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We give a variational Monte Carlo description of 4He filling under pressure a porous material modeled by a
smooth cylindrical nanopore. Our trial wave function is a shadow wave function which allows different
degrees of correlation between 4He atoms depending on the distance from the pore wall but still preserving the
full Bose symmetry. The radial density profile shows a strong layering of the 4He atoms which are located in
concentric annuli. This system has a very rich phase diagram with at least four different phases. The layer in
contact with the pore is always solid. For our narrow pore radius �R=13 Å�, as the density is increased,
solidification takes place layer by layer, starting from the pore wall, as is confirmed by the static structure
factors. The pore radius is too small to allow a bulklike solid to nucleate in the liquid region at the center of
the pore, and in order to have a complete crystalline order in all the layers a pressure greater than 200 bar is
needed. Computing the one body density matrix we are able to estimate the condensate fraction, which is still
nonzero even if all the layers are in the solid phase.
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I. INTRODUCTION

The behavior of helium confined in restricted geometry is
a topic of current interest in quantum physics. It is known
that the interplay of the confining potential with the interpar-
ticle interaction may yield completely new phenomena, as
well as strongly enhancing correlations effects: 4He adsorbed
in porous media is an excellent example of a confined inter-
acting Bose system. The properties of liquid 4He in several
porous media have been extensively investigated with a con-
siderable experimental1–6 and theoretical7–10 effort over the
past years. The reduced dimensionality induces remarkable
effects on the properties of 4He modifying the phase dia-
gram. For example, the confinement tends to inhibit freezing,
so that pressures substantially higher than in the bulk are
required for solidification, and the superfluidity is slightly
suppressed.1–3

Much attention has been experimentally given also to the
properties of pressurized 4He in such geometries because of
the possible existence of a supersolid phase. Flow without
dissipation is intuitively associated with the liquid phase, but
the presence of delocalized vacancies and defects, due to
quantum mechanical fluctuations, can in principle allow the
appearance of superfluidity in the solid.11,12 Solid helium
configuration in porous media is richer of vacancies and dis-
order than the bulk, so these systems stand for good candi-
dates for observing a supersolid state. In a recent torsional
oscillator experiment with solid 4He confined in Vycor,13 an
abrupt drop in the rotational inertia has been observed below
a certain critical temperature, which has been interpreted
with the presence of a supersolid phase. However, a super-
solid response has been also observed in the pure bulk solid
4He14 so that the role of defects is not clear at the present
time.

It was observed that, for 4He adsorbed in porous materi-
als, the critical temperature for the onset of superfluidity is
lowered decreasing the pore size.2 Very recently, the behav-
ior of 4He filling a porous media with narrow pores as Gelsil

has been investigated by means of the torsional oscillator
technique revealing some quite unexpected features.5 Gelsil
is a porous silica glass whose structure is characterized by a
random network of nanopores, similarly to Vycor. The
sample employed in the experiments described in Ref. 5 has
a nominal pore diameter of 25 Å which is significantly
smaller than the typical Vycor value of 70 Å. Even at very
low temperature, when the pressure is increased, an anoma-
lous suppression of the superfluid response takes place for a
critical pressure Pc of about 35 bar, where 4He has not com-
pletely solidified. The strong confinement due to the small
size and the disorder of the pore structure are supposed to be
responsible for the reduction of the superfluid transition tem-
perature and of the superfluid density, but, in order to explain
a possible continuous transition at T=0 K and P= Pc from a
superfluid to a nonsuperfluid state, the existence of a quan-
tum phase transition has been supposed.5 No indication of
solidification was found during this experiment5 for pressure
up to 50 bar, and the nature of the nonsuperfluid state near
the critical pressure has to be investigated to confirm the
quantum phase transition scenario.5

In this paper we present a variational Monte Carlo study
of the ground state properties of 4He filling a porous media.
Although there have been many calculations for 4He in con-
fined geometry,7–10 to our knowledge, there are no micro-
scopic calculations tackling the behavior of 4He in a cylin-
drical confinement. In fact, some information on the
superfluid fraction and the critical temperature are obtained
extending the results for dilute Bose gas15 or hard sphere
gas7 in random potentials. The equation of state has been
studied confining helium in a lattice of big static objects with
a purely repulsive interaction.9 Results on the excitation
spectrum are given for the liquid phase in a slit pore
geometry8 and, still in slit geometry, a very recent
simulation10 deals with the superfluid response of 4He at
62 bar.

We have modeled the confining media with a long smooth
cylindrical pore of radius R=13 Å, a size comparable with
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the Gelsil pore size, and we have chosen the He-pore poten-
tial in order to represent the He-Si interaction. Our trial
wave function is a shadow wave function �SWF�,16 which
has been shown to be able to describe in an excellent way the
properties of 4He both in uniform and nonuniform states.17–21

We find that 4He forms a distinct layered structure with the
atoms arranging themselves in concentric annuli and there is
no bulklike solid in the center of our pore because of its
reduced size. The atoms in the layer adjacent to the pore wall
are very localized under all conditions of a filled pore, we
call this the inert layer. Increasing the helium density a layer
by layer solidification takes place starting from the layer
closest to the inert layer. The computed static structure fac-
tors of these layers are compatible with a planar regular tri-
angular lattice wrapped on a cylindrical surface, and pres-
sures greater than 200 bar are needed in order to have
solidification in the whole system. We have also studied the
presence of Bose-Einstein condensation �BEC� by comput-
ing the one-body density matrix. By computing single layer
contributions to the one-body density matrix we find BEC
over an extended pressure range and, for the central layers,
there is a nonzero condensate fraction up to pressure of the
order of 270 bar when the whole system is in the solid phase.

The paper is organized as follows: in Sec. II we give a
brief presentation of the SWF that we have employed, we
describe our model for a silica porous glass and we give also
some details of our simulations. Our results are reported and
discussed in Sec. III. We analyze the microscopic structure of
the system in terms of the radial density profiles and of the
static structure factors, and, by computing the one-body den-
sity matrix, we give information also on the condensate frac-
tion in the system. Section IV contains our conclusions.

II. MODEL AND SIMULATION METHOD

A. Shadow wave function

In a shadow wave function the atoms are correlated not
only by standard direct correlations between particles, but
also indirectly via the coupling to a set of subsidiary
�shadow� variables. Integration over the shadow variables
introduces effective interparticle correlations between pair of
4He atoms but also between triplets and, in principle, to all
orders in an implicit way; this is done so efficiently that it is
possible to treat the liquid and the solid phase with the same
functional form18,20,22 without the need to introduce a priori
equilibrium positions to localize the 4He atoms around lattice
positions. Solidification, in fact, emerges as a result of a
spontaneously broken symmetry transition due to the in-
creased correlations as the density of the system increases.
The general form of a SWF is given by

��R� = �r�R� � dS��R,S��s�S� , �1�

where R= �r1 , . . . ,rN� and S= �s1 , . . . ,sN� are, respectively,
the real and the shadow coordinates of the N 4He atoms.

As usual with SWF, �r�R� is a Jastrow function and we
assume a McMillan form pseudopotential,22 while, for our
system, �s�S� is the product of two terms. The first is the

usual Jastrow function giving the intershadow correlation
and as a pseudopotential we use the rescaled and shifted
interatomic potential22 chosen to be a standard Aziz
potential.23 In principle it is possible to reach a better varia-
tional description using a fully optimized SWF,18 however
we preferred the use of pseudopotentials with a smaller num-
ber of variational parameters due to the high number of par-
ticles imposed by the chosen model and the necessity to
make simulations for a wide range of densities. The second
term in �s�S� is a one-body term which represents the effect
of the He-pore interaction. For the one-body pseudopotential
we take the rescaled and shifted helium-pore potential. In
this way, the correlations between the 4He atoms and the
pore wall are introduced via the shadow variables, and the
simulation is simplified. The He-pore potential has a very
deep attractive well compared to the He-He one. Therefore
for the atoms closest to the wall we might expect a reduced
zero point motion compared to that of atoms in the center of
the pore. We allow for this effect by modifying the usual
Gaussian kernel ��R ,S� in the following way:21

��R,S� = exp�− �
i=1

N

C�si
xy��ri − si�2� , �2�

where

C�si
xy� = C + �C�1 − exp	−

�si
xy/r0�2n

�si
xy/r0�2 + 1


� �3�

and sxy =��sx�2+ �sy�2 is the radial distance from the cylinder
axis, chosen to lie on the z direction, while �C ,r0 ,n ,C� are
variational parameters. The optimized parameters are ob-
tained minimizing the expectation value of the Hamiltonian
and are reported in Table I for few densities.

B. Helium-pore potential

We have chosen to model the confining media by a cylin-
drical nanopore and in order to resemble the Gelsil pore size
we have fixed our pore radius at R=13 Å. We have assumed
that the potential energy experienced by an 4He atom can be
evaluated by a summation over two-body interactions, cho-
sen as isotropic Lennard-Jones �12,6�, between the 4He atom
and the atoms composing the pore surface. Ignoring the ato-
mistic details in the potential inside the pore by smearing out
the pore surface atoms, the potential experienced by an 4He
atom at distance r from the axis of the cylinder is given by24

V�r,R� = 3���	2�21

32
		

R

10

M11�x� − 		

R

4

M5�x�� , �4�

where � and 	 are the LJ parameters for the interaction He
pore, � is the surface density of the atoms on the pore wall,
R is the cylinder radius and x=r /R. Moreover Mn are special
integrals

Mn�x� = �
0

�

d�
1

�1 + x2 − 2x cos ��n/2 . �5�

We have employed as parameter values ��=7.63 K Å−2

and 	=2.19 Å chosen to represent the He-Si interaction.25
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The resulting 4He-pore potential has an attractive well of
−153 K at 2.2 Å from the pore wall and is plotted in Fig. 1.
This single-pore model is more realistic than those employed
in Refs. 8–10, but it still excludes effects due to the complex,
highly networked geometry of porous glasses. It is possible
to give a better description of the confining porous glass26

studying fully networked system, but a realistic model even
of a small chunk of the smallest-pore-networked glass might
involve hundreds of thousands of atoms.

C. Simulation

We perform VMC simulations with a nanopore of radius
R=13 Å and length L=21.62 Å, with periodic boundary
conditions along the pore axis lying in the z direction, and
with a number of 4He atoms between N=304 and N=403,
which corresponds to nominal densities from 

=0.0265 Å−3 to 
=0.0351 Å−3, respectively. The actual den-
sity of 4He atoms is 20% higher than the nominal value
because not all the volume of the cylinder is available to 4He
atoms due to the strong He-wall repulsion; see Fig. 1. Be-
cause of the great number of particles and of the highly in-
homogeneous state of the system very long equilibration
runs are needed, so our simulation runs have never an equili-
bration shorter than 3�106 per particle Monte Carlo steps
and the simulations run are in general 6�106 per particle

Monte Carlo steps long. We find that the properties of the
adsorbed layer at the pore wall are almost independent on the
total density of the system. These atoms are localized and the
interparticle distance corresponds, in bulk 4He, to a density

=0.047 Å−3 and to a pressure P=780 bar.27 This insensitiv-
ity of the adsorbed layer on the average density is similar to
what was experimentally found for H2 in Vycor.28

The adsorbed layer in our cell contains 172 4He atoms,
almost half of the particles in the system, at areal density of
n=0.12 Å−2. It is interesting to note that this is the critical
coverage for the superfluidity onset for 4He films in Gelsil.5

For adsorbed films, the critical coverage corresponds to the
value of n above which a superfluid film grows on the ad-
sorbed layer, which is nonsuperfluid because of the strong
van der Waals attraction from the glass wall. That this inert
layer is nonsuperfluid has been confirmed theoretically by
very recent path integral Monte Carlo �PIMC� simulation10

for 4He in a slit geometry for Vycor. Because of their great
number and of the large value of their potential energy, the
atoms of the inert layer tend to dominate the variational pa-
rameters optimization and to mask the contribution of the
other layers to the equation of state, so we have chosen to fix
the position of the atoms of the inert layer, treating them as a
part of the substrate. It is worthy to note that this choice is
not forced by our variational technique, but is dictated by the
opportunity of simplified and less time consuming simula-
tions without affecting the physical properties of the remain-
ing atoms as we have verified in few runs of control in which
all the 4He atoms are dynamical.

Starting from a well equilibrated run we have locked all
the 4He atoms which, according to the radial density profile,
have a radial coordinate greater than the minimum between
the adsorbed and the third layer, which corresponds to a ra-
dius of rlock=9.20 Å �Fig. 1�. The 172 adatoms turn out to be
arranged in a regular triangular lattice with some defects,
induced by the mismatch between a triangular lattice and the
size of the adsorbed layer. By locking the atoms of this ad-
sorbed layer we generate an effective static potential for all
the other 4He atoms which contains a corrugation contribu-
tion due to the locked adatoms, giving a more realistic de-
scription of the confinement, even if we lose the zero point
motion contribution of the adsorbed atoms. The adatoms are
well localized by the strong van der Waals force; by compar-
ing the results with the adsorbed atoms free and those with

TABLE I. Optimized variational parameters for some effective densities: b and m are the McMillan
parameters for �r�R�; C, �C, r0, and n are the parameters for the Gaussian kernel ��R ,S� as defined in �2�;
�,  and ��, � are, respectively, the rescale and shift parameters for the shadow-shadow and the shadow-
pore pseudopotential in �s�S�. The number Nfree of free 4He atoms in the simulation box, i.e., the total
number of atoms minus the number of the inert layer, and the corresponding effective densities are also
reported.


eff �Å−3� Nfree b �Å� m C �Å−2� �C �Å−2� r0 �Å� n � �K−1�  �� �K−1� �

0.02400 138 2.78 5 0.78 4.5 9.6 4 0.04 0.98 0.235 1.04

0.03026 174 2.78 5 0.98 4.5 9.6 4 0.09 0.94 0.235 1.04

0.03478 200 2.80 5 0.92 4.5 9.6 4 0.10 0.94 0.235 1.04

0.03860 222 2.80 5 1.10 4.5 9.6 4 0.11 0.96 0.235 1.04

0.04070 234 2.82 5 1.10 4.5 9.6 4 0.11 0.96 0.235 1.04

FIG. 1. �Color online� The pore-helium interaction potential for
a R=13 Å pore and radial density profile at 
=0.03130 Å−3 in a run
in which all atoms are mobile.
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the adatoms locked we have verified that the contribution of
their zero point motion to the microscopic structure of the
atoms in the inner region is negligible. Since the locked ada-
toms do not contribute anymore to the energy and to the
other computed quantities of the system, we give our results
in terms of effective density of the system 
eff which is the
ratio between the number of free atoms and the effective
cylindrical volume defined by radius rlock and height L.

The interactions between atoms are, as usually, explicitly
taken into account for pairs with distances up to L /2. A tail
correction has been added to the energy by computing the
contribution to the potential energy for pair distances from
L /2 to 2L in a system four time longer obtained considering
four images of our simulation box in the z direction.29

III. RESULTS AND DISCUSSION

A. Equation of state and microscopic structure

In Fig. 2 we plot the energy per particle E�
eff� as a func-
tion of the effective density. The data for E�
eff� display
some change in the curvature which is below the statistical
error of the MC runs. This is a signature of the presence of
different phases in the system. It is possible to characterize at
least four different phases. For effective densities above
0.036 Å−3 it is difficult to identify in an unambiguous way
the single phases. Fitting the energy vs density curve with a
third-degree polynomial form22 in restricted range of density
we are able to give an estimation of the pressure in the sys-
tem, reported in Fig. 3. Within the Maxwell construction it is
possible to give an indication on the phase coexistence re-
gions, the results are reported in Fig. 2 as solid lines inter-
rupted at coexistence. The transition with the lowest pressure
takes place at P=60 bar, there is another one at P=130 bar
and the one at the highest pressure in the studied range is at
P=206 bar.

At all densities the dynamical atoms arrange themselves
in layers around the axis of the cylinder. In our pore the

number of layers is three but for effective densities above
0.04 Å−3 also the axis of the cylinder is filled. This behavior
is shown by the radial density profiles 
�r� plotted in Fig. 4
for few values of 
eff; the layered structure of the 4He atoms
in the pore is also made evident by Fig. 5 where a snapshot
of the coordinates of the helium atoms for a simulation at

eff=0.04070 Å−3 is shown as an example. Such layered
structure is enhanced as 
eff increases and it is stronger in the
more external layers. Therefore for all the considered density
range the 4He atoms are arranged in concentric annuli, and
this is a characteristic property also of classical fluids in cy-
lindrical narrow pores.29,30 However the 4He atoms are able
to exchange between the different layers as indicated by the
nonzero density between the peaks in 
�r�. As we increase
the effective density of the system the peaks in the radial
density profile become sharper and the minima between ad-
jacent layers become lower, starting from the inert layer. The
pressure due to the internal layers tends to compress the ex-
ternal ones toward the pore wall, as indicated by the drift of
the position of the peak maxima to bigger radii and greater
heights with the increasing effective density. This feature

FIG. 2. Energy per particle as function of the effective density

eff and phase boundaries from Maxwell construction. The error
bars are smaller than the symbols used. The dotted line shows the
polynomial fit for the phase IV which cannot be unambiguously
characterized. The lowest density of phase IV is obtained by the
Maxwell construction with the phase III fit but we are not able to
determine its high density boundary as discussed in the text.

FIG. 3. Pressures as function of the effective density 
eff as
obtained from the polynomial fit of E�
eff� and the Maxwell con-
struction. The dotted line is the pressure obtained by the fit of the
phase IV.

FIG. 4. Radial density profiles for 4He in the pore at different
effective densities: 
eff=0.02400 Å−3 �solid�, 
eff=0.03026 Å−3

�dotted�, 
eff=0.03478 Å−3 �dashed�, 
eff=0.03861 Å−3 �long
dashed�, and 
eff=0.04070 Å−3 �dot-dashed�.
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suggests a layer by layer localization and solidification start-
ing from the more external layer. However the radial density
profile is not enough to characterize if and which kind of
solid order is present.

In order to characterize the microscopic state of each
layer we have computed the static structure factor S�k� sepa-
rately for each layer. Given the cylindrical symmetry of the
container it is convenient to unroll each single layer in a slab
and to consider only k vectors reflecting this symmetry, i.e.
using cylindrical coordinates k has the form k= �k
 ,k� ,kz�.
Periodicity of L in z and of 2� in � implies that kz

=2�m /L and k�
�n�=m� /Rn where Rn is the radius of the nth

layer and m and m� are integers. No restriction is present on
k
 which we take to be zero. The static structure factor of the
nth layer is then defined as

Sn�k� = � 1

Nn

n�k�
n�− k�� , �6�

where 
n�k�=� j=1
Nn exp�ik ·r j� with r= �r ,� ,z�, k= �0,k� ,kz�

and Nn is the number of particles in the nth layer. In order to
improve the analysis of the results obtained by the calcula-
tion of the static structure factor we have computed also the
layer density 
n��Rn ,z�. In Figs. 6–8 we report, for different
effective densities, our results for Sn�k� and 
n��Rn ,z� for the
first, second and third layer, respectively.

We start the discussion with the first layer, the outermost
dynamical one. From the static structure factor in Fig. 6�a� it
is evident that for 
eff=0.02400 Å−3, which falls in phase I,
the first layer is still liquid, even if S1�k� has two striking
peaks. Looking at the contour plot for the planar density

1��R1 ,z� reported in Fig. 6�b� it is clear that this liquid layer
has a modulation along the z direction and this modulation
turns out to be in phase with the density modulation of the
adsorbed �0th� layer. It should be noticed that the modulation
is slightly tilted away from the z direction by an angle of
about 2°. This is shown also in the k space, the sharp modu-
lation peak of S1�k� has, in fact, a nonzero k� component.

This effect is present also in the inert layer where the lattice
axis is tilted away from the z direction by the same angle and
is common in all the solid layers. This is due to a mismatch
between the lattice constant of the helium lattice with the
circumferences of the layers. By increasing the effective den-
sity the atoms in the first layer start to arrange themselves in
a triangular lattice, as shown by the six sharp peaks in S1�k�
�Figs. 6�c�, 6�e�, and 6�g��. The heights of these peaks are not
the same for all of them except for the highest density, the
ones along the z direction are higher than the other four
peaks. Looking at the correspondent contour plots, this can
be interpreted as a triangular solid with some defects which
are more localized in the z direction than in the tangential
one. At 
eff=0.03860 Å−3 the solidification is complete: the
peaks in S1�k� have all the same height �Fig. 6�g�� and in the
contour plot �Fig. 6�h�� the atoms appear well localized
around equilibrium positions.

We discuss now the second layer. S2�k� is isotropic in k�

and the dependence on kz is typical of a liquid in phase I and
II �see Fig. 7�a��. At 
eff=0.03478 Å−3, in phase III, peaks
start to grow from the liquid background �Fig. 7�c�� and this
can be interpreted as a solid with some mobile defects as
shown by the density contour plot in Fig. 7�d�. Increasing the
effective density the solid order becomes more evident, and
the solidification is complete at 
eff=0.04070 Å−3, as shown
in Figs. 7�g� and 7�h�.

Since the third layer is always liquid up to 
eff
=0.03548 Å−3, we can interpret the phase transition between
the phase I and II as due to the solidification of the first layer,
while the one between phase II and III as due to the solidi-
fication of the second layer. Then in phase I all the system is
in the liquid phase, in phase II the first layer becomes solid
while the other two layers remain liquid and in phase III only
the third layer is still liquid. It is interesting to note that the
solidification of both the first and the second layer occurs at
the same areal density of about 0.09 Å−2. This areal density
is substantially larger of the freezing density found in a pure
2D system31 which is 
2D

freeze=0.0721 Å−2.
For 
eff higher than 0.03548 Å−3 it is not possible to un-

ambiguously characterize the microscopic phase of the third
layer. At 
eff=0.03548 Å−3 the areal density of the third layer
is equal to the freezing value 0.09 Å−2 of the other two lay-
ers, then we might expect it to become solid �phase IV�. On
the other hand the static structure factor S3�k� shows six
peaks for the third layer only at 
eff=0.04070 Å−3, as shown
in Fig. 8. This can be due to a commensuration problem
between the lattice parameters and the circumference of the
layer as well as to the presence of some free space in the
center of the pore. There are at least three reasons why it is
difficult a full characterization of the phase diagram at the
highest densities of our computation, i.e., the range of effec-
tive densities where the third layer is solid and the coexist-
ence region with the phase III. First, the 4He atoms involved
in this phase transition are about 25, significantly less than
the 115 and 65 particles involved in the previous two phase
transitions, respectively. As a consequence the signature of
this phase transition in the diagram of E�
eff� reported in Fig.
2 is smaller than the previous ones, and it can be masked by
the uncertainty in the optimization of the variational param-

FIG. 5. �Color online� Snapshot along the pore axis of the 4He
atom coordinates during a simulation run at 
eff=0.04070 Å−3.
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FIG. 6. �Color online� Static structure factors S1�k� ��a�,�c�,�e�,�g�� and contour plots for the planar density 
1��R1 ,z� ��b�,�d�,�f�,�h�� for
the first layer at different effective densities: 
eff=0.02400 Å−3 ��a�,�b��, 0.03026 Å−3 ��c�,�d��, 0.03478 Å−3 ��e�,�f��, and 0.03860 Å−3

��g�,�h��.
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FIG. 7. �Color online� Static structure factors S2�k� ��a�,�c�,�e�,�g�� and contour plots for the planar density 
2��R2 ,z� ��b�,�d�,�f�,�h�� for
the second layer at different effective densities: 
eff=0.03026 Å−3 ��a�,�b��, 0.03478 Å−3 ��c�,�d��, 0.03860 Å−3 ��e�,�f��, and 0.04070 Å−3

��g�,�h��.
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eters. Moreover, our choice for the pseudopotentials in the
wave function can be less accurate for so high density solid.
Furthermore, at the highest 
eff the system is undergoing a
structural transition from a configuration with three layers to
one with three layers plus the filled center; this can be seen
for 
eff=0.04070 Å−3 in Fig. 4 where also the cylinder axis
starts to be populated by 4He atoms. Therefore at such high
densities it is dubious the application of the Maxwell con-

struction and we give only some qualitative indications on
the behavior and on the properties of the system.

In order to obtain more information on the kind of solid
order in our system we have computed also the coordination
number and the angular probability distribution P�� ,�� for
each layer. The coordination number of the nth layer has
been computed as the average of the number of atoms which
fall into a sphere of radius rmin centered on a 4He atom in the
considered layer. The radius rmin is fixed to the position of
the first minimum in the pair distribution function g�r�, then
the coordination number gives the number of first neighbors
for each He atom in the nth layer. We find that in phase III,
when the first and the second layer are solid, the coordination
number for the first layer is very close to 12, the value of a
close packed solid. For the second layer this become true in
phase IV and for the third layer the coordination number
becomes close to 12 only at 
eff=0.04070 Å−3. The kind of
close packed solid can be determined by studying the angular
distribution of the position of the first neighbors. This is done
by analyzing the angular probability distribution Pn�� ,�� for
each layer, which comes from a four body correlation
function.20,21 Pn�� ,�� is computed as follows: an atom in the
nth layer is chosen to fix the origin of a new reference frame,
two of its first neighbors, in the same layer, are chosen to fix
the direction of the z axis and the xz plane respectively, and
then the angular coordinates �� ,�� in this new reference
frame of the remaining first neighbors are recorded. The kind
of crystalline order, if any, is characterized by the position of
the peaks in the plot of Pn�� ,��. We find that, for effective
density greater than 0.03432 Å−3 �phase III�, P1�� ,�� is
compatible with an hcp lattice. This suggests that the 4He
atoms arrange themselves in the layer as in the basal planes
of an hcp crystal. For 
eff greater than 0.038 Å−3, P2�� ,��
shows a structure which resembles that of an hcp lattice, but
substantial distortions are present. This is probably due to the
curvature of the second layer and to the stronger one of the
third layer, whose atoms are involved in the computation.
For the same reason P3�� ,�� has not an hcp structure even at

eff=0.04070 Å−3. Indeed, because of the presence of mobile
defects in the third layer, as shown by the 
3��R3 ,z� contour
plot in Fig. 8�d�, the peaks in P3�� ,�� are smeared out re-
sulting in a smooth surface from which no information on
the angular coordination between atoms can be extracted.

The major features that emerge from our simulations are
that the solidification takes place starting from the pore wall
and that the system does not enter in a crystalline ordered
phase �all the layers solid� up to very high pressures. A num-
ber of models concerning the solidification of fluids in re-
stricted geometries, with different hypotheses and previsions,
have been developed in the past years.3,28,32 The first model
predicted the nucleation of solid at the pore wall thanks to
the localization induced by the strong van der Waals forces32

with a resulting lower solidification pressure than the bulk
one. But from the experimental observation1–3 it is observed
that an extra-pressure of about 15 bar over the bulk one is
necessary for solidification of 4He in Vycor. Today, the
widely accepted mechanism for solidification in pores is that
the solid nucleates within the liquid region at the center of
the pore3 and an extra pressure �P over the freezing pressure

FIG. 8. �Color online� Static structure factors S3�k� ��a�,�c�� and
contour plots for the planar density 
3��R3 ,z� ��b�,�d�� for the third
layer at 
eff=0.03860 Å−3 ��a�,�b�� and 
eff=0.04070 Å−3 ��c�,�d��.
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in the bulk �25 bar for 4He� is needed for solidification of
4He in a porous material. In fact, due to the irregular nature
of the pore surfaces, the 4He atoms are readily localized in a
nonsuperfluid amorphous layer which discourages the forma-
tion of crystallites at the pore surface; indeed, a solid which
grows on a substrate is strongly strained if the lattice con-
stants or the symmetry of the solid and the substrate do not
match each other.

Some of these features are also encountered for classical
particles in porous material.30 They are essentially due to the
cylindrical geometry: in fact, although freezing transition oc-
curs in slit pores for all pore widths, down to widths that
accommodate just one layer of adsorbate, the additional con-
finement of the cylindrical pore makes it harder for the atoms
to arrange themselves on the appropriate lattice points. Then
for classical particles the freezing pressures �temperatures�
are in general higher �lower� for cylindrical than for slit
pores of the same porous material and pore width.30 Both
simulations and experimental studies30 have shown that for
pore diameters below about 20	 �where 	 is the diameter of
the molecule� only partial freezing occurs, with a mixture of
3D microcrystals and amorphous domains, while for still
smaller pores even partial crystallization is not observed.
These studies suggest that the lower pore diameter below
which no crystal domain occurs is roughly 12	 for silica
materials. Then, taking d=2.14 Å as the effective 4He atom
diameter,33 we obtain a value of about 25.7 Å as lower
bound for the critical pore diameter under which no crystal-
lization should occur. Obviously we can expect that to local-
ize 4He atoms in lattice positions turns out to be even more
difficult than for a classical fluid, due to quantum effects.

Experimentally it is still not known, for 4He, if the solid
in the center of the pores is bulklike or not, but recent neu-
tron scattering results for 4He in a larger diameter Gelsil
�44 Å� are compatible with an hcp solid.6 However there
must be a transition region between the amorphous layers
adsorbed at the pore wall and the crystalline solid in the
center. This transition region is supposed to be responsible28

of the “anomalies” in restricted geometry, as the smaller mo-
lar volume change in the liquid-solid phase transition of 4He
in Vycor than in the bulk.1 Moreover, this transition region
results in a liquid layer which is found to be responsible for
a superfluid response of 4He at a pressure of 62 bar in a
recent PIMC simulation performed in a slit pore geometry
for Vycor.10 The thickness t of this transition region is esti-
mated by neutron scattering to be of the order of 10 Å for D2
in Vycor and it is expected to be quite larger for quantum
solids as hydrogen or helium.28 Since t is related to the pore
radius �if R is very large the effect of the wall curvature is
negligible and the solid is slightly strained at the pore wall�,
we might argue that our R=13 Å nanopore cannot stand with
a bulklike solid in its center because the transition region
exhausts the whole available volume. In fact, we have per-
formed a computation in which we have filled the effective
volume of our pore with the 4He atoms in the initial configu-
ration corresponding to an hcp solid for different effective
densities. We find that just 105 Monte Carlo steps are enough
to completely destroy this kind of solid order and to give rise
to the layered structure even when the length of the pore is
chosen to be commensurate with the c lattice parameter of

the hcp crystal. It would be interesting to perform micro-
scopic simulations increasing the pore radius in order to find
the diameter at which the nucleation of solid 4He from the
central liquid region takes place.

We conclude that our narrow pore accommodates only the
“transition region” which presents a strong layered structure,
and very high pressures are requested to induce solid order in
the layers. It appears that a major role on the difficulty of the
layers to reach a crystalline order is due to a commensuration
effect in the tangential direction, which is imposed by the
pore radius �i.e., by a model parameter and not by the chosen
size of the simulation box�. This kind of commensuration
problem is surely encountered by 4He in a real tortuous and
irregular porous material of small diameter like in Gelsil.
However we find that the solidification of the layers takes
place when the areal density reaches the value 0.09 Å−2.
Since the lattice parameter for a triangular lattice at the areal
density of 0.09 Å−2 is commensurate with our standard pore
length L=21.62 Å, we have performed simulations with dif-
ferent L, both larger and smaller of our standard L, for a
number of effective densities, in order to verify the presence
of size effects on the microscopic phase of the layers induced
by the choice of L. In general we find that the microscopic
structure remains unchanged, moreover the static structure
factor shows solid order always only for areal density greater
than 0.09 Å−2. We conclude that the small value of L should
not affect in a substantial way the pressures of the layer by
layer transitions.

In order to exclude effects due to the geometry of the
peculiar locked configuration of the inert layer, we have also
performed simulations with the same pore length but locking
the adatoms in different configurations. We have found no
substantial differences in the microscopic structure of the
system; this is an expected result since we have already veri-
fied that the zero point motion of the adatoms has a negli-
gible effect on the microscopic structure of the inner layers.

B. Condensate fraction

The condensate fraction is obtained by computing the
one-body density matrix 
1�r ,r�� which represents the prob-
ability amplitude of destroying a particle in r and creating
one in r�. Its Fourier transformation �FT� represents the mo-
mentum distribution. In first quantization the one-body den-
sity matrix is given by the overlap between the normalized
many-body ground state wave function ��R� and ��R��,
where the configuration R�= �r� ,r2 , . . . ,rN� differs from R
= �r ,r2 , . . . ,rN� only by the position of one of the N atoms in
the system. If ��R� is translationally invariant, 
1 only de-
pends on the difference r−r�


1�r − r�� = N� dr2 . . . drN�*�R���R�� . �7�

The Bose-Einstein condensate fraction n0 is equal to the limit
of 
1�r−r�� for r−r�→�. In fact, if 
1 has a nonzero plateau
at large distance, the so called off-diagonal long-range order
�ODLRO�, its FT contains a Dirac delta function, which in-
dicates a macroscopic occupation of a single momentum
state, i.e., BEC.
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Because of the cylindrical geometry of our system we are
allowed to take the limit to large distances only along the z
direction. By taking the points r and r� at the same distance
r� from the pore axis and taking r� equal to the position rn
of the maximum of the nth layer obtained from the radial
density profile, we have computed 
1�z−z�� separately for
each layer. In order to improve the statistics we average in
the � direction for symmetry. Our results for the one-body
density matrix are reported in Fig. 9. The most important
feature is that ODLRO is present in our system for a very
large pressure range. Even at pressure of order 250 bar the
inner two layers have a small but finite condensate. In Table
II we report the global condensate fraction given by the
weighted sum of the condensate fractions in each layer.

The oscillations in the long distances tail of 
1�z−z�� re-
flect a crystalline order of the layer; in fact, the positions of
the maxima turn out to be located at integer multiples of the
lattice spacing in the z direction. Then there is a finite n0
even when the layer is in the solid phase. The presence of
BEC in a solid system is not unexpected: recently, with the
SWF technique, we have found a nonzero condensate frac-
tion both in perfect and in defected bulk solid helium.12,34

We know that in the solid layers in the pores some defects
are present, such as vacancies, as revealed by the layer con-
tour plot in Figs. 6–8, and defects are known to enhance the
delocalization of the atoms favoring BEC.12,34 This explains
the large value of n0 in the present case compared to the bulk
case at similar densities. In addition we find that the oscilla-
tions in the tail of 
1�z−z�� are registered with the crystalline
lattice of the layer and not dephased by half lattice parameter
like in bulk crystalline 4He. Therefore in the present case the
dominant contribution to the value of n0 is due to disorder
rather than to the vacancy-interstitial pairs creation due to the
zero point motion of the 4He atoms as is the case of bulk.12

We find, as expected, that the condensate fraction n0 in
each layer decreases with the increasing density, and for the
first layer it is vanishing small �Fig. 9�c�� at the highest den-
sities of our computation when full localization of the 4He
atoms in the layer is achieved. This happens when the cov-
erage of the first layer is about 0.116 Å−2, which corresponds
to a density of 0.045 Å−3 in bulk solid 4He and to a pressure
of 630 bar.27 At 
eff=0.03478 Å−3, which corresponds to an
areal density of 0.110 Å−2 and a lattice parameter equal to

the value of bulk 4He at a pressure of 376 bar, this first layer
still has a condensate fraction of the order 3�10−5.

From the experimental point of view, the reduction of the
superfluid density 
s with increasing pressure, observed for
4He in Vycor, was attributed to the blockade of pores by
solid 4He.3 This picture has been recently proposed also in a
44 Å diameter Gelsil study6 where the disappearance of the
roton signal from the excitations spectrum is interpreted as a
signature of a complete solidification of the 4He in the pores.
Moreover an anomalous continuous suppression to 0 K of
the critical temperature Tc for the transition to the superfluid
phase for 4He in Gelsil has been recently reported.5 The
small size and disorder of the pore structure may be respon-
sible for the reduction in Tc and 
s because 4He atoms can
localize in the narrowest pores5,6 and solid plugs can be
present in the largest one, or in the regions where two or
more pores connected each other, hindering the superfluid
flow. This means that the possibility of positional exchanges
between 4He atoms, needed for the superfluidity,35 is greatly
reduced.

Because of the presence of ODLRO, our solid layers are
nonclassical solids, but if this feature implies a superfluid
response of the system is not clear yet. For example, for the
interacting Bose gas in presence of strong disorder it is pos-
sible to reach a state in which the superfluid density is zero
but the condensate fraction is still finite.15

IV. CONCLUSIONS

We have studied the T=0 K phase diagram of 4He filling
a silica porous material modeled by a single smoothed 13 Å
radius nanopore via the variational SWF technique. At all the
considered densities the 4He atoms arranges themselves in
concentric annuli giving rise to a distinct layered structure.
The properties of the adsorbed layer, which is always solid in
the studied density range, are found to be independent on the
total density of the system, then, locking the position of the
4He atoms, we have treated this inert layer as a part of the
substrate. We find that, by increasing the density, the solidi-
fication takes place layer by layer starting from the layer
closest to the inert one. Due to the small size of the pore a
bulklike solid is not allowed to nucleate in the central liquid
region. The phase diagram has at least four phases. In the

FIG. 9. One-body density matrix 
1�z−z�� along the axial direction in each layer at some different effective densities �
eff

=0.02400 Å−3 �solid line�, 0.03026 Å−3 �dotted�, 0.03478 Å−3 �dashed�, 0.03861 Å−3 �long dashed�, and 0.04070 Å−3 �dot dashed��.
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density range under study, below a pressure of 60 bar the
whole dynamical system is in a stratified liquid phase and
only above 200 bar solidification of all the layers is com-
pleted. In the intermediate pressure range there is partial
freezing layer by layer. In our idealized model we find sharp
phase transitions. In a real porous media we might expect
some kind of smoothing out of the transitions due to wall
roughness and deviation from a regular cylindrical geometry.
However, the fact that the inert layer does not play a signifi-
cant role in the phase behavior of the inner layers suggests
that small asperities in the wall will be compensated by the
inert layer and the basic progression of solidification inward
from the wall should be found also in real porous media.

We find also that a nonzero condensate fraction is always
present in the studied density range, even when all the layers
are in the solid phase. This condensate fraction decreases
with increasing density but it is not suppressed even for pres-
sures up to 270 bar. From the analysis of the oscillations in
the plateau of the one-body density-matrix we recognize the

presence of defects such as vacancies as the main micro-
scopic origin of the condensate fraction in the solid layers.

It seems to us important to underline that the size distri-
bution of the real porous glasses makes difficult a detailed
comparison between our single pore model results with the
experimental ones. On the other hand experiments with dif-
ferent porous materials give what we consider some contra-
dictory results. The observed freezing pressure in 40 Å di-
ameter Gelsil of 40 bar,6 determined by the disappearance of
the roton signal from the excitations spectrum and by the
analysis of the Braggs peaks, is lower than the believed Vy-
cor freezing pressure �45 bar� even if the pore size is smaller
than the nominal size of Vycor pores �70 Å�. This is not what
we observe in our 26 Å diameter pore and what is expected
by the widely accepted mechanism for solidification in
pores3,28 which predicts that the extra-pressure over the bulk
freezing pressure necessary to the solidification is inversely
proportional to the radius of the pore. Moreover PIMC simu-
lations of 4He in a slit pore Vycor geometry show the pres-
ence of a liquid layer also at pressures of 62 bar.10 The dis-
appearance of the rotons with the increasing pressure can be
due not only to the solidification of the whole system, but
also to a modification of the excitations spectrum induced by
the particularly confined geometry of Gelsil. It would be in-
teresting to extend our study to investigate the excitations by
means of the SWF technique. This would be relevant espe-
cially for the additional information on the superfluid behav-
ior that can be deduced by the spectrum.
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