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The U�1� holon-pair boson theory of Lee and Salk �Phys. Rev. B 64, 052501 �2001�� is applied to investi-
gate the quantum scaling behavior of optical conductivity in the two-dimensional systems of strongly corre-
lated electrons. We examine the role of both the gauge field fluctuations and spin pair excitations on the � /T
scaling behavior of the optical conductivity. It is shown that the gauge field fluctuations but not the spin pair
excitations are responsible for the scaling behavior in the low-frequency region � /T�1. The importance for
the contribution of the nodal spinons to the Drude peak is discussed. It is shown that the � /T scaling behavior
is manifest in the low-frequency region at low hole concentrations close to a critical concentration at which
superconductivity arises at T=0 K.
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I. INTRODUCTION

The quantum phase transition �QPT� is a zero-temperature
�T=0� phase transition induced by quantum fluctuations
which can be controlled by “external” parameters such as
magnetic field, pressure, phase stiffness, doping, etc. These
external parameters correspond to some coupling constant g
in the Hamiltonian and the QPT occurs as a result of the
change of the ground state at a critical value gc. The QPT is
a subject of great interest, particularly in the area of strongly
correlated electron systems involving superconductor-
insulator transitions, metal-insulator transitions, integer and
fractional quantum Hall transitions, and magnetic
transitions.1 Various studies concerned with the QPT in the
high-TC cuprates have been made concerning with electron
fractionalization,2–6 magnetic properties,7–11 transport
properties,12–14 time-reversal symmetry breaking,15–18 and
phenomenological quantum critical point �QCP� near the op-
timal doping concentration.19–22 One of the most interesting
studies in the QPT is to see if there exists a universal � /T
scaling behavior of response functions in the quantum criti-
cal region of �g−gc� /T�1.1,23 In the quantum critical region
the energy gap � satisfies ��T and the response function
shows the � /T scaling behavior—for example, ��� ,T ,g�
�Td−2��� /T ,� /T��Td−2��� /T� in optical conductivity, �
at frequency �.1,12 In the high-TC cuprates, the external pa-
rameter can be the hole doping concentration x. The high-TC
cuprates show diversified phases of antiferromagnetism,
pseudogap, and superconductivity. Hole doping to the parent
compound of the antiferromagnetic �AF� Mott insulator in-
duces frustration of the AF order and as a result the
pseudogap �PG� phase occurs. Further hole doping results in
the superconductivity �SC�, and the superconducting transi-
tion temperature TC increases to a maximum at an optimal
concentration, beyond which TC decreases until SC disap-
pears, thus showing an arch shape of the superconducting
transition temperature over a limited range of doping. In the
present work we investigate the � /T scaling behavior of the
in-plane optical conductivity at very low frequency by apply-

ing the U�1� slave-boson theory of Lee and Salk24–26 which
has been successful in reproducing various observations, in-
cluding the arch-shaped superconducting transition tempera-
ture in the phase diagram of high-TC cuprates. This theory is
different from other previous slave-boson theories27–30 in that
coupling between the charge and spin degrees of freedom is
manifested in the expression of the Heisenberg interaction
term in the slave-boson representation.24–26 Both the U�1�
and SU�2� theories of Lee and Salk24 showed that the hump
structure in the optical conductivity originates from antifer-
romagnetic spin fluctuations of short range, including the
spin-singlet pair excitations.25,26 In the present work we
show that the optical conductivity at low frequency reveals a
� /T scaling behavior with a bell shape by satisfying the back
flow condition under the enforcement of gauge field fluctua-
tions. In addition, we discuss that the nodal quasiparticle
excitations in the cold spot of the Brillouin zone at low hole
doping concentrations and low temperatures sufficiently be-
low the pseudogap �spin gap� temperature are responsible for
the quantum phase transition.

II. THEORY

A. Derivation of the optical conductivity in the U(1)
slave-boson theory

To point out differences with other proposed slave-boson
theories we briefly present only the rudimentary part of the
U�1� slave-boson theory proposed by Lee and Salk24 and the
derivation of the optical conductivity in the U�1� slave-boson
theory.25,26 The t-J Hamiltonian in the presence of the exter-
nal electromagnetic field A is written

H = − t �
�i,j	,�

�eiAijc̃i�
† c̃j� + H.c.� + J�

�i,j	

Si · S j −

1

4
ninj�

− ��
i,�

ci�
† ci�, �1�

with Si=
1
2���ci�

† ���ci�. Here Aij is the external electromag-
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netic field, c̃i� �c̃i�
† � the electron annihilation �creation� op-

erator at each site, ��� the Pauli spin matrix, and � the
chemical potential. It is noted that the t-J Hamiltonian is the
effective Hamiltonian in the large-U �on-site Coulomb repul-
sion energy� limit of the Hubbard model. Thus the electron
cannot hop to another singly occupied site. Rewriting the
electron operator as a composite of spinon �f� and holon �b�
operators,

ci� = f i�bi
†, �2�

the partition function is written as

Z =� DfDbD	 exp
− �
0

�

d
L� , �3�

where L=�i���f i�
* �
f i�+bi

*�
bi�+Ht-J is the Lagrangian with
Ht-J, the U�1� slave-boson representation of the above t-J
Hamiltonian �Eq. �1��,

Ht-J = − t �
�i,j	,�

�eiAij f i�
† f j�bj

†bi + c.c.�

−
J

2 �
�i,j	

bibjbj
†bi

†�f i↓
† f j↑

† − f i↑
† f j↓

† ��f j↑f i↓ − f j↓f i↑�

− ��
i,�

f i�
† f i� + i�

i

	i
�
�

f i�
† f i� + bi

†bi − 1� . �4�

Here 	i is the Lagrange multiplier field which enforces the
single-occupancy constraint.

Applying the Hubbard-Stratonovich transformations in-
volving hopping, spinon pairing, and holon pairing orders we
obtain the partition function

Z =� DfDbD�D� fD�bD	 exp
− �
0

�

d
Lef f� , �5�

where Lef f =L0+L f +Lb is the effective Lagrangian with

L0 =
J�1 − x�2

2 �
�i,j	
��ij

f �2 +
1

2
��ij�2 +

1

4
�

+
J

2 �
�i,j	

��ij
f �2���ij

b �2 + x2� �6�

for the Lagrangian involved only with order parameters,

L f = �
i,�

f i�
† ��
 − � f�f i� −

J�1 − x�2

4 �
�i,j	,�

��ij
* f i�

† f j� + c.c.�

−
J�1 − x�2

2 �
�i,j	

�� f
ij
* �f i↓f j↑ − f i↑f j↓� + c.c.� �7�

for the spinon sector, and

Lb = �
i

bi
†��
 − �b�bi − t�

�i,j	
��ij

* bi
†bj + c.c.�

−
J

2 �
�i,j	

��ij
f �2��ij

b *bibj + c.c.� �8�

for the holon sector. Here �, � f and �b are the hopping,
spinon pairing, and holon pairing order parameters, respec-

tively. � f ��b� is the spinon �holon� chemical potential and x
the hole concentration.

We compute the optical conductivity ���� directly from
the current response function ����,

���� = � �Jx���
�Ex����Ex=0

= −
1

i�
� �2F

�Ax
2�

Ax=0

=
�xx���

i�
, �9�

where Jx is the induced current in the x direction, Ex��� the
external electric field with frequency �, F=−kBT ln Z the
free energy, and Ax��� the external electromagnetic field.
Here the isotropic current is taken into account. In the slave-
boson theory the current response function ���� is given
solely by the holon current response function because the
spinon has no electric charge. The hopping order parameter
�ij = ��ij�eaij defines the pure gauge field aij =�ij=i− j. The
inclusion of the gauge field fluctuations guarantees the im-
portant backflow condition for the spinon and holon currents
Jf +Jb=0. Allowing only the kinetic energy term of the t-J
Hamiltonian, the Ioffe-Larkin composition rule for the elec-
tron current response function31 was obtained to be

� =
� f�b

� f + �b , �10�

where � f and �b are the spinon and holon current response
functions, respectively.

The Heisenberg exchange interaction in the t-J Hamil-
tonian introduces the antiferromagnetic spin fluctuations.
Thus to incorporate the influence of the spin fluctuations into
the current response function we allow the amplitude fluc-
tuations of the spinon-singlet pairing order parameter �� f�.
Further the spin �spinon� degree of freedom is coupled with
the charge �holon� degree of freedom as shown in Eqs. �6�
and �8� above. Such coupling is manifested via the coupling
of spin pairing field � f to the holon pairing field �b in the
expression below. In passing we would like to stress that
such coupling allows the composite of the holon pair field
and the spinon pair field to be the Cooper pair field. With the
inclusion of the two order parameter fields25,26 we find that
the total current response function is given by

� =
� f�b

� f + �b +

�a�

b −
�a�

b + �a�
f

�b + � f �b�2

2
��a�

b + �a�
f �2

�b + � f − ����
0 + ���

b + ���
f �

,

�11�

where �a�
f =−�2Ff /�a��� f� and �a�

b =−�2Fb /�a��� f� are the
spinon �holon� response functions associated with both the
gauge fields and the spinon pairing field and ���

f , ���
b , and

���
0 the response functions associated with the spinon pair-

ing field. It is recalled that the first term of Eq. �11� repre-
sents the Ioffe-Larkin rule contributed only from the kinetic
energy term, satisfying the backflow condition by allowing
the gauge field fluctuations and the second term represents
from the spin fluctuations. Further the second term contains
the effects of coupling between the charge �holon� pair and
spin �spinon� pair fields. We note that the first term solely
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contributes to the Drude peak and the second term to the
hump structure of the optical conductivity.25,26

B. Scaling behavior of the conductivity in two dimensions

The dimensional analysis shows that the conductivity
���� has scaling dimension of d−2 and the conductivity has
the scaling form,1,12

���,T,g� =
Q2

�

 kBT

�c
�d−2

�
 ��

kBT
,

�

kBT
� , �12�

where ���� /kBT ,� /kBT� is the scaling function, with �
��−z the energy gap and Q the charge of the charge carrier.
Here � is the correlation length and z the dynamics critical
exponent. In the critical region of ��kBT, the conductivity
shows universal scaling behavior

���� =
Q2

�

 kBT

�c
�d−2

�
 ��

kBT
� . �13�

In this work we are concerned with the two-dimensional sys-
tem of the high-TC cuprates and the conductivity has no scal-
ing dimension in temperature. Thus we obtain

���� � �
�

T
� . �14�

Numerical calculations of the scaling function by Damle and
Sachdev showed a bell-shaped feature in the plot of �I� vs
� /T, where �I� is the real part of the scaling function for low
frequency � /T�1 in two spatial dimensions.12

III. COMPUTED RESULTS OF IN-PLANE OPTICAL
CONDUCTIVITY

Here we present the predicted � /T scaling behavior of the
conductivity ��� ,T� with the inclusion of both the gauge
field fluctuations and the spin pair excitations based on the
U�1� slave-boson theory. In order to see whether the quantum
phase transition occurs, we choose a low hole concentration
of x=0.02 near a critical doping at which the superconduct-
ing transition was shown to occur at T=0 K.24 The tempera-
ture range is chosen between 0.015t and 0.045t, which is
sufficiently below T*�0.07t�, based on the predicted phase
diagram obtained by Lee and Salk.24 Figure 1 shows the � /T
scaling behavior of the optical conductivity for temperatures
between 0.015t and 0.045t. We see that the � /T scaling be-
havior becomes markedly clear for � /T�1 in the region of
low temperature as shown in Fig. 1. Encouragingly we ob-
tained a bell shape in the plot of ���� vs � /T in agreement
with the bell shape feature demonstrated by Damle and Sa-
chdev �see Fig. 6 in Ref. 12�.

Although not shown here we find that the neglect of the
spin-singlet pair excitations �the fluctuations of the spinon-
singlet pair order� does not appreciably affect the scaling
behavior of the conductivity. Such excitations affect largely
the hump structure in the optical conductivity. This indicates
that the spin fluctuations contribute only to higher-energy
�-frequency� charge dynamics involved with a midinfrared
band in the high-TC cuprates. For further analysis of the scal-

ing behavior of the optical conductivity in Fig. 2 we show
the predicted result of ���� vs � /T with the exclusion of
gauge field fluctuations—that is, the conductivity contributed
only from the bare kinetic energy term of the holons. A uni-
versal scaling behavior with a bell shape is no longer pre-
dicted as shown in Fig. 2. Comparison of Figs. 1 and 2
shows that the scaling behavior originates from the kinetic
energy term by satisfying the backflow condition guaranteed
by the gauge fluctuations.31,32 As shown in Fig. 2 deviation
from scaling behavior becomes increasingly larger as � /T
decreases to 0. We note that the nodal quasiparticle excita-
tions for the Drude peak in the cold spot of the Brillouin
zone are important for the � /T scaling behavior of a bell
shape, as shown in Fig. 1.

The gauge �pure gauge� invariance disappears in our
mean-field treatment. In the present study the phase �gauge�
fluctuations of the spin �spinon� pairing order parameters are
taken into account. The coherence of the spinon pairing
Higgs field leads to the acquirement of mass for the gauge
field as a consequence of the Anderson-Higgs mechanism.
Earlier Onoda and co-workers pointed out that a downward
deviation from linearity in temperature33 in the limit of �
→0 is attributed to the acquirement of mass by the gauge

FIG. 1. � /T scaling behavior of the optical conductivity with
the inclusion of both the gauge field fluctuations and the spin pair
excitations based on the U�1� slave-boson theory at x=0.02.

FIG. 2. Deviation from the � /T scaling behavior of the optical
conductivity in the low-frequency region with the exclusion of
gauge field fluctuations.
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field.34 In the future it will be of great interest to make quan-
titative and qualitative comparisons with such a study on
equal footing by direct calculations of resistivity in the lim-
iting case of �→0.

Finally we would like to point out the essence of the
present study. Unlike other theories, in our slave-boson
theory the coupling of the spinon pair field with the holon
pair field is taken care of in the treatment of the Heisenberg
term of the t-J Hamiltonian. The backflow condition for the
spin and charge currents is maintained—that is, Jf +Jb=0
with Jf the spinon current and Jb the holon current. As men-
tioned above, our theory predicts the peak- �Drude-peak�
dip-hump �midinfraband� structure in agreement with the ob-
servation of optical conductivity. The hump structure is at-
tributed to the antiferromagnetic spin fluctuations of short
range, which originate from the hot spot of the Brillouin
zone. From the present study of the optical conductivity in
the low-frequency region of � we find that the Drude peak
originates from the nodal point �the cold spot�. Therefore we
find that only the nodal quasiparticle excitations in the cold
spot contribute to the scaling behavior of the conductivity
and play a dominant role in the quantum phase transition. As
shown in Fig. 1, the � /T scaling behavior survives at a low
hole doping concentration sufficiently below the pseudogap
temperature T*.

IV. SUMMARY

In the present study, we investigated the scaling behavior
in the conductivity of the two-dimensional systems of
strongly correlated electrons based on the holon-pair boson
theory of Lee and Salk.24 The scaling behavior with the bell-
shaped structure of optical conductivity in the very-low-
frequency region of �→0 is predicted near a critical doping
concentration in the underdoped region at temperatures suf-
ficiently below T*. By observing the disappearance of the
scaling behavior in the low-frequency region with the exclu-
sion of the gauge field fluctuations, we find that the nodal
quasiparticle excitations in the cold spot of the Brillouin
zone contribute to the � /T scaling behavior in the conduc-
tivity by satisfying the backflow condition and that the spin
fluctuations from the hot spot quasiparticles are not respon-
sible for both the bell-shaped optical conductivity and the
scaling behavior in the low-frequency region.
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