the complex bands on the
�-Re�kz� plane.

FIG. 7. Projection of the photonic band structure of a sc crystal
of nonabsorbing LiTaO3 spheres �S=0.5c /�T� in air, with f
=39.3%, on the SBZ of the sc �001� surface, along the symmetry
lines shown in the inset. The dashed line �=c�k�� shows the light
cone in air. Next to this diagram we show the variation of the
absolute gap �blank area� of the above crystal with the dielectric
constant of the host medium.
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of the underlying physics to a degree that goes beyond ex-
isting interpretation. We analyze transmission and absorption
spectra of finite slabs of these materials in conjunction with
relevant complex-band-structure diagrams and develop a
simple analytic model which explains the complex line
shapes of the observed transmission resonances. We clarify
the physical origin of the field eigenmodes and frequency
gaps in these systems. Finally, we find a complete gap which
increases with the fractional volume occupied by the spheres
and moves down to lower frequencies by increasing the di-
electric constant of the host material.
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APPENDIX

In this appendix we derive explicit expressions for the
resonance structures in the transmission spectrum of EM
waves through a slab of a photonic crystal. In general, the
amplitudes of the incoming and outgoing waves are related
through the scattering S matrix, which is unitary because of
flux conservation. Let us restrict ourselves to frequencies be-
low the first Bragg diffraction threshold, so that the scattered
wave field consists of only one propagating beam. We shall
further assume, for simplicity, that the slab has a �parallel�
plane of mirror symmetry, so that the S matrix is symmetric.
Moreover, assuming that k� lies in a �normal to the slab�
plane of mirror symmetry so that there is no mixing between
s and p waves, the S matrix takes the form

S =�
ts rs 0 0

rs ts 0 0

0 0 tp rp

0 0 rp tp

� , �A1�

where ts�p� and rs�p� are the transmission and reflection am-
plitudes, respectively, for s�p�-polarized waves. It is straight-

forward to show that the eigenvalues of the S matrix are ts
+rs, ts−rs, tp+rp, tp−rp, and, since S is unitary, these can be
written as

ts + rs = exp�2i�s+�, ts − rs = exp�2i�s−� ,

tp + rp = exp�2i�p+�, tp − rp = exp�2i�p−� , �A2�

where �s+, �s−, �p+, �p−, the so-called scattering phase shifts,
are real functions of frequency. Using Eqs. �A2�, the trans-
mittance of the slab can be expressed in terms of the scatter-
ing phase shifts as follows:

T � �ts�p��2 =
1

2
�1 + cos�2��s�p�+ − �s�p�−�� , �A3�

for a s�p�-polarized incident wave. On the other hand, the
change in the number of states up to a given frequency, in-
duced by the slab, is given by26

�N =
1

2�
Im ln det S

=
1

�
��s+ + �s− + �p+ + �p−� . �A4�

Let us now consider the analytic continuation of the ei-
genvalues of the S matrix in the complex frequency plane.
The causality condition implies that these functions are ana-
lytic in the upper half-plane but they may have poles in the
lower half-plane at �i− i�i, �i�0, which correspond to zeros
at �i+ i�i. Among all possible solutions, those with �i /�i

1 are of particular physical interest. Assuming the exis-
tence of such a simple pole at �1− i�1, separated from the
other poles, in the vicinity of this point, on the real axis, the
corresponding eigenvalue has the form exp�2i����−�1

− i�1� / ��−�1+ i�1�. We assume that � as well as the phase
shifts associated with the other eigenvalues of the S matrix
do not vary considerably with frequency in the vicinity of the
pole, where the frequency dependence is dominated by the
resonant part, �1���, of the relevant phase shift, where

cos�2�1���� =
�� − �1�2 − �1

2

�� − �1�2 + �1
2 ,

sin�2�1���� =
− 2�1�� − �1�
�� − �1�2 + �1

2 . �A5�

The change of the density of states in the vicinity of the
pole is obtained from Eqs. �A4� and �A5�

�n��� =
d�N���

d�
�

1

�

�1

�� − �1�2 + �1
2 , �A6�

and has the form of a Lorentzian resonance centered at �1.
Its width is determined by �1 and its integral equals unity.
Since �1 /�1
1, this resonance mode resembles a bound
state: it has a long �though not infinite� lifetime and the field
intensity associated with it is mostly concentrated within the
slab �though it leaks, to some minor degree, in the host re-
gion�. Such states are referred to as virtual bound states.

FIG. 8. Resonance structures in the transmittance of a slab ac-
cording to Eq. �A7�. The sequential diagrams correspond to differ-
ent values of �, from 0° to 300° with a step of 60°.
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In turn, the resonant transmittance of the slab near the
frequency region of the virtual bound state is obtained from
Eqs. �A3� and �A5�

T �
1

2
�1 +

�� − �1�2 − �1
2

�� − �1�2 + �1
2 cos � −

2�1�� − �1�
�� − �1�2 + �1

2 sin �� ,

�A7�

where � is a phase which contains the contribution of the
non-resonant phase shifts and can be considered as constant
within a short range of frequencies about the resonance.
Equation �A7� tells us that, depending on the value of �, a
virtual bound state can induce different resonance structures
in the transmission spectrum, as shown in Fig. 8. The gener-
alization of the formulas derived in this appendix to cases
where more than one resonances contribute within a given
region of frequency is straightforward.
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