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The phase diagram of the uniaxially anisotropic s=1 antiferromagnet on the kagome lattice includes a
critical line exactly described by the classical three-color model. This line is distinct from the standard geo-
metric classical criticality that appears in the classical limit �s→�� of the two-dimensional XY model; the
s=1 geometric T=0 critical line separates two unconventional plaquette-ordered phases that survive to nonzero
temperature. The experimentally important correlations at finite temperature and the nature of the transitions
into these ordered phases are obtained using the mapping to the three-color model and a combination of
perturbation theory and a variational ansatz for the ordered phases. The ordered phases show sixfold symmetry
breaking and are similar to phases proposed for the honeycomb lattice dimer model and s=1/2 XXZ model.
The same mapping and phase transition can be realized also for integer spins s�2 but then require strong
on-site anisotropy in the Hamiltonian.
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I. INTRODUCTION

The geometric constraints that determine the infinite set of
ground states in classical highly frustrated magnets are
known in several celebrated instances to give rise to power-
law or “critical” correlations at vanishing temperature. A
frustrated magnet is one in which not all interaction energies
can be simultaneously optimized; here we follow convention
in describing by “highly frustrated” the class of frustrated
magnets that have an infinite number of classical ground
states, even after removing global symmetries. An example
of a frustrated magnet that is not highly frustrated is the
triangular lattice XY antiferromagnet, which has a unique
ground state once the three spins on a single triangle are
fixed.

The classical XY antiferromagnet on the two-dimensional
�2D� kagome lattice and the classical Heisenberg antiferro-
magnet on the three-dimensional �3D� pyrochlore lattice are
special members of the highly frustrated class: they show
power-law correlations determined by a critical two-
component height model in the first case1–3 and by 3D dipo-
lar correlations in the second.4 A general highly frustrated
magnet, such as the Ising antiferromagnet on the kagome or
triangular lattice, has only short-ranged correlations, i.e., an
exponential decay of correlations beyond a finite “correlation
length.” Geometrically critical frustrated magnets can be
thought of as on the boundary between disordered phases
with short-ranged correlations and long-ranged ordered
phases, but rather than being tuned by an external parameter,
the criticality is a consequence of the fixed geometry of the
lattice. A major focus of current research in frustrated mag-
netism is how quantum effects in real magnets with finite
spin S modify these classical critical points, leading possibly
to spin liquids,5–8 emergent gauge symmetries,9 and novel
ordered phases.

The first goal of this paper is to show that the uniaxially
anisotropic spin-1 antiferromagnet on the kagome lattice has

a range of parameters over which the ground states are ex-
actly determined by the “three-color model,”10 which is the
same geometrically critical model that appears in the classi-
cal XY model on the same lattice.1–3 The s=1 kagome anti-
ferromagnet is thus a rare example where exact information
can be obtained on a frustrated quantum magnet. Uniaxial
�XXZ� anisotropy is generic in kagome materials because
their layered quasi-2D structure implies XXZ anisotropy. A
typical kagome compound is the s=3/2 material
SrCr8−xGa4+xO19,

11 nickel kagome compounds have s=1. A
recent neutron scattering study12 of the iron jarosite
KFe3�OH�6�SO4�2, which has s=5/2, observed, in addition
to expected classical Heisenberg kagome physics, several ef-
fects induced by Dzyaloshinkii-Moriya terms resulting from
additional ions that break the inversion symmetry of the
kagome lattice.

The second part looks at the plaquette-ordered phases
separated by this critical line, which serves as a solvable
starting point for perturbation theory. The critical line occurs
for reasons quite different from the critical point of the clas-
sical XY model on this lattice; in particular, the s=1 problem
has a nonvanishing gap above the ground-state manifold in
the thermodynamic limit, unlike the large-S case. Section II
reviews the connection between the classical XY antiferro-
magnet and the three-color model and introduces the XXZ
model for spin-1 antiferromagnets on the kagome lattice.
From this we derive the existence of a critical line related to
the three-color model. Section III discusses the ordered
phases separated by this critical line and the nature of the
phase transition and concludes by developing a gauge theory
description in order to compare this system to other recently
studied models of frustrated magnetism.

II. THE KAGOME ANTIFERROMAGNET AND THE
THREE-COLOR MODEL

The ground states of the classical XY model on the
kagome lattice �Fig. 1� are equivalent,1–3 up to an overall
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O�2� rotation, to the states of the honeycomb lattice three-
color model.10 Once one spin is fixed, all other spins form
angles of 0 or ±2� /3 with this spin: labeling these three
directions with colors, the ground states have one spin of
each color around each small triangle �Fig. 1�. This is
equivalent to coloring the bonds of a honeycomb lattice with
three colors in such a way that each vertex joins bonds of all
three colors. The ground-state degeneracy and chiral suscep-
tibility were obtained by Baxter.10 Correlations within this
set of �equally weighted� ground states, which determine the
thermodynamics in the limit of low temperature, are deter-
mined by a two-component height model with an SU�3�
symmetry:1,13 one quantity with critical correlations is the
chirality �= ±1 of colors around a vertex1,13,14

���r1���r2�� �
1

�r1 − r2�4
. �1�

Experimental observation of spin chirality in a kagome com-
pound with approximate Heisenberg symmetry15 is discussed
in Ref. 12.

Now consider s=1 spins on the sites of the kagome lat-
tice, with antiferromagnetic, uniaxially anisotropic interac-
tions Jxy �Jz between nearest neighbors. Once the interac-
tions are anisotropic, symmetry requires the inclusion of on-
site anisotropy at the same order

H = �
�ij�

�Jxy�Sx
i Sx

j + Sy
i Sy

j � + JzSz
iSz

j	 + D�
i

�Sz
i�2. �2�

Note that the on-site anisotropy term D would be constant in
an s=1/2 XXZ model. Terms omitted for an isolated kagome
layer are long-ranged �beyond nearest-neighbor�, involve
more than two spin operators, or break time-reversal symme-
try, so �2� is appropriate when exchange interactions are
dominant and time-reversal is not explicitly broken.
Dzyaloshinskii-Moriya terms absent in �2� are allowed if the

nonmagnetic lattice surrounding the kagome layers breaks
inversion symmetry, as in the compound studied in Ref. 12.

We start with the case Jxy =0, in which the model is ef-
fectively classical �i.e., Sz on each site commutes with the
Hamiltonian�. Rewriting the Hamiltonian as a sum over the
small triangles in the kagome lattice gives �here 1, 2, 3 label
the three spins in a triangle�

H = �
�

 Jz

2
�Sz

1 + Sz
2 + Sz

3�2 +
D − Jz

2
��Sz

1�2 + �Sz
2�2 + �Sz

3�2	� .

�3�

The first term is minimized if ��Sz
i =0, while the second term

favors Sz=0 for D�Jz and Sz= ±1 for D�Jz. This paper
concentrates on the case of weak positive D, but first we
briefly list the other possibilities. For D�Jz, the ground state
is simply Sz=0 everywhere; the effective U�1� gauge theory
for low-energy excitations when Jxy �0 is added to this case
has been studied by Wen.16 For D�0, the ground state has
Sz= ±1 everywhere and the problem reduces to the classical
Ising kagome antiferromagnet, which is strongly disordered
�i.e., the correlation functions in the equally weighted set of
ground states fall off exponentially with distance�.

The intermediate range, 0�D�Jz, is classically critical:
a ground state has on every triangle one spin with Sz=1, one
with Sz=0, and one with Sz=−1, and this condition is an
exact statement of the three-color problem for the bonds of
the honeycomb lattice. Even though the Hamiltonian H does
not have the additional Z3 color symmetry of the three-state
Potts antiferromagnet or the classical XY antiferromagnet,
the ground state family of states does have this symmetry.
Note that the additional symmetry is Z3 rather than the per-
mutation group of three colors S3 because there is always a
time-reversal symmetry in the Hamiltonian: the full permu-
tation group of the three colors is made of this twofold sym-
metry that interchanges S= +1 and Sz=−1, plus three
chirality-preserving rotations of the colors �isomorphic to
Z3�. The icelike T→0 entropy per triangle of the kagome
lattice is half the entropy per hexagon of the three-coloring
problem, S�=0.189 557kB.10

The key difference between this s=1 realization of the
three-color model and the standard classical XY realization
is the existence of an energy gap above the ground-state
manifold in the s=1 model. The existence of a critical line �a
range of values of D over which the model is critical� is
simply a consequence of this gap: the set of ground states is
exactly the same for all values of D, but the energy gap to
defects varies with D as now calculated. Clearly the energy
gap to these defects collapses at the two endpoints: below we
obtain the correlation length at low temperatures induced by
these defects, for which it is necessary to understand the
nature of the long-ranged interaction between defects.

At nonzero temperature above this critical line, the free
energy and correlation length can be determined using results
on defects in the three-color model, although there are sev-
eral signatures of the breaking of Z3 color symmetry once
states other than the ground states are considered. Even
though the lowest energy defect in a finite system consists of
flipping an Sz=0 site to Sz= ±1, so the energy gap is D, the

FIG. 1. A portion of the kagome lattice, with the associ-
ated honeycomb lattice �dotted lines�. For 0�D�Jz, Jxy =0, and
T=0, the three spins around every small triangle include one with
Sz= +1, one with Sz=−1, and one with Sz=0. The bottom right
shows breakup of a single bond defect into two vertex defects �large
dots�: the two defective vertices of the honeycomb lie on a loop
containing only Sz=0, +1.

CENKE XU AND J. E. MOORE PHYSICAL REVIEW B 72, 064455 �2005�

064455-2



free energy correction at finite temperature does not go sim-
ply as exp�−D /kT� because this local bond defect can break
up into two vertex defects �Fig. 1�. For example, if we flip
Sz=0 site to Sz=1 site, then by switching Sz=1 and Sz=0
sites, this bond defect can fractionalize into two �1,1 ,−1�
vertex defects. This pair of vertex defects always lie in a loop
made of Sz=0 and Sz=1 sites, and are neither tightly bound
nor completely free, but have a power-law entropic interac-
tion obtained by the Coulomb gas method13 and verified in
numerical transfer-matrix studies.14

For the model �3�, the singular part of the free energy per
site and correlation length are related to the scaling dimen-
sion of lowest energy defects. The scaling dimension x of the
defect can be calculated from the corresponding contour loop
model, which gives x=1/2.13 Following Refs. 17 and 18, the
scaling of free energy can be calculated in terms of scaling
dimension of defects

fs�T� � �Y�m�Y�− m��1/�2−x�, �4�

where Y�m� and Y�−m� are the fugacities of a pair of oppo-
sitely charged defects. Hyperscaling predicts that the singular
part of the free energy per volume is determined by the in-
verse correlation volume

fs�T� � 	�T�−2. �5�

Hence, the free energy and correlation length behave at low
temperature as

fs�T� � e−2D/3kT, 	�T� � eD/3kT. �6�

�These formulas describe the exponential part of the behav-
ior: it is possible that there are power-law dependences in the
prefactors.� The chirality correlator �1� will show power-law
behavior for r= �r1−r2�
	, and then decrease as exp�−r /	�
once r�	. A small numerical transfer-matrix study �up to
nine bonds per unit cell� confirms qualitatively the prediction
that fs for a small system of size L
	�T� goes as e−D/kT

when kT
D with a temperature-dependent prefactor that in-
creases with system size: in the thermodynamic limit, this
prefactor gives rise to the different scaling in �6�.

Recent interest in the classical three-color model has fo-
cused on its unusually slow dynamics at low temperature,
which invalidate local Monte Carlo methods:19,20 the s=1
anisotropic kagome antiferromagnet may provide an experi-
mental system in which the dynamical phenomena predicted
for this classical model can be observed. The rest of this
paper concentrates on the quantum model: nonzero Jxy gen-
erates two different quantum ordered phases separated by the
classical line �Jxy =0, 0�D�Jz� with critical correlations.
Unlike the power-law correlations on the critical line, the
order parameters in these phases are predicted to survive to
T�0. The following section starts with a heuristic derivation
of the ordered phases, then develop a lattice U�1� gauge
theory to justify some assumptions and connect to other
models.

III. PLAQUETTE-ORDERED PHASES NEAR THE
CRITICAL LINE

This section starts by finding states near the critical line
using a standard perturbation-theoretic approach within the
degenerate manifold of ground states found above. The first
splitting of the ground-state degeneracy of the three-color
model occurs at third order in perturbation theory in Jxy /Jz:
the effective Hamiltonian is

Hef f = − t�̋ �S+
1S−

2S+
3S−

4S+
5S−

6 + h.c.� , �7�

where t= �3Jxy
3 � / �2Jz

2�, and the numbers 1–6 refer to consecu-
tive spins around a hexagon of the kagome lattice; spins live
on bonds of the hexagons in Fig. 1. Similar loop terms occur
in many models when an effective H is derived for states in
the constrained space. A similar perturbation theory has been
carried out for the XXZ antiferromagnet on the triangular
lattice.21

Hef f will induce resonances when a hexagon is “flip-
pable,” i.e., will superpose the two configurations Sz

i

= �1,0 ,1 ,0 ,1 ,0� and �0, 1, 0, 1, 0, 1� around a hexagon, or
superpose �−1,0 ,−1 ,0 ,−1 ,0� and �0,−1,0 ,−1 ,0 ,−1�. Note
that the third type of alternating hexagon, e.g., �−1,1 ,
−1 ,1 ,−1�, is not flippable, so that at this lowest nontrivial
order of perturbation theory the Z3 symmetry of the classical
critical line is broken. The existence of two kinds of hexa-
gons that can resonate will lead to an additional symmetry
breaking in the ordered phases we find, compared to predic-
tions for the s=1/2 XXZ model22 and the honeycomb quan-
tum dimer model.6,23

For nonzero t, we start by assuming that the system will
favor a state with as many flippable hexagons as possible.
This leads to the so-called �3��3 state, in which 2/3 of the
hexagons are flippable, as a classical starting point. The
hexagons in the honeycomb lattice form a triangular lattice
with three sublattices: in one �3��3 state, for example, sub-
lattice A has spins �1,−1,1 ,−1 ,1 ,−1�, sublattice B has spins
�1,0,1,0,1,0�, and C has �−1,0 ,−1 ,0 ,−1 ,0�. Now all hexa-
gons of sublattices B and C are flippable. To minimize the
energy �7� starting from this state, one expects resonance in
the B and C sublattices, but both cannot simultaneously reso-
nate without violating the three-color constraint. Consider a
variational wavefunction in which only sublattice B reso-
nates. The spins with Sz=−1 are fixed and do not lie on the

hexagons of sublattice B: call these sites B̄. The other spins
resonate: the lowest-energy superposition is


var = 

i�B̄

�Sz
i = − 1�

� 
̋
�B

��˝ =

1

0 0

1 1

0

� ± �˝ =

0

1 1

0 0

1

�
�2

� .

�8�

Here the sign in the superposition is the same for all hexa-
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gons, and for lowest energy has the same sign as t and Jxy:
we label the state with t�0 as P1 and that with t�0 as P2.
This state has �Hef f�=−�t� /3 per hexagon of the whole lattice,
since only 1/3 of hexagons resonate. It is an eigenstate of
Hef f if the Hilbert space is restricted to states satisfying the
three-color constraint.

These states correspond to sixfold symmetry breaking:
hexagons on one of three sublattices, containing either
Sz= +1,0 or Sz=0,−1, resonate, and the other two sublattices
are symmetric. This combined sublattice and time-reversal
symmetry breaking is expected to survive to finite tempera-
ture, with a transition temperature Tc of order �t� �Fig. 2�. At
finite temperature or by including additional terms in the
model, it may be possible to separate this sixfold symmetry
breaking into two transitions. The zero-temperature transi-
tion between P1 and P2 is unusual in that it is a first-order
transition by most definitions �the state changes discontinu-
ously at t=0�, but with algebraic correlations at the transition
point determined by the SU�3� theory of the three-color
model: effectively the kagome lattice is fine-tuned so that
this scenario occurs. For integer spin s�2, the three-color
problem will again describe the Jxy =0 model if sufficiently
strong Sz

4 anisotropy is added to the Hamiltonian.
A theory of two compact U�1� gauge fields on the bonds

of the honeycomb lattice gives insight into how the ordered
phases and critical line of this model connect to recent work
on 2D and 3D frustrated magnetism. It is possible to use a
single U�1� gauge field, following the compact QED descrip-
tion of the quantum dimer model:24 an integer-valued vari-
able Ei=Sz

i is assigned to each bond i of the honeycomb
lattice to represent spin, with a gauge constraint that the sum
of integers around a vertex is 0, and an energetic constraint
that restricts Ei=−1, 0,1. However, the theory now given in
terms of two gauge fields better captures the symmetries of
the three-color line at t=0: the two gauge fields are related to
the two components of the height-model description.

First let two scalar fields Ea
i , a=1, 2, be assigned to each

bond i: the values for the three spin possibilities are

�E1
i ,E2

i � = ��1,0� if Sz
i = 0

�− 1/2,�3/2� if Sz
i = 1

�− 1/2,− �3/2� if Sz
i = − 1.

� �9�

These three possible states can be selected by allowing
�E1 ,E2� to range over the sites of a triangular lattice centered
on the origin with an additional energy �1/k��i��E1

i �2

+ �E2
i �2	, k→0. The Hilbert space is constrained to have the

sum of E fields vanish for the bonds around a vertex, creat-
ing two U�1� gauge symmetries.

Next, note that a 2D unit vector n̂i can be assigned paral-
lel or antiparallel to each bond i so that vertices of one sub-
lattice of the honeycomb have three incoming bonds, while
those of the other sublattice have three outgoing bonds.
Now define two-component vector fields on bonds:
Ea=Ean̂i, a=1, 2. Then the three-color constraint is Gauss’s
law with no background charges: � ·Ea=0. Two height fields
ha on the faces are defined so that scalar Ea on a bond is
equal to ha

l −ha
r , where �r , l� indicate right and left with re-

spect to the orientation on bonds: Ea= �ẑ� n̂� ·�ha, which
guarantees Gauss’s law around each vertex. This definition
of height variables corresponds to the standard definition in
the classical three-color model.1,13

The last step is to represent the ring-exchange terms,
which break the Z3 symmetry. Define conjugate operators on
each bond �A1

i ,A2
i � with commutation relations

�Aa
j ,Eb

k	 = i� jk�ab. �10�

Then Ta
j �exp�iAa

j � acts as a raising operator: it increases
the quantum number Ea

j by 1. This enables a compact repre-
sentation of the ring-exchange terms proportional to t:
on bond j, exp�iAa

j la
�1�� will raise Sz

j =0 to Sz
j =1 if l�1�= �

−3/2 ,�3/2�. Similarly, if l�2�= �−3/2 ,−�3/2� then
exp�iAa

j la
�2�� takes Sz

j =0 to Sz
j =−1. Defining vector fields Aa

j

=Aa
j n̂ j, the ring-exchange terms around hexagons become

H� = − 2t�cos�� � Aala
�1�� + cos�� � Aala

�2��	 . �11�

Here, as usual in gauge theories of lattice spin models, the
meaning of cos���A� is that one takes the lattice circula-
tion around a plaquette: for v̂ j an clockwise assignment of
unit vectors along the bonds around a hexagon

cos�� � A� = cos�A1 − A2 + A3 − A4 + A5 − A6�

= cos� �
j=1,…,6

v̂ j · A j� . �12�

Note that the two ring-exchange terms only act in one of two
cases: either the spins around the hexagon alternate between
Sz=0 and Sz=1, or between Sz=0 and Sz=−1. The sixfold
symmetry breaking in the plaquette-ordered phases results
from the absence of the possible ring-exchange term with
l�3�= �0,�3�. Adding this term restores a Z3 color symmetry,
with likely ninefold symmetry breaking in the ordered
phases. The similarity of this gauge model to compact quan-
tum electrodynamics �QED� supports the conclusion that
there is a gapped ordered state for t�0.

A quantum height model can be obtained from this gauge
theory: using the definition of height variables given above,

FIG. 2. Phase diagram of spin-1 XXZ kagome antiferromagnet
for fixed D� �0,Jz�. The critical point C separates two distinct or-
dered phases P1 and P2 with sixfold symmetry breaking. The cor-
relation length along the dotted line diverges as T→0 according to
Eq. �6�.
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the ring exchange term becomes �i=1
2 −2t cos��ala

�i��, where
�a is the operator conjugate to height. The quantum height
Hamiltonian can be used to study a simple variational wave
function that gives the same ordered state as �8�. A generali-
zation that can be studied using this technique is to an
s=1/2 XXZ kagome bilayer in a magnetic field, with cou-
pling between the layers that induces a three-color point: this
system has columnar order rather than plaquette order.

IV. CONCLUSIONS

We have used the proximity to a nontrivial classically
solvable line to study part of the phase diagram of the s=1
antiferromagnet on the kagome lattice, including phases
where Jxy �0 and quantum Monte Carlo studies are imprac-
tical. The solvable line at zero temperature has an emergent
Z3 symmetry of the three colors that does not exist in the full
spectrum. A promising way to extend this approach closer to
the isotropic point �Jxy =Jz, D=0� is via numerical series ex-
pansion in Jxy /Jz from the critical line, to map out the extent
of the plaquette-ordered phase. Finding other cases where

frustrated magnets have solvable critical points for finite s
similar to those in the kagome and pyrochlore antiferromag-
nets at s=� is an important direction for future research.

The unusual phase diagram of the spin-1 antiferromagnet
on the kagome lattice should be verifiable by experimental
neutron scattering studies of such compounds: in particular,
confirmation of the plaquette ordered state should be feasible
if it survives for a significant range of values of Jxy /Jz. The
special low-temperature physics of the three-color model at
Jxy =0 also can be discerned by sensitive thermodynamic
measurements in principle, but away from the special three-
color point, the zero-field thermodynamic signature of the
phase transition into the plaquette-ordered phase will be
similar to standard second-order phase transitions at finite
temperature.
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