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The cyclotron spin-flip modes of spin unpolarized integer quantum Hall states ��=2,4 ,6� have been studied
with inelastic light scattering. The energy of these modes is significantly smaller compared to the bare cyclo-
tron gap. Second-order exchange corrections are held responsible for a negative energy contribution and render
these modes the lowest-energy excitations of unpolarized integer quantum Hall states.
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According to Kohn’s theorem,1 homogenous electromag-
netic radiation incident on a translationally invariant electron
system can only couple to the center-of-mass coordinate.
Such radiation is unable to excite internal degrees of freedom
associated with the Coulomb interaction. As a result, physi-
cal phenomena originating from electron-electron interac-
tions leave the cyclotron resonance unaffected. Hence, spin-
unperturbed magnetoplasmons excited under these
conditions have an energy equal to the bare cyclotron energy,
irrespective of existing electron-electron correlations.2 A
similar statement also holds for spin excitons, intra-Landau
level spin-flip excitations. In a system with rotational invari-
ance in spin space, Larmor’s theorem3 dictates that Coulomb
interactions do not contribute to the energy of zero-
momentum spin excitons. In contrast to these magneto-
plasma and spin-exciton excitations, there exist no symmetry
arguments which restrict the energy of the combined zero-
momentum cyclotron spin-flip mode �CSFM�. It is well es-
tablished that the cyclotron-spin-flip mode excited from spin-
polarized ground states acquires considerable exchange
energy even for zero momentum.4–6 The energy of this mode
may thus serve as a unique probe of many-body interactions
in the electronic system.

Hitherto, it has not been considered that there is also an
exchange contribution to the energy of the zero-momentum
cyclotron spin-flip modes of unpolarized quantum Hall
ground states at even integer fillings ��=2,4 ,6 , . . . �. First-
order perturbation calculations in the ratio rc=EC/��c ex-
plicitly predicted a zero exchange contribution to the total
energy of this combined mode of unpolarized quantum Hall
ground states2 �EC is the characteristic Coulomb energy scale
and ��c the cyclotron energy�. Here, we experimentally
demonstrate, however, that the energy of these modes is con-
siderably reduced compared with the bare cyclotron gap. We
corroborate with theoretical considerations that the negative
energy contribution arises from second-order Coulomb cor-
rections and so was not captured by previous first-order per-
turbation calculations.

Two high-quality heterostructures were studied. Each con-
sisted of a single-side modulation-doped 30-nm

AlGaAs/GaAs quantum well �QW� with an electron
density between 1 and 1.2�1011 cm−2 and a mobility of
5–7�106 cm2/ �Vs�. The density ns was tuned continuously
via the optodepletion effect and was measured with
luminescence.7 Inelastic light-scattering �ILS� spectra were
recorded at 1.5 K in the backscattering geometry in a split-
coil cryostat. Three optical fibers were utilized. One fiber
transmitted a dye laser pump beam, tuned above the funda-
mental gap of the QW. The remaining fibers collected the
scattered light and guided it out of the cryostat. The angles
between the sample surface, pump beam fiber, and collecting
fibers define the in-plane momentum transferred to the elec-
tron system via inelastic light scattering. The collecting fi-
bers selected excitations with in-plane momenta of 0.4 and
1.0�105 cm−1. The scattered light was dispersed in a triple
grating monochromator and detected with a charge-coupled
device �CCD� camera.

Figure 1 shows typical ILS spectra of inter-Landau-level
�LL� excitations as well as the magnetic-field �B� depen-

FIG. 1. B dependence of ILS line energies. Triangles mark
charge-density excitations, circles the CSFM. The dashed lines cor-
respond to ��c and 2��c. Top, left inset: ILS spectra at B=0 and
1 T. Bottom, right inset: ILS spectrum at 2.4 T.
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dence of the energy of the various lines in these spectra in a
sample with a density of 1.2�1011 cm−2. The experimental
configuration selected excitations with an in-plane momen-
tum of q=1.0�105 cm−1. The polarization selection rules
allowed to identify that lines at low B ��1 T� correspond to
charge-density excitations. The principal magnetoplasmon
mode as well as a Bernstein mode �B1� are observed in the
geometry where the incident and scattered photons have par-
allel polarization vectors.8 At nonzero B the magnetoplasmon
mode has a strong linear dispersion in the long-wavelength
limit and at B=0 its energy equals the plasma energy for
momentum q. In contrast, the Bernstein mode is nearly dis-
persionless. Both modes couple through many-body Cou-
lomb interactions near �0.8 T. At large B, their energies
converge asymptotically to the cyclotron energy and twice
the cyclotron energy, respectively.9

Of main interest here is the appearance of a triplet ILS
resonance when the system is in the �=2 spin unpolarized
quantum Hall state �bottom right inset of Fig. 1�. Near B
=2.4 T, the central line of the triplet is clearly resolved, but
the side lines only appear as shoulders. The splitting between
the features corresponds approximately to the electron Zee-
man energy EZ in GaAs, so they are attributed to the three
cyclotron spin-flip modes with different spin projections
along the B-field axis �Sz=−1, 0, and 1�. The shoulder struc-
tures are assigned to the cyclotron spin-flip modes with Sz
=−1 and 1, and the central line �Sz=0� is associated with a
cyclotron spin wave, i.e., out-of-phase oscillations of the two
spin subsystems of the Landau levels with orbital index 0
and 1 �Ref. 10�. This identification of the triplet is confirmed
by measurements in tilted fields. ILS spectra in tilted fields
are plotted in the left inset of Fig. 2. The triplets are much
better resolved due to the larger total fields Btot. Well-
separated peaks appear and the spin splitting can be directly
measured. The Zeeman effect is in essence a three-
dimensional phenomenon and so energy gaps between the
ILS triplet lines are proportional to Btot rather than the per-

pendicular component B�. The position of the central line,
however, only depends on B� �left inset of Fig. 2�. The main
plot in Fig. 2 presents the measured electron Zeeman energy
�open circles� as a function of Btot. The data points fit well to
a g factor gQW=−0.4 �solid line�. The dashed line corre-
sponds to �gGaAs�BB�, where gGaAs=−0.44 is the effective g
factor of bulk GaAs. A significant reduction of the g factor is
not uncommon in AlGaAs heterostructures and has been ac-
counted for by band-structure nonparabolicity, confinement,
and wave-function penetration effects.11

In the inset of Fig. 3 we compare ILS spectra measured at
�=2 for two different values of in-plane momenta: 0.4 and
1.0�105 cm−1. In agreement with existing theories,2,12 the
CSFM energy does not show any appreciable dispersion at
momentum values accessible with ILS techniques. There-
fore, the CSFM line is regarded as the energy of the cyclo-
tron spin-flip mode when q→0. The key experimental find-
ing is a downward shift of the energy of this mode with
−0.35 meV as compared to the bare cyclotron energy. This
shift exceeds by far the single-electron Zeeman energy in
GaAs at this magnetic field �0.08 meV� and we therefore
assert it is strongly influenced by exchange interactions.

The B dependence of the energy of the cyclotron spin-flip
mode for fixed filling �=2 is plotted in Fig. 3. The slope is
identical to the bare cyclotron energy line in GaAs. Hence,
the dependence of the cyclotron spin-flip mode on B takes on
the functional form ��CSFM=��c+�ESF over a rather broad
magnetic-field interval: 0.6 T�B�2.7 T. Here �ESF is the
B-independent downward shift of approximately −0.35 meV.
It is worthwhile to note that a dimensional analysis of
second-order Coulomb corrections to the energies of
inter-LL excitations would yield a similar dependence on B:
E=��c+�ESF, where �ESF���crc

2. Indeed, if EC=�e2 /	lB
then �ESF is independent of the field. The renormalization

FIG. 2. Electron Zeeman energy EZ. The dashed line plots the
expected Zeeman energy when taking gGaAs=−0.44. The solid line
is a linear fit to the data for gQW=−0.4. The inset depicts ILS
spectra at a constant perpendicular field of 2 T but two different
values of the total field. The right inset schematically illustrates the
spin-triplet �S=1, Sz=−1, 0 and 1� cyclotron excitations for �=2. FIG. 3. The CSFM energy for the spin unpolarized �=2 quan-

tum Hall state vs perpendicular field. The dashed line gives the
cyclotron energy. The upper inset displays ILS spectra of the CSFM
for two different in-plane momenta.
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factor � is determined by the size-quantized wave function
of electrons confined in the QW. In the ideal two-
dimensional �2D� case �=1. However, the larger the width
of the 2D electron system �2DES�, the smaller � becomes,
thereby reducing rc. This is certainly relevant for the width
of our quantum well.

An analytical calculation of the second-order correction
to the CSFM energy is performed in terms of small rc. The
theory is based on the following general features of the sys-
tem. The state of the system is described by the exact quan-
tum numbers S, Sz, and q and by the “good” quantum num-
ber 
n characterizing the excitation kinetic energy ��c
n �
n
is good but not exact due to LL mixing�. The relevant exci-
tations with q=0 and 
n=1 may be presented in the form

K̂S,Sz

† �0�, where �0� is the ground state and K̂S,Sz

† are “raising”

operators: K̂0,0
† =�np�

�n+1cn+1,p,�
† cn,p,�, K̂1,0

† =�np�
�n+1

��−1��cn+1,p,�
† cn,p,�, and K̂1,+/−

† =�np
�n+1cn+1,p,↑/↓

† cn,p,↓/↑
�cn,p,� is the Fermi annihilation operator corresponding to the
Landau-gauge state �n , p� with spin index �= ↑ ,↓	. The

commutators with the kinetic-energy operator Ĥ1 are

�Ĥ1 , K̂S,Sz

† 	
��cK̂S,Sz

† . The total Hamiltonian is Ĥtot= Ĥ1

+ Ĥint, where Ĥint is the exact Coulomb-interaction Hamil-

tonian. If �0� is unpolarized, we have Ŝ2K̂S,Sz

† �0�
S�S
+1�K̂S,Sz

† �0� and ŜzK̂S,Sz

† �0�
SzK̂S,Sz

† �0�. Moreover, the identity

�0�K̂S,Sz
�Ĥint , K̂S,Sz

† 	�0�
0 holds ��0� to describe the zeroth or-
der ground state�. It implies that first-order Coulomb correc-
tions vanish for both the spin-unperturbed or singlet magne-
toplasmon �where S=0� and the combined CSFM triplet �S
=1�. At the same time, �Ĥint , K̂0,0

† 	
01 but �Ĥint , K̂1,Sz

† 	�0.
Hence, whereas the magnetoplasmon has no exchange en-
ergy correction calculated to any order in rc, the combined
modes should have second- and higher-order exchange cor-
rections.

The second-order calculation is based on the excitonic
representation �ER� technique.13–15 It utilizes exciton states

Q̂abq
† �0� as a basis set, instead of single-electron states of a

degenerated LL. The exciton creation operator is defined
as13–15

Q̂abq
† = N�

−1/2�
p

e−iqxpbp+qy/2
† ap−qy/2. �1�

Here, N�=A /2
lB
2 stands for the number of magnetic flux

quanta and q= �qx ,qy� is given in units of 1 / lB. The binary
indices a and b denote both the LL number and the spin
index: a ,b= �na,b ,�a,b�. All three CSFM states have certainly
the same exchange energy, and it is sufficient to calculate
this, e.g., for the state with Sz=−1. The zero-order approxi-

mation is thereby �SF ,−�=N�
−1/2�K̂1,−

† �0��rc=0=Q̂
01̄0

† �0� �i.e., a

= �0, ↑ � and b= �1, ↓ �	. To calculate the first-order correc-
tions to the �SF ,−� state or, equivalently, the second-order
correction to its energy, we follow the standard perturbative
approach16 using the “excitonically nondiagonalized” part

Ĥint of the Coulomb Hamiltonian14 in the ER form,

Ĥint =
e2

2	lB
�

q,a,b,c,d
V�q��hnanb

�q�
�a,�b
Q̂abq

† 	

��hncnd
�− q�
�c,�d

Q̂cd−q
† 	 �2�

�cf. Ref. 14�, where 2
V�q� is the Fourier component of the
dimensionless Coulomb potential �in the strict 2D limit V
=1/q�, and hkn�q�= �k! /n!�1/2e−q2/4�q−�n−kLk

n−k�q2 /2� are the
ER “building-block” functions �Lk

n is the Laguerre polyno-
mial, q±= � �i /�2��qx± iqy�; cf. Refs. 2, 14, and 15�. For cal-
culation details, we refer the reader to Ref. 17. Here, we limit
ourselves to reporting the final result,

�ESF = − �
n=2

�

Rn
1 − 21−n

n�n2 − 1�
, �3�

with

Rn =
2

n!
�

0

�

dqq2n+3V2�q�e−q2
,

in units of 2 Ry= �e2 /	lB�2 /��c
11.34 meV. For the ideal
2D system with zero width Rn
1 and the summation can
easily be performed. It yields �ESF= �ln 2−1� /2
=−0.153 4, . . ..

We conclude that, as in experiment, the exchange interac-
tion lowers the energy of the CSFM relative to the singlet
magnetoplasmon mode. The absolute value of the shift
��ESF� obtained with Eq. �3� is reduced when taking into
account the nonzero thickness of the 2DES. The Coulomb
vertex should be written as V�q�=F�qw� /q, where F�qw� is a
form factor capturing the Coulomb softening.18 The effective
thickness parameter w characterizes the spread of the elec-
tron wave function in the growth direction. If a variational
wave function of the form ���z��2�exp�−z2 /2w2� is chosen,

then F�qw�=ew2q2
erfc�wq� �Ref. 19�. Note that for a second-

order energy correction this form factor enters twice. The
calculation of ��ESF�, including the influence of finite thick-
ness, is plotted in Fig. 4. A similar value for ��ESF� as in
experiment is obtained when w
0.5lB, which agrees well
with the effective width for a 30-nm GaAs QW structure.

We note that inelastic light-scattering studies at �=2 were
carried out previously in Ref. 20. The authors obtained simi-
lar spectra with a nonzero energy shift, but explained their
observations in terms of transitions to the roton minimum at

FIG. 4. The CSFM exchange shift calculated from Eq. �3� with
the modified Coulomb interaction V�q�=q−1eq2w2

erfc�qw�. Its abso-
lute value at w=0 equals �1−ln 2� \Ry.
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large wave vector. This assignment was plausible as it was
based on information from Ref. 2 in which a nonzero energy
shift was predicted only for the roton minimum but not for
q=0 due to the first-order approximation in the interaction.
The authors were forced to invoke disorder to account for the
large momentum transfer required for scattering into the ro-
ton minimum. The energy shift was reported to fit to a
square-root dependence over the investigated B-field range
as anticipated for rotons. In contrast, we assign the spectra in
our experiments to the properties of the cyclotron spin-flip
mode at q=0. If we were to ascribe the signals to indirect
inelastic light scattering into the roton mimimum, we would
expect a second much larger direct resonance at q=0 since
the density of states is large for both the q=0 extremum and
the roton minimum. Moreover, we find a field-independent
energy shift �ESF over a large B range. Well-resolved triplet
spectra and negative exchange energy shifts are not only ob-
tained at �=2, but also at filling �=4 and �=6. Figure 5
illustrates, for instance, ILS spectra measured at �=4. Note
that the negative exchange energy contribution at �=4 is
only half of the value at �=2 due to the larger spatial extent
of the wave functions of exciton states of higher Landau
levels. The observation of well-resolved triplet modes at �
=4 and �=6 excludes an interpretation of our data at mo-
menta of the roton minimum. In this case, two and three
roton minima would appear for �=4 and �=6. This would
result in significant broadening and the triplet structure
would be smeared out.

In conclusion, the inelastic light-scattering response from

the combined cyclotron spin-flip modes of unpolarized quan-
tum Hall states at q=0 has been studied. A negative energy
term was found to decrease their energy and was attributed to
many-body Coulomb exchange interaction. A second-order
perturbation theory of the Coulomb interaction explains the
experimental results.
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