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Single �on-site� and multisite �multiatom� resonant photoemission �MARPE� processes are systematically
studied by use of nonrelativistic Keldysh Green’s function theory. We apply skeleton expansion in terms of
renormalized one-electron Green’s functions. In this theoretical framework we discuss the importance of the
radiation field screening and the dynamically polarized part Wp in the screened Coulomb propagator. The
radiation field screening plays a crucial role in observing the MARPE: We obtain expressions of the resonant
processes �on site and multiatom� in terms of an x-ray absorption factor whose imaginary part is proportional
to the x-ray absorption intensity. If we neglect Wp, the calculated MARPE intensity is much smaller than the
observed one. We also point out the importance of the structure factor in the MARPE analyses. Typically
highly symmetric atomic arrangement around a photoemitting atom provides us with no MARPE signal, but
outermost oxygen atoms give rise to considerably strong MARPE because of symmetry lowering. On the other
hand, low symmetric systems like rutile, perovskite, and �-alumina �Fe2O3� structures can give rise to finite
MARPE even in the case of photoemission from inner layers of perfect crystals. The polarization dependence
of the MARPE follows the same selection rule as the main photoemission processes, whereas the O 1s
MARPE from Fe2O3 shows a rather complicated rule. These specific features of MARPE provide useful local
structural information.
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I. INTRODUCTION

A useful and practical many-body approach to x-ray pho-
toemission spectroscopy �XPS� analyses has been developed
by Bardyszewski and Hedin by use of projection operator
techniques.1 Further refinement is found in Ref. 2. The above
theoretical approach is practically useful to describe the pho-
toemission processes in terms of damping photoelectron
wave functions under the influence of the optical potentials.
This direct approach, however, has not been applied to study
resonant photoemission processes.

As an alternative approach, first-principle XPS theories
based on Keldysh Green’s functions have been developed.3–8

These theories gave formally exact perturbation expansion of
the photoemission intensity. The present authors have used
skeleton expansion in terms of renormalized one-electron
Green’s functions.7 Further refinement to include radiation
field screening is also proposed.8 In this approach we can
analyze XPS spectra excited from systems at finite tempera-
ture and from nonequilibrium systems.

Recent experimental developments of multiatom resonant
photoemission �MARPE� permit direct determination of
near-neighbor atomic identities9,10 because MARPE occurs
when the photon energy is tuned to be a core-level absorp-
tion edge of an atom neighboring the emitting atom. Ex-
tended x-ray absorption fine structure �EXAFS� analyses of
the backscattering amplitude can also identify the back-
scattering atomic species. It is, however, quite difficult to
distinguish near-neighbor atoms such as Mn from Fe or Co
from the EXAFS analyses, because their backscattering am-
plitudes f���’s are quite similar. MARPE can distinguish
them since their absorption edge energies are quite different.
So far much effort has been paid to observe MARPE for
some transition metal oxide, magnetic thin films, molecular

adsorption system, and so on.10–18 Some authors insist that
they were not able to observe the MARPE, whereas some
authors were able to observe the resonant features. Several
simple but crude theoretical approaches are also
available.10,11,19 In Ref. 11, a microscopic quantum mechan-
ics approach including retardation effect is presented to ex-
plain the MARPE effect and also the macroscopic x-ray op-
tics approach in Ref. 10. An x-ray optics approach can
successfully describe MARPE effects using experimental op-
tical constants such as x-ray absorption coefficient; however,
it is built on the classical theory. It is thus hard to give credit
to this macroscopic theory for the description of the micro-
scopic processes. An ab initio molecular orbital method is
also proposed by Carravetta and Ågren;19 however, they con-
sider a two-step picture of the MARPE effect, in which no
interference term is included, and only small molecules are
calculated. These works have paid no attention to the contro-
versial discussion due to the structure factor sensitive to local
arrangement of nearest-neighbor atoms around a photoelec-
tron emitter.7

In this paper, by use of the Keldysh Green’s functions, we
study the radiation field screening and the polarization part
Wp of screened Coulomb interaction W�W=v+Wp� in the
MARPE analyses, which were also considered in brief in our
preliminary paper.20 We demonstrate the importance of Wp to
obtain intense MARPE comparable with the observed one.
We obtain new approximate formulas of the resonant on-site
and multisite resonant photoemission processes in terms of
x-ray absorption factors fd��� of the deep cores where
−2 Im fd��� is just proportional to the x-ray absorption in-
tensity. Further extensive discussion is also given to the
structure factors which play a dominant role in observing the
MARPE. For highly symmetric atomic arrangements such as
Oh and Td, no MARPE is expected to be observed because
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the structure factors should vanish for these symmetries. On
the other hand, low symmetric systems, such as rutile, per-
ovskite, and Fe2O3 structures, can provide a finite MARPE
signal even for the photoemission from inner layers in the
perfect crystals.

II. MARPE THEORY

In this section we derive some useful formulas to describe
the resonant photoemission processes, including the
MARPE, based on the Keldysh Green’s function theory.7,8

A. Resonant XPS theory

Figure 1 shows the Keldysh diagrams contributing to the
resonant photoemission processes. When the end points of
the screened Coulomb W are on the same time legs, the
diagrams contribute to virtual excitation. When they are on
different time legs, the diagrams contribute to extrinsic loss.
The interaction W can be written as the sum by noting that
W=v+v�v �� is reducible polarization propagator�,

W�x,x�;�� = v�r − r�� + Wp�x,x�;��, x = �r,�� , �1�

where v is the bare Coulomb interaction, and Wp=v�v is the
dynamically polarized potential. The diagram in Fig. 1�a�
describes typical photoemission processes.1,6 Of course, this
term cannot describe resonant and extrinsic loss photoemis-
sion processes. The diagrams in Figs. 1�b�–1�d� cannot ex-

plain the MARPE spectra, but they contribute to the on-site
resonant photoemission.

So far, the radiation field screening vertex contribution as
shown by Figs. 1�b��–1�d�� has been supposed to be quite
small,5 and has been neglected. Near the resonance energy,
however, the radiation field screening is crucial to interpret
the resonance effects in XPS and x-ray absorption fine struc-
ture �XAFS�.8 We add all terms responsible for the resonant
photoemission processes including the radiation field screen-
ing vertex, then we obtain

jp
�a� + jp

�b� + ¯ + jp
�d�� =

p

2��
�

n

��fp
−���gn� + i�fp

−�X����gn�

+ i�fp
−�Z����gn��2��	p + En�N − 1�

− � − E0�N�	 . �2�

The hole Dyson orbitals gn, the bound particle Dyson orbital
fq, and the resonant operators �X��� from Figs. 1�b�–1�d�
and Z��� from Figs. 1�b��–1�d��	 are defined in our previous
paper.7 The scattering particle Dyson orbital fp

−�x� ap-
proaches to the plane wave outside the solids far from the
target; however, in solids its amplitude damps under the in-
fluence of the optical potential 
.21–26 Explicit derivation of
the optical potential for fp

− is given in Appendix A.
In the simple approximation W
v, the amplitude

�fp
−�X�gn� is given by7

i�fp
−�X�gn� 
 − �

sj

�fs���gj��fp
−gj�fsgn�

� + 	 j − 	s + i�
. �3�

The two-electron integral �f1f2 � f3f4� is defined as usual in
Eq. �4.13� in our previous paper �Ref. 7�. In MARPE pro-
cesses, both gj and gn are localized on different atoms, so
that the differential overlap between them has to be negligi-
bly small. Even though we include the polarization part of
W, we can neglect �fp

−�X�gn� for the discussion of MARPE for
the same reason.

The nonlocal energy-dependent operator Z���, due to the
radiation field screening, is given by use of the screened
Coulomb interaction W,

i�fp
−�Z����gn� = �

sj
� �fp

−gj�W����gnfs�
� + 	 j − 	s + i�

�fs���gj�

−
�fp

−fs�W����gngj�
� − 	 j + 	s − i�

�gj���fs�� . �4�

The second term is negligibly small in comparison with the
first term because of the large energy denominator as dis-
cussed before. In the lowest order, W
v approximation to-
gether with �3�, we thus obtain a useful approximate formula
for the MARPE and on-site resonant photoemission analy-
ses,

I�p,�� � �
n

�fp

−���gn� + �
sj

�fp
−gj��gnfs��fs���gj�
� + 	 j − 	s + i�r


2


��	p + En�N − 1� − � − E0�N�	 , �5�

where �f1f2��f3f4�= �f1f2 � f3f4�− �f1f2 � f4f3�. We should note

FIG. 1. Keldysh diagrams that contribute to resonant processes.
Diagrams �b��–�d�� partly include the radiation field screening.
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that the photoelectron current jp is closely related to the pho-
toemission intensity I�p ,��,3

jp 

p

�
I�p,�� . �6�

The first term on the right-hand side of Eq. �5� is the ordinary
direct photoemission amplitude from the Dyson orbital gn to
fp

−, where the second term has the resonant contribution be-
cause it parametrically depends on � in the denominator.
This formula shows resonant behavior at �
	s−	 j as ob-
served in Ref. 7; however, as demonstrated below, this ap-
proximation is not sufficient to precisely explain the
MARPE; the predicted MARPE intensity is still much
smaller than the observed MARPE. We should note that Eq.
�5� is also applicable to the analyses of on-site resonant pho-
toemission spectra.

We next study the effect of the polarization part of W, that
is, Wp=v�v.20 We note that the reducible polarization propa-
gator � is related to the irreducible polarization P , �= P
+ PWP. Here we use an approximation �
 P0, where P0 is
the lowest order skeleton expansion of P. The polarization
part in the element i�fp

−�Z����gn� is given by neglecting the
terms with large energy denominator,20

�fp
−gj�Wp����gnfs� 
 �fp

−gj�vP0v�gnfs�


 �
mq

�fp
−gm�gnfq��gjfq�fsgm�
� + 	m − 	q + i�

. �7�

To specify the problem, let us consider O 1s MARPE in
MnO, where � is close to the Mn 2p threshold. In this case
gm and gj are approximated by Mn 2p core functions �d
multiplied by intrinsic amplitudes, and gn is approximated by
the O 1s function �c, fs and fq by Mn 3d or 	d, and 	m
corresponds to the threshold of the Mn 2p core excitation
	m�−Id=	d. We stress the importance of the skeleton ex-
pansion; in the denominator of Eq. �7� we have exact ioniza-
tion energy −	m instead of orbital energy in the Hartree-Fock
approximation. Since the incident x-ray energy � is close to
the Mn 2p threshold ���−	m�, Eq. �7� has a large contribu-
tion near the core excitation energy.

Let us rewrite the second term in the absolute value in Eq.
�5�. We neglect the exchange term, that is, �fp

−gj��gnfs�
��fp

−gj �gnfs�. As discussed, this approximation causes no se-
rious problem for the MARPE analyses, whereas it may in-
troduce a small amount of error for the on-site resonant pho-
toemission analyses. At first we consider the on-site
resonance effects; the two core orbitals contributing to the
resonance are localized on the same atom A. We thus have

�
mq

�fp
−gm�gnfq��fq���gm�
� + 	m − 	q + i�


 �
d
� dx1dx2dx3fp

−*�x1��d
*�x2�


v�r1 − r2��c�x1���x3��d�x3�gsc�x2,x3;� + 	d� , �8�

where the sum over d means that over md and the hole Dyson
orbital gn�x� is approximated by Sn

c�c�x�, whereas gm�x� is

approximated by Sm
d �d�x�; Sm

d and Sn
c are the intrinsic ampli-

tudes associated with the core excitation from �d and �c.
Both �c and �d are on the same atom. We only use one
channel, Sn

c ��n0 , Sm
d ��m0, for simplicity. The scattering

Green’s function gsc in Eq. �8� is defined by

gsc�x2,x3;� + 	d� � �
q

fq�x2�fq
*�x3�

� + 	d − 	q + i�
. �9�

This function is the “particle” part of the retarded Green’s
function gr.28 We thus reduce the problem to the calculation
of the Green’s function gsc. In the lowest approximation we
only consider the contribution from the x-ray absorber A, and
neglect scatterings from the neighboring atoms �one-site ap-
proximation of gsc�, which yields for the nonmagnetic sys-
tems

gsc�r2,r3;� + 	d� = �
L

gl�r2,r3;� + 	d�YL
*�r̂2�YL�r̂3� .

�10�

Substituting Eq. �10� into Eq. �8� we obtain

Eq. �8� = �fp
−���� + 	d,r�Y10�r̂���c� , �11�

��� + 	d;r1� �
2ld + 1

9 �
l

�2l + 1��ld0l0�1�2


� dr2dr3r2
2r3

3Rld
�r2�Rld

�r3�
r�

r�
2


gl�r2,r3;� + 	d� , �12�

where r�=min�r1 ,r2�, r�=max�r1 ,r2�, and Rld
is the radial

part of �d. As r2 extends up to the size of the deep core �d,
r1 extends to that of the shallow core �c. We thus expect that
r2�r1 in Eq. �12�, and we have another expression of �,

��� + 	d;r1� =
2ld + 1

9r1
2 �

l

�2l + 1��ld0l0�1�2�̂A�� + 	d�l,

�13�

where �̂A is defined later �see Eq. �28�	. On the other hand,
the x-ray absorption factor from the deep core �d is given by

fd��� = − 2�
d

��d��*gsc�� + 	d����d� 
 −
2ld + 1

6�
�

l

�2l + 1�


�ld0l0�1�2�̂A�� + 	d�l. �14�

The imaginary part of fd��� is closely related to the corre-
sponding x-ray absorption intensity. We thus have an inter-
esting relation between ���+	d ,r� and fd���,20

��� + 	d,r� 
 −
1

r2

2�fd���
3

. �15�

As is well known from anomalous x-ray scattering, the am-
plitude fd��� shows resonant behavior near the deep core
threshold.29,30 The scattering effects in gsc �beyond the one-
site approximation� give additional factors to the right-hand
side of Eq. �10�.
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Next we consider the effects from Wp.20 By using the
approximations Wp�vP0v and the single-site approximation
for gsc �see Eq. �10�	, we have

�
mq

�fp
−gm�Wp����gnfq��fq���gm�

� + 	m − 	q + i�

 �fp

−����� + 	d,r�Y10�r̂���c�

�16�

where �� is the radial integral including �, gl and Rld
,

���� + 	d,r1� �
2ld + 1

9 �
l

�2l + 1��ld0l0�1�2


� dr2dr3r2
2r3

2Rld
�r2�Rld

�r3�
r�

r�
2


gl�r2,r3;� + 	d���� + 	d,r3� , �17�

where r�=max�r1 ,r2� , r�=min�r1 ,r2�. In the above integral,
r2 and r3 should extend up to the size of the deep core �d,
thus the approximation �15� is not safely used, but we can
assume that r1�r2, since r1 extends up to the size of shallow
core �c. We thus have an approximate formula of ��,

���� + 	d,r1� 

1

r1
2

2ld + 1

9 �
l

�2l + 1��ld0l0�1�2��A�� + 	d�l,

�18�

where ��A is defined later by Eq. �29�. A further simplified
but crude expression is obtained, if the approximation �15� is
used in Eq. �18�, and is also related to fd��� but includes an

additional factor f̃ d��� in the one-site approximation

���� + 	d,r� 

1

r2�2�

3
�2

fd��� f̃ d��� , �19�

f̃ d��� = − 2�
d

��d��*gsc�� + 	d��̃��d� , �20�

where �̃=Y10�r̂� /r2 is different from � in its radial depen-

dence. Both fd and f̃ d follow the same selection rule in re-
gard to orbital angular momentum.

From the above discussion, the on-site resonant XPS cur-
rent intensity I�p ,�� is represented in terms of the energy-
dependent effective excitation operator ��

I�p,�� � ��fp
−����	d + �,r���c��2


��	p + En�N − 1� − � − E0�N�	 , �21�

where �� is defined by use of � and �� introduced �see Eqs.
�15� and �18�	,

���	d + �,r� = �r + ��	d + �,r� + ���	d + �,r�	Y10�r̂� .

�22�

This excitation operator includes only Y10�r̂� as the angular
part, so that the selection rule is the same as that in the
typical photoemission processes. The energy dependence,
however, is quite different, because the resonant operators �
and �� related to x-ray absorption factor fd inevitably show

the on-site resonant behaviors. X-ray absorption and/or x-ray
anomalous scattering can be observed for all atoms; how-
ever, multisite resonant photoemission is not always ob-
served. In the next section local structure around an emitter
plays an important role to explain multisite resonant effects.
We should note that the effective excitation operator �� has
no contribution from the operator X in Eq. �2�, which is
much smaller than that from Z for nonmagnetic systems.

B. MARPE theory

The second term in Eq. �2� cannot describe MARPE even
though we add the polarization part Wp because of a negli-
gibly small differential overlap between deep and shallow
core functions on different sites. We derived a useful
MARPE formula in our previous work,8 which is written in
terms of spectral representation. In this section we present
alternative MARPE formulas in terms of x-ray absorption
factor fd, which can be used to discuss x-ray anomalous scat-
terings and structure factors.

In the case where �c is on the site A and �d on the dif-
ferent site � as in the MARPE, the resonant terms �the first
term in Eq. �4�	 is rewritten by use of the approximation �10�

�
sj

�fs���gj��fp
−gj��cfs�

� + 	 j − 	s + i�
= �

�
�
m�

A�R�,��m�
d �fp

−�rY1m��r̂���c� ,

�23�

�
sj

�fs���gj��fp
−gj�Wp�����cfs�

� + 	 j − 	s + i�

= �
�

�
m�

A��R�,��m�
d �fp

−�rY1m��r̂���c� , �24�

where the structure factor A�R� ,��m�
d and the related factor

A��R� ,��m�
d are slightly different from the previous one,7

A�R�,��m�
d =

4�

3 �
Lmd

G�Ld10�L�2�̂��� + 	d�ly10,1m��R��

=
1

3
��ld + 1��̂��� + 	d�ld+1

+ ld�̂��� + 	d�ld−1�y10,1m��R�� , �25�

A��R�,��m�
d =

4�

3 �
Lmd

G�Ld10�L�2����� + 	d�ly10,1m��R��

=
1

3
��ld + 1������ + 	d�ld+1

+ ld����� + 	d�ld−1�y10,1m��R�� , �26�

where G�L1L2 �L3� is the Gaunt integral defined by
�YL1

YL2
YL3

* dr̂ and
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yLL��R� =
4��− 1�l�2l + 2l� − 1� !!

Rl+l�+1�2l − 1� !! �2l� + 1� !!


G�l + l�,m − m�,L��L�Yl+l�,m−m��R̂� . �27�

The integral �̂� and the related integral ��� for the excitation
from �d on the site � are defined by use of gl

� �see Eq. �10�	
and Rld

�the radial part of �d�,

�̂��� + 	d�l =� Rld
�r2�Rld

�r3�gl
��r2,r3;� + 	d�r2

3r3
3dr2dr3,

�28�

����� + 	d�l =� Rld
�r2�Rld

�r3�gl
��r2,r3;� + 	d�


��� + 	d,r3�r2
3r3

2dr2dr3. �29�

Derivation of Eqs. �23�–�29� is briefly given in Appendix B.
The structure factor A�R� ,��m

d is easily related to the x-ray
absorption factor fd��� at site � defined by Eq. �14� within
the single-site approximation

A�R�,��m�
d = −

2�

3
fd���y10,1m��R�� . �30�

On the other hand, A� defined by Eq. �26� cannot be related
to fd��� but to a slightly different factor,

fd���� = − 2�
md

��d��*gsc�� + 	d���� + 	d�Y10��d� , �31�

where ���+	d ,r� depends on photon energy and shows the
resonant behavior. We thus have

A��R�,��m�
d = −

2�

3
fd����y10,1m��R�� . �32�

We should note that the factor y10,1m�R� decays as R−3, so
that only the nearest neighbors can dominantly contribute to
MARPE. In comparison with the effective operator �� in the
on-site resonant photoemission, the present effective opera-
tor �� defined by Eq. �34� depends on the site � through
A�R� ,��m

d and A��R� ,��m
d . The radial part ���+	d ,r� is re-

duced to Eq. �15� when r is larger than the size of core
function �d, but in Eq. �29� r3 is also in the region of the
deep core function �d. Finally we obtain an explicit nonrel-
ativistic MARPE formula similar to the on-site resonant pho-
toemission intensity shown by Eq. �21�,

I�p,�� � ��fp
−����� + 	d,r���c��2


 ��	p + En�N − 1� − � − E0�N�	 , �33�

where

���� + 	d,r� = ��r� + �
m�

��
�

�A�R�,��m�
d

+ A��R�,��m�
d ��rY1m��r̂� . �34�

The effective electron-photon interaction operator �� has an
energy-dependent structure factor A and A� proportional to fd

and fd� so that multisite resonant effects are sensitive to the
local structure around the emitter and show resonant behav-
ior around the deep core threshold. The energy-dependent
excitation operator �� has the angular dependence Y1±1�r̂� in
addition to Y10�r̂�. As shown in the next section, however,
the former can be neglected except for low symmetric sys-
tems like Fe2O3.

III. MARPE CALCULATIONS

So far we have pointed out the importance of the local
structure7 and radiation field screening8 in MARPE analyses.
Even though we include the latter effect, the calculated
MARPE is much smaller than the observed one for MnO
systems.8 To overcome the difficulty we study the influence
of Wp on MARPE. In this work, we calculate O 1s MARPE
from Mn and Fe oxides. So far the influence of Wp has been
neglected; however, this can play an important role in par-
ticular near the resonant energy.

In a previous paper,7 we demonstrated the importance of
the structure factors which are proportional to R−3 �R is the
metal-O distance�. It is thus sufficient to consider only the
nearest neighbors. Both of the amplitudes A�R� ,��m�

d and
A��R� ,��m�

d are proportional to y10,1m��R� ,�� defined by
Eqs. �25� and �26�. A ”selection rule” of the MARPE is ob-
tained by checking the sum over the first shell sites

�
�

y10,1m�R�� = − �
�

4�

R�
3 G�2 − m1m�1�Y2−m�R̂�� . �35�

We can show some local symmetries which make the above
sum vanish. When the system has an n-fold rotation axis
parallel to E��z� around a photoemitting atom �for example,

O in MnO�, the operation of n-fold rotation Cn on Ylm�R̂�
yields the phase change if m�0,

CnYlm�R̂� = eim�Ylm�R̂�, � =
2�

n
. �36�

We thus have the relation by noting that R̂p=Cn
−pR

�
p=0

n−1

Ylm�R̂p� = �
p=0

n−1

Cn
pYlm�R̂�

= �
p=0

n−1

eimp�Ylm�R̂� = 0 �m = ± 1� , �37�

from which we have for these highly symmetric cases

�
�

y10,1±1�R�� = 0. �38�

In this paper we also study more detailed conditions to ob-
serve finite MARPE spectra.

A. Oh and related structure

Figures 2�a�–2�d� show three typical local structures re-
lated to Oh symmetry. First, we calculate the sum �35� in the
structure factor for the simplest model, “MnO bulk �octahe-
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dral� model,” where six Mn atoms occupy octahedral sites
around the O atom shown by Fig. 2�a�. As discussed, we
assume the linear polarization in the z direction. For this high
symmetric coordination we have

�
�=1

6

y10,1±1�R�� = 0. �39�

We should note that this detailed cancellation works for all
systems with Oh symmetry around an oxygen atom irrespec-
tive of the distance R. We thus cannot expect to observe
MARPE for this high symmetric system like MnO, NiO
crystals, and so on. This result demonstrates that the O 1s
MARPE cannot be observed for perfect MnO crystals. This
seems inconsistent with the observed results,9,10 where they
have observed prominent MARPE for these systems.

We calculate O 1s MARPE for a “MnO�001� surface
model,” where a surrounding Mn atom along +z direction is
lost �as shown by Fig. 2�b�	. This system is in the lower
symmetry than octahedral symmetry, and we have

�
�=2

6

y10,10�R�� =
2

R3 ,

�
�=2

6

y10,1±1�R�� = 0. �40�

The latter relation is easily understood from Eq. �38� because
the surface oxygen atoms have four-fold symmetry around
the z axis. We thus can have finite MARPE signal from the
�001� surface model. From Eqs. �30�, �32�, and �34�, the
effective excitation operator �� has only Y10�r̂� as the angu-
lar part: The angular dependence of MARPE is the same as
that of main photoemission band for these systems.

To study the x-ray polarization dependence, we calculate
the MARPE for another model shown by Fig. 2�c�, where a
Mn atom along +x direction �“4” labeled in Fig. 2�a�	 is lost.
This model corresponds to the case where the x-ray polariza-
tion is parallel to the surface, which gives

�
���4�

y10,10�R�� = −
1

R3 ,

�
���4�

y10,1±1�R�� = 0. �41�

For the parallel polarization �E � surface� we expect the
smaller MARPE with half strength of that for the normal
�E�surface� polarization and with quite different shape be-
cause of the different sign of the sum. The effective excita-
tion operator �� has only Y10�r̂� as the angular part as before.

As MARPE reflects only nearest-neighbor atomic struc-
ture, the surface model shown by Fig. 2�c� can also be con-
sidered as a defect model and also a substitution model: For
example, one Mn atom is replaced by Ni, where the 2p bind-
ing energy is quite different from the Mn 2p energy.

The energy dependence of fd��� defined by Eq. �14� is
directly calculated, whereas fd���� defined by Eq. �31� is ap-
proximately calculated by use of a rather crude approxima
�tion �15�

fd���� � fd���
4�

3 �
md

��d��*gsc�� + 	d��̃��d�

= −
2�

3
fd��� f̃ d���, �̃ = Y10�r̂�/r2. �42�

We have used f̃ d��� defined by Eq. �20�, which is well ap-
proximated by31

f̃ d��� =
�

� + 	d + i�d/2
, �43�

where � is energy parameter and �d is the lifetime broaden-
ing of the deep core hole state on d. The parameter � is
approximately given by

� = − 2�
p

vac

��d����p���p��̃��d� , �44�

where the sum over p is taken over vacant one-electron
states. For the unoccupied one-electron states, we can safely
use single-site approximation because �d is strongly local-
ized. We can roughly estimate the � value as −2.2 eV by use
of Hartree-Fock atomic orbital, and by taking only 3d holes.
In this subsection, we fix Mn-O distance at 2.23 Å and �d
=0.5 eV.11 These approximations yield the photoemission in-
tensity near the MARPE threshold

FIG. 2. �Color online� Oh structure �a� and lower symmetric
structures, surface models �b� and �c�, and distorted model �d�. The
central atom is the photoemitting oxygen atom and five or six metal
atoms are surrounding it. In �b� the x-ray polarization is normal to
the surface, whereas in �c� it is parallel to the surface.
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I�p,�� � 
�fp
−�rY10�r̂���c� −

2�

3
fd���


�1 +
�

� + 	d + i�d/2
� �

m�,�

y10,1m��R��


�fp
−�rY1m��r̂���c�
2

. �45�

The present MARPE analyses are carried out by use of the
approximate formula �45�.

At first we study the influence of Wp on MARPE. Figure
3�a� shows the calculated O 1s MARPE near the Mn 2p
threshold for the MnO surface model as shown by Fig. 2�b�.

We compare the calculated result without Wp��=0� where A�
is neglected in Eq. �34� with that where both A and A� are
taken into account. The former gives weak MARPE whose
relative intensity to the main photoemission band is about
2%. In contrast to this result, the latter, including the dynami-
cal polarization, gives a prominent peak comparable with the
experimental one ��12% �,10 and still shows a Fano-like
asymmetric shape. We have used the parameter �=−2 eV to
obtain a good agreement with the experimental result. This
result is quite close to the rough estimate of � value de-
scribed before. We thus find that the dynamical polarization
Wp is important to explain quite large MARPE as reported in
the literature.10 Figure 3�b� shows the calculated O 1s
MARPE for the MnO surface model as shown by Fig. 2�c�
�E �x�. As expected from Eq. �41� the MARPE shows a nega-
tive peak with smaller intensity ��−7% � in comparison with
the normal polarization �Fig. 3�a�	. Figure 3�c� shows the
calculated results for the distorted model shown by Fig. 2�d�,
where there are two Mn atoms on the z axis with 5% longer
Mn-O distance. This small distortion can give rise to detect-
able MARPE ��5% �, which is still much smaller than that
for the surface model. Without Wp the calculated MARPE is
much smaller than that with Wp as before. From now on, all
calculated MARPE spectra are shown which include Wp.

Figure 4�a� shows the calculated results for the distortion
models, where two Mn atoms on the z axis have a longer
�+5% � and shorter �−5% � Mn-O distance R� than the other

FIG. 3. O 1s MARPE near the Mn 2p threshold �a� for the
surface model shown by Fig. 2�b� �E�surface�, �b� for the surface
model shown by Fig. 2�c� �E � surface�, and �c� for the distortion
model by Fig. 2�d�. The calculated MARPE with Wp is much larger
than that without Wp. The MARPE is normalized to the atomic
photoemission intensity, and we define ��=�+	d.

FIG. 4. �Color online� Calculated O 1s MARPE spectra �a� for
the two distortion models where two Mn atoms on the z axis are
displaced to have a longer �+5% � and shorter �−5% � Mn-O dis-
tance, and �b� for the alternating distortion model where Mn-O
distances parallel to the z axis are alternatively longer �+5% � and
shorter �−5% �.
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four �in the xy plane� Mn-O distance R. In this case we have

�
�=1

6

y10,10�R�� = 4� 1

R3 −
1

R�3� �
12�R

R4 ,

�
�=1

6

y10,1±1�R�� = 0, �46�

where �R=R�−R. If the distortion is small enough, the
MARPE for the model �R�0 can be obtained by inverting
its sign of A and A�. Figure 4�b� shows the calculated O 1s
MARPE for a model where two Mn-O distances parallel to
the z axis are alternately longer �+5% � and shorter �−5% �,
as shown in the figure. The MARPE is less than 0.5% be-
cause of the imperfect cancellation; the distortion is consid-
erably large. Of course, the alternating distortion is not es-
sential. The same result is obtained for the models where
+5% distortion parallel to the z axis and −5% distortion are
equally distributed around oxygen atoms.

We should note that the O 1s MARPE for MnO is very
surface sensitive, because O 1s photoelectron kinetic energy
is �100 eV at the resonant threshold so that the photoelec-
tron mean free path is quite small. Thus we conclude that O
1s surface photoemission can give rise to prominent MARPE
as observed for the MnO �001� surface.

To study the surface dependence of MARPE we calculate
the sum �35� for the “MnO �111� model” shown by Fig. 5
where the x-ray polarization is normal to the �111� surface.
When an oxygen layer is in the outermost layer, the nearest-
neighbor Mn atoms only occupy the sites 2, 3, and 6. In this
case we have

�
�=2,3,6

y10,1m��R�� = 0 �m� = 0, ± 1� , �47�

so that the photoemission from the outermost surface O at-
oms give no MARPE. When a Mn layer is outermost, six Mn
atoms are there in the first shell. We also have

�
�=1,4,5

y10,1m��R�� = 0 �m� = 0, ± 1� , �48�

thus the surface O atoms in the second layer also give no
MARPE as expected. We cannot expect to observe MARPE
both for O-terminated and Mn-terminated surfaces. Accord-
ing to Ref. 32, reconstructed MnO �111� thin-film surfaces
have a different Mn-O distance in each layer. In this case the
sum �47� or �48� never vanishes for m�=0, and we can ex-
pect finite MARPE which have the same order of the distor-
tion model. If there are some defects or substitution near the
surface region, MARPE can be observed as discussed, with-
out changing the Mn-O distance.

B. CsCl and Td structure

Let us consider other local structures such as CsCl and Td
structures. Though bulk MnO cannot have these symmetries,
we try to stress the importance of local symmetry on
MARPE. We thus assume such structures of MnO for the
MARPE calculations: the Mn-O distance is assumed to be
2.23 Å as before.

For the CsCl structures shown in Fig. 6�a�, the sum �35�
vanishes irrespective of x-ray polarization E � �001	 or
E � �111	, so that O 1s MARPE should also disappear. On the
other hand, the surface photoemission can give finite
MARPE structures, which depend on the surface planes. For
the oxygen-terminated �001� surface model where four
nearest-neighbor Mn atoms in the upper layer are lost, the
sum �35� vanishes even for this low symmetric structure;
each surface oxygen has a fourfold axis so that the sum �35�
vanishes when m�= ±1. The sum also vanishes even for m�
=0 since cos ��=−1/�3. On the other hand, the Mn-
terminated �111� surface model has a threefold axial symme-
try which makes the sum null if m��0. For the case m�=0
we can expect finite MAPRE since the sum �35� gives the
same result as shown by Eq. �40� for the MnO �001� surface.

We next study the MARPE from tetrahedral structures
shown by Fig. 6�c�; CuCl and the wurtzite �ZnO� structure
have this local symmetry around an oxygen atom. When the
x-ray polarization is parallel to one of the Mn-O bonds as
shown by Fig. 6�c�, the sum �35� vanishes for all
m��=0, ±1�. That is also the case when the x-ray polarization
direction ��z�� is parallel to the twofold axis which bisects
the angle between two neighboring Mn-O bonds. We cannot
observe MARPE for crystals with Td symmetry. In contrast
to these results, the surface model where one Mn atom la-
beled 1 is lost gives finite MARPE, since we have for the
x-ray polarization �E � z�

�
�=2,3,4

y10,10�R�� =
2

R3 . �49�

On the other hand, when the x-ray polarization is parallel to
the z� axis and the surface plane is normal to the z� axis, we
cannot expect finite MARPE both for Mn and O outermost
layers.

FIG. 5. �Color online� MnO �111� surface structure around an
oxygen �X� atom surrounded by six metal atoms �A�.
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C. Rutile, perovskite, and �-alumina structures

In this section we study MARPE from lower symmetric
systems like rutile, perovskite, and �-alumina structures.
First we consider MnO2 as an example of the rutile structure
shown by Fig. 7�a�. Oxygen and Mn atoms are shown by
large and small spheres. Two Mn-O bonds are a little shorter
�1.88 Å� than another Mn-O bond �1.95 Å�. The x-ray polar-
ization direction is parallel to z axis shown in the figure.
Outermost surface oxygen atoms are labeled 1 and 2, and
oxygen atoms labeled 3 and 4 are in the second layer, and 5
and 6 are in the third layer. These oxygen atoms in the sec-
ond and the third layers have three nearby Mn atoms as
described earlier, whereas the outermost surface oxygen at-
oms have only two Mn atoms. In this structure, oxygens 1
and 2 give the same MARPE signal shown by the solid line
with circles in Fig. 7�b�. The inner oxygens 3–6 also give the
finite MAPRE whose intensity and sign are different from
the surface MARPE as shown by the broken line in Fig. 7�b�:

the MARPE from the second, third, etc. layers are the same
as far as we neglect photoelectron diffraction. In these cal-
culations the sum �35� except m�=0 vanishes both for the
first and second layers. The photoemission intensities from
the inner layers decrease because of the photoelectron damp-
ing effect. Thus the total MARPE intensity I��� is obtained
for the normal emission

I��� = I1��� + I2���e−d/� + I3���e−2d/� + ¯

= I1��� + I2���
1

ed/� − 1
, �50�

where Ii means the photoemission intensity from the ith layer
without the damping and the photoelectron diffraction from
the surrounding atoms, d is the interlayer distance, and � is
the mean free path of the photoelectrons. If we measure the
photoelectron current at the tilt angle �p, then d should be
replaced by the propagated distance d�=d / cos �p. For this
surface, all inner oxygen atoms give the same MARPE, so
we can put I2���= I3���=¯. Because O 1s photoelectron
kinetic energy near Mn 2p threshold is about 100 eV, we
have quite a short mean free path ���4 Å�. The solid line in
Fig. 7�b� shows the total MARPE intensity calculated by Eq.
�50�, which is quite similar to that from the second layer. In
this case the MARPE is not so surface sensitive. Of course
we can change the surface sensitivity by controlling �p; the
surface MARPE dominantly contributes to the total for small
�p.

FIG. 6. �Color online� Two local structures: �a� the CsCl bulk
model and �b� the CsCl �111� surface model where 1, 2, and 3 are
the metal atoms in the top layer, and 4, 5, and 6 in the third layer.
An atom labeled by 7 exists below the emitter X. �c� Tetrahedral
structure for the two different x-ray polarizations, �z and �z�.

FIG. 7. �Color online� �a� MnO2 rutile structure is shown where
oxygen atoms are shown by large spheres labeled 1–6 and Mn by
small spheres “A.” �b� Calculated O 1s MARPE spectra from MnO2

near Mn 2p threshold. The MARPE from the outermost surface
�atoms 1 and 2� and the second layer �atoms 3 and 4� are shown,
and compared with the total in the normal emission mode �see Eq.
�50�	.
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Now let us consider a perovskite structure shown by Fig.
8�a�; a well-known example is BaTiO3 �Ti is at the A site, Ba
at the B site, and O at the X site�. Bulk X1 oxygen atoms
have two nearby resonant atoms labeled by A along the z
axis, and we have the sum over resonant atoms A �B atoms
have no contribution to the MARPE�,

�
��A

y10,10�R�� = −
4

R3 , �
��A

y10,1±1�R�� = 0, �51�

for bulk X1. In this case the photoemission from the second,
third, etc. layers gives rise to the same MARPE. In the out-

ermost surface layer, one X1 oxygen has one resonant atom
A, which has half a contribution to the structure factor in
comparison with the bulk X1 oxygen. On the other hand, one
X2 oxygen atom has two resonant atoms A in the plane nor-
mal to the z axis and

�
��A

y10,10�R�� =
2

R3 , �
��A

y10,1±1�R�� = 0 �52�

for bulk X2. The total MARPE is obtained by summing up
all the photoemission intensities as before. Here I�X1� is the
photoemission intensity from inner X1 site and I�surface;X1�
is that from the outermost X1 site. We have the total photo-
emission intensity I as the sum for the normal emission

I = I�surface;X1� + 2I�X2�e−d/� + I�X1�e−2d/� + ¯

= I�surface;X1� + �I�X1� + 2I�X2�ed/��
1

e2d/� − 1
, �53�

where d is half of the nearest X1-X1 distance. As the Ti 2p
threshold is lower than O 1s ionization energy, we cannot
expect O 1s MARPE near the Ti 2p threshold. As discussed,
however, we can expect finite O 1s MARPE from perovskite
structure as long as all Ti are substituted by Fe, Mn, ….
Figure 8�b� shows the calculated O 1s MARPE from the
perovskite “BaMnO3” where the Mn-O the distance is as-
sumed to be the same as that in BaTiO3 �2.03 Å�. The
MARPE from the outermost surface layer oxygen shown by
a broken line is about half of that from the bulk X1 oxygen
atoms shown by a dotted line. The calculated O 1s MARPE
from X2 oxygen atoms I�X2� shown by a dashed-dotted line
has a different sign but almost the same intensity in magni-
tude as that from a bulk X1 oxygen. A solid line shows the
total MARPE calculated from Eq. �53�, where we have used
��4 Å. The MARPE from a bulk X1 oxygen amounts to
30%, which is cancelled by the MARPE from an X2 oxygen.
The total MARPE is still large enough, �10%.

Next let us consider Fe2O3 as an example of an �-alumina
structure. Figure 9�a� shows the �-alumina structure where 1,
2, and 3 are in the first oxygen layer, and 4, 5, and 6 are in
the second. They all have different local symmetries. The
Fe-O distance is smaller than Mn-O; the two shorter Fe-O
bond distances are 1.86 Å and the two longer bond distances
1.97 Å. We consider all of the four Fe atoms for the MARPE
calculation since their bond lengths are not so different. We
assume for simplicity the same values of �d and � in Eq. �43�
as used for the Mn-O system. Near the resonant energy, the
photoelectron kinetic energy is 170 eV, and the mean free
path is a little larger than that in MnO. In Fig. 9�b� “surface”
shows the averaged MARPE from the surface oxygen atoms
�1, 2, and 3�, which have only two Fe neighbors. The calcu-
lated MARPE from the second layer, which is averaged over
the MAPRE from 4, 5, and 6 with the same weight, is also
shown by “bulk.” Both of the MARPE are quite similar.
From symmetric consideration we can expect that the
MARPE from the second and third layers have the same
shape. We can thus calculate the total intensity by use of Eq.
�50�. As observed for the rutile and the perovskite structures,
the �-alumina structure �Fe2O3� also gives MARPE in both

FIG. 8. �Color online� �a� Perovskite structure. For BaTiO3, A
and B are Ti and Ba sites, and X is O. We have two different bulk
local site of O shown by X1 and X2: The outermost X1 is in differ-
ent local symmetry from the bulk X1. �b� Calculated O 1s MARPE
spectra from oxygen atoms in different layers. The total means the
weighted sum of the photoemission band from each layer �see Eq.
�53�	.
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surface and inner layer photoemission. In this case the sum
�35� for m�= ±1 does not vanish as well as for m�=0, and the
photoemission intensity is given by

I�p,�� � ��1 + A0�����fp
−�rY10��c� + A1����fp

−�rY11��c�

+ A−1����fp
−�rY1−1��c��2, �54�

where in terms of Am
d and Am�

d defined Eqs. �25� and �26�

Am��� = �
�

�A�R�,��m
d + A��R�,��m

d 	 . �55�

In contrast to all of the previous results, the spectral shape is
expected to be angular dependent. Figure 9�c� shows the cal-
culated O 1s MARPE for different detection angle �p mea-
sured from the z axis, where we fix azimuthal angle �p

=0��x�. The spectra are normalized to the nonresonant pho-
toemission intensity at the same detection position. The sec-
ond and the third terms in Eq. �54� are caused by the reso-
nant interaction. For the large polar angle �p, the resonant
effect is enhanced in the second and the third terms because
of the sin �p dependence. The first term has cos �p angular
dependence which should be smaller than the other resonant
terms at large �p. This is the reason why the MARPE is large
for large �p. Since the energy dependence of A±1��� is dif-
ferent from that of A0���, the MARPE shape can be depen-
dent on �p. The calculated MARPE shape, however, is not so
sensitive to �p. The calculated MARPE from Fe2O3 is much
smaller than the observed one9 which neglected detector
nonlinearity,14 so that a detailed comparison is impossible.
Although MnO MARPE is very surface sensitive, O 1s
MARPE for Fe2O3 is not surface sensitive because of the

FIG. 9. �Color online� �a� �-alumina structure. Outermost oxygen atoms are labeled by 1, 2, and 3; second-layer oxygen atoms by 4, 5,
and 6. In the outermost surface layer there are three different types of oxygen atoms where the ratio is 1 :1 :1. They all have two adjacent
iron atoms in comparison to inner oxygen atoms surrounded by four iron atoms. In the second layer there are three different types of oxygen
atoms—4, 5, and 6—with the same ratio. That is also the case for each inner layer. �b� Calculated normal emission O 1s MARPE spectra
from Fe2O3 with �-alumina structure. The broken line and the dotted line show the calculated results for the “surface” �outermost� and
“bulk” �second� layers, respectively. Both the outermost and the second-layer oxygen atoms give observable MARPE. The solid line shows
calculation results with the damping effects. �c� Calculated angle-resolved O 1s MARPE spectra normalized to the nonresonant photoemis-
sion intensity neglecting Am�m=0, ±1� in Eq. �54�. The results are shown for �p=0, 30, 45, and 60°.
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large mean free path for higher kinetic energy in addition to
the finite MARPE even from inner layers.

IV. CONCLUSION

We have found that the condition to observe MARPE is
strongly influenced by the “structure factor,” which reflects
the local symmetry around an emitting atom. We studied the
structure factor for some simple model clusters and the in-
fluence of the polarization part Wp of screened Coulomb in-
teraction W��� on MARPE. Finally, Table I summarizes the
calculated results for some bulk and surface systems where
� and 
 show finite and null MARPE to be observed. In
particular, “strong” means the intense MARPE larger than
10%. The difference of a resonant atom such as Mn and Fe is
not essential to observe finite MARPE, but the structure fac-
tor plays a crucial role and is sensitive to the symmetry
around the emitter. This is one of the conditions to observe
MARPE. Photoelectron kinetic energy is also important; for
example, the surface-sensitive MARPE from the MnO �001�
surface should be larger than that from NiO �	k�340 eV�.

For a detailed comparison, we should include the photo-
electron diffraction effects.33–38 These effects can give some
fine structures on the overall resonant shape.

We successfully related the resonant terms both in on-site
and multisite resonant photoemission to the x-ray absorption
factor fd��� from the deep core �d, which has been used in
the analyses of the resonant x-ray scattering. These resonant
terms arise from the radiation field screening, which is es-
sential for the MARPE analyses. On the other hand, the ver-
tex correction shown by Figs. 1�b�–1�d� also plays an impor-
tant role in the analyses of on-site resonant photoemission
spectra. We should note that Wp also plays an important role
in other resonant phenomena accompanied by core excita-
tions, although it is of the second-order. The importance of
the second order term in the analyses of resonant photoemis-
sion has been pointed out from a different theoretical
approach.27 In the present treatment, the radiation field is
taken into account as external perturbation. A quantum elec-
trodynamics �QED� Keldysh Green’s function approach al-

lows to renormalize photon field in the photon Green’s func-
tions and to calculate the radiation field screening in a
natural way.39
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APPENDIX A: EQUATION OF MOTION OF fp
−
„1…

So far no detailed formal discussion has been given on the
optical potential working on fp

−. Here we show that advanced
self-energy 
a�	p� plays an optical potential for fp

−.
The photoelectron Dyson orbital fp

−�1� is defined as Eq.
�2.11� in Ref. 7, which is also written as

fp
−�1� = �0���1��0,p−� = �0���x1��0,p−�e−i	pt1, �A1�

where the scattering state �0,p−� is related to the target state
�0� �Refs. 40 and 41�

�0,p−� = ��
0

�

d2�p
−�2��†�2��0�

� Lp
−�2��†�2��0� �� → + 0� . �A2�

We define the outgoing scattering wave function �p
−�2� for

the Hartree-Fock potential V as

�p
−�2� = �p

−�x2�e−i�	p−i��t2. �A3�

We find that the integral operator Lp
−�2� satisfies

Lp
−�2��0��†�2� = 0,

since the ground state �0� has no scattering component. From
these fp

− is given by

fp
−�x1� = Lp

−�2��0���x1��†�2��0� = Lp
−�2��0����x1�,�†�2���0�

= Lp
−�2���t2��0����x1�,�†�2���0�

= − iLp
−�2�ga�1,2� �t1 → − 0� , �A4�

where the advanced Green’s function ga,

iga�1,2� = − ��t2 − t1�����1�,�†�2��� , �A5�

is introduced. As observed for the retarded Green’s function
gr�gr=g0

r +g0
r
rgr� , ga also satisfies the closed Dyson equa-

tion

ga = g0
a + g0

a
aga. �A6�

From Eqs. �A4� and �A6� we have an equation for fp
−

fp
−�x1� = �p

−�x1� +� dx2dx3 g0
a�x1,x3;	p�
a�x3,x2;	p�fp

−�x2� .

�A7�

We can rewrite this equation by noting that

TABLE I. Theoretical prediction to measure MARPE for vari-
ous systems. The symbols 
 and � show the null and finite
MARPE. In particular, “strong” shows the intense MARPE larger
than 10%.

Structure Inner layer Outermost layer

octahedral �001� 
 strong

octahedral �111� 
 


octahedral �111� reconst. 
 �
tetrahedral 
 �
CsCl �001� 
 


CsCl �111� 
 �
rutile �001� � �
perovskite �001� strong �
�-alumina �001� � �
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ĥ�x1��p
−�x1� = 	p�p

−�x1� , �A8�

where ĥ is one-electron Hamiltonian given by ĥ=h+V �V is
the Hartree-Fock potential and h=Te+Ven�. Let us operate

ĥ�x1� on the both sides of Eq. �A7�. From Eq. �A8� and

�	p − ĥ�x1�	g0
a�x1,x2� = ��x1 − x2� ,

we obtain an integro-differential equation

ĥ�x1�fp
−�x1� +� dx2 
a�x1,x2;	p�fp

−�x2�

= 	p��p
−�x1� +� dx2dx3g0

a�x1,x3;	p�
a�x3,x2;	p�fp
−�x2��

= 	pfp
−�x1� . �A9�

This demonstrates that the photoelectron wave function fp
−

damps under the influence of the potential V+
a; the latter
depends on the kinetic energy of the photoelectrons. In the
GW approximation, the self-energy 
a is given by


a�x,x�;�� 
 �
qm

fq�x�fq�x��*vm�x��vm�x�*

� − �m − 	p − i�

+ �
nm

gn�x�gn�x��*vm�x��vm�x�*

� + �m − 	n − i�
, �A10�

where vm is a bosonic excitation operator defined by

vm�x� =� v�r − r���m��†�x����x���0�dx�. �A11�

In the above derivation we first note that 
a is given by


a�1,2� = ip1��t2 − t1��g��1,2�W��2,1� − g��1,2�W��2,1��

= i��t2 − t1��g��1,2�W��2,1� + g��1,2�W��2,1��
�A12�

in the GW approximation. The Fourier transform of 
a is
written in terms of g��	�, g��	�, W��	��, and W��	��,


a�x,x�;�� =� d	

2�

d	�

2�

1

� − 	 + 	� − i�


 �g��x,x�;	�W��x�,x;	��

+ g��x,x�;	�W��x�,x;	��� . �A13�

The spectral representation of g� and g� are given in terms
of hole Dyson orbitals �gn� and particle Dyson orbitals �fq�5

g��x,x�;	� = 2�i�
n

gn�x�gn
*�x����	 − 	n� , �A14�

g��x,x�;	� = − 2�i�
q

fq�x�fq
*�x����	 − 	q� . �A15�

Substitution of Eqs. �A14� and �A15�, and also of W� and
W� into Eq. �A13�, which are explicitly represented by use
of vm,

W��x�,x;	� = − 2�i�
m

vm�x��vm
* �x���	 − �m� , �A16�

W��x�,x;	� = 2�i�
m

vm
* �x��vm�x���	 + �m� , �A17�

directly yields Eq. �A10�.
This formula can be compared with the previous

result.41,42 In the same way we can obtain an explicit formula
of 
r.

APPENDIX B: DERIVATION OF EQS. (23)–(29)

We briefly show the derivation of Eqs. �23�–�29�. The
left-hand side of Eq. �23� is also written as Eq. �8� in terms
of gsc

� : we should note that the main contribution to gsc arises
from gsc

� but not gsc
A , because r2 , r3 are localized in the �th

atomic region.

�23� = �
md

� fp
−�r1�*�d�r2�* 1

�r1 − r2�
�c�r1�


gsc
� �r2,r3;� + 	d���r3��d�r3�dr1dr2dr3. �B1�

As r1�A , r2 , r3��, the relation �r1−R��� �r2−R�� is al-
ways satisfied �we set RA=0�. In the integrand in �B1�, we
thus have by use of r2�=r2−R� and r1�=r1−R�,26

1

�r1 − r2�
= �

L1

4�

2l1 + 1

�r2��
l1

�r1��
l1+1YL1

�r̂1��YL1

* �r̂2��

= �
L1L2

4�

2l1 + 1
yL1L2

�R���r1�l2YL2
�r̂1��r2�l1YL1

* �r̂2� ,

�B2�

where yL1L2
�R� is defined by Eq. �27�. Substitution of Eq.

�B2� into Eq. �B1� yields

�23� = �
Lmd

�
L1L2

4�

2l1 + 1
yL1L2

�R���fp
−�rl2YL2

�r̂���c�


� Rld
�r2�gl

��r2,r3;� + 	d�Rld
�r3�r2

l1+2r3
3dr3


 G�LdL1�L�G�Ld10�L� . �B3�

As yL1L2
�R�� behaves as R�

−�l1+l2+1� from Eq. �27�, we should
look for the minimum of the sum l1+ l2. For the smallest l2
=0, however, we have �fp

− ��c�=0 in Eq. �B3�. From the re-
lation

�
mdm

�LdL�10��LdL�L1� = �l11�m10, �B4�

the lowest term thus has to be l1= l2=1;

�23� �
4�

3 �
l

�
m1m2

y1m1,1m2
�R���fp

−�rY1m2
�r̂���c�


�̂��� + 	d�l �
mdm

G�Ld10�L�G�Ld1m1�L� . �B5�

The sum over md and m restricts the m1 value to m1=0.
Finally we obtain the right-hand side of Eqs. �23� and �25�.

In the same way we can derive Eqs. �24� and �26�.
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�24� 
 �
sj

�fp
−gj�vP0v��cfs��fs���gj�

� + 	 j − 	s + i�


 �
md

� fp
−�r1�*�d

*�r2��vP0v��r1,r2��c�r1�


gsc
� �r2,r3;� + 	d���r3��d�r3�dr1dr2dr3.

�B6�

First we integrate over r3, which gives

� gsc
� �r2,r3;� + 	d���r3��d�r3�dr3

= �
L
� gl

��r2,r3;� + 	d�Rld
�r3�r3

3dr3G�LdL�10�YL
*�r̂2� .

�B7�

As �vP0v��r1 ,r2� is approximately written in terms of gsc
�

�vP0v��r1,r2� = �
m
� dr4dr5v�r1 − r4�gm

* �r4�


gsc
� �r4,r5;� + 	m�gm�r5�v�r5 − r2� .

�B8�

As r1�A and r2��, the dominant contribution arises when
r4 ,r5�� , gm��d near the resonance energy ��−	d. The
integral over r2 and r3 in Eq. �B6� is thus written

�
md

� �d
*�r2�v�r5 − r2�gsc

� �r2,r3;� + 	d�


��r3��d�r3�dr2dr3

= �
md

�
LL1

4�

2l1 + 1
YL1

* �r̂5�G�LdL�L1�G�LdL�10�


� Rld
�r2�Rld

�r3�gl
��r2,r3;� + 	d�r2

2r3
3 r�

l1

r�
l1+1dr2dr3,

�B9�

where r�=max�r2 ,r5� and r�=min�r2 ,r5�. From the or-
thogonality relation �B4� the above equation is simplified in
terms of � defined by Eq. �12�

�B9� = ��� + 	d,r5�Y10�r̂5� . �B10�

Next we substitute �B8�–�B10� into �B6�, and the most im-
portant term of �24� in the order of R�

−3 is obtained by use of
the above relations

�24� 

4�

3 �
mdL

�
m1m2

y1m1,1m2
�R���fp

−�rY1m2
�r̂���c�


����� + 	d�lG�Ld10�L�G�Ld1m1�L�

=
2ld + 1

3 �
m

y10,1m�R���fp
−�rY1m�r̂���c�


�
l

�ld0 10�l�2�d�
��� + 	d�l. �B11�

Finally we have derived Eqs. �24� and �26�.
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