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The thermodynamic properties of S�1 ferromagnetic chains with an easy-axis single-ion anisotropy are
investigated at arbitrary temperatures by both a Green-function approach, based on a decoupling of three-spin
operator products, and by exact diagonalizations of chains with up to N=12 sites using periodic boundary
conditions. A good agreement between the results of both approaches is found. For the S=1 chain, the
temperature dependence of the specific heat reveals two maxima, if the ratio of the anisotropy energy D and the
exchange energy J exceeds a characteristic value, D /J�7.4, and only one maximum for D /J�7.4. This is in
contrast to previous exact diagonalization data for comparably small chains �N�7� using open boundary
conditions. Comparing the theory with experiments on dibromo Ni complexes the fit to the specific heat yields
concrete values for D and J which are used to make predictions for the temperature dependences of the
spin-wave spectrum, the correlation length, and the transverse magnetic susceptibility.
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I. INTRODUCTION

In low-dimensional spin systems1 the interplay of quan-
tum and thermal fluctuations and the effects of spin anisotro-
pies on the thermodynamics are of basic interest. Whereas
for Heisenberg antiferromagnets quantum fluctuations occur
already at T=0, in ferromagnets, possibly with an easy-axis
anisotropy, quantum fluctuations exist at nonzero tempera-
tures only. The study of systems with ferromagnetic ex-
change couplings, e.g., of the quasi-one-dimensional �1D�
S=1 ferromagnet CsNiF3 with an easy-plane single-ion
anisotropy,2 is also motivated by the progress in the synthesis
of new low-dimensional materials, such as the frustrated
S= 1

2 quasi-1D cuprates.3 Likewise, the magnetic behavior of
LaMnO3, a parent compound of the colossal magnetoresis-
tance manganites,4 may be described by an effective spin
S=2 model with a ferromagnetic intraplane and an antiferro-
magnetic interplane coupling, where neutron-scattering
experiments5 yield evidence for a pronounced ferromagnetic
short-range order �SRO� in the paramagnetic phase and for
an easy-axis single-ion anisotropy. To provide a good ana-
lytical description of SRO and of the thermodynamics at
arbitrary temperatures, the standard spin-wave approaches
cannot be adopted. Recently, the Green-function equation of
motion decoupling of second order and the Green-function
projection method with a two-operator basis,
respectively,6–13 have been successfully applied to quantum
spin systems with anisotropies of different kind, where most
of the previous work was devoted to S= 1

2 systems and only
in Refs. 7 and 9 low-dimensional isotropic S�1 ferromag-
nets have been considered. However, the study of anisotropic
S�1 magnets is of current interest.14–17 In Refs. 15–17 the
S=1 ferromagnet with an easy-axis single-ion anisotropy
was investigated in the random phase approximation �RPA�
for the exchange term. By this approach the paramagnetic
phase and its SRO properties cannot be described. Therefore,

a second-order Green-function theory of SRO for anisotropic
S�1 models, going one step beyond the RPA, should be
developed.

As a first step in this direction, we present a theory for the
S�1 ferromagnetic chain with an easy-axis single-ion aniso-
tropy described by the model

H = −
J

2 �
�i,j�

SiS j − D�
i

�Si
z�2. �1�

��i , j� denote nearest-neighbor �NN� sites� with J�0, D�0,
and Si

2=S�S+1�. The choice D�0 is motivated by our em-
phasis on the temperature dependence of the specific heat,
which reveals a double maximum being more pronounced
for D�0 than for D�0,18 and by the comparison with the
experiments on dibromo Ni complexes19 which may be de-
scribed by the model �1� with D�0.

Furthermore, we perform exact finite-lattice diagonaliza-
tions �ED� of S=1 chains with up to N=12 sites using peri-
odic boundary conditions which are critically analyzed in
relation to the ED results by Blöte18 for the specific heat
using open boundary conditions.

The paper is organized as follows. In Sec. II the second-
order Green-function theory for model �1� is developed ex-
tending previous approaches for S= 1

2 �Refs. 6, 8, and 10–13�
to S�1 and rotation-invariant methods for S�1 �Refs. 7 and
9� to the case of an easy-axis on-site anisotropy. To test the
theory, in Sec. III the limiting cases J=0 and D=0 are con-
sidered in comparison with exact and ED results. The effects
of spin anisotropy are explored in Sec. IV. The spin-wave
spectrum, the spin susceptibility, and the specific heat are
investigated with the focus on the condition for the existence
of two maxima in the temperature dependence of the specific
heat. Moreover, the theory is compared with available ex-
perimental data, and predictions for some relevant quantities
are made. A summary of our work can be found in Sec. V.
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II. GREEN-FUNCTION THEORY

The dynamic spin susceptibilities �q
�����=−��Sq

� ;S−q
� ���

���= +−,zz; −	�q�	�, defined in terms of two-time re-
tarded commutator Green functions,20 are determined by the
projection method.10–12 Taking into account the breaking of
rotational symmetry by the single-ion spin anisotropy we
choose, as in Refs. 11 and 12, the two-operator basis

A�= �Sq
� , iṠq

��T ��= + ,z�. Because the model considered has
up-down symmetry with respect to Si

z→−Si
z, we have

�Si
z�=0. Neglecting the self-energy, the matrix Green func-

tion ��A ;A+���= ��−M�M−1�−1M with the moment matrices

M= ��A ,A+�� and M�= ��iȦ ,A+�� yields

�q
����� = −

Mq
��

�2 − ��q
���2 , ��q

���2 = Mq
�3���/Mq

��, �2�

where Mq
��= ��iṠq

� ,S−q
� �� and Mq

�3���= ��−S̈q
� ,−iṠ−q

� ��. The first
spectral moments are given by the exact expressions

Mq
+− = 4JC1�1 − cos q� + 2D�3C0

zz − S�S + 1�� , �3�

Mq
zz = 2JC1

+−�1 − cos q� . �4�

The correlation functions Cn= 1
2Cn

+−+Cn
zz and Cn

��= �S0
�Sn

��
= �1/N�
qCq

��eiqn with Cq
��= �Sq

�S−q
� � are calculated by the

spectral theorem,20 analogous to Ref. 12, as

Cq
�� =

Mq
��

2�q
�� �1 + 2n��q

���� + Dq
��, �5�

Dq
�� = lim

�→0

�

2
��Sq

�;S−q
� ���

�+�, �6�

where n���= �e�/T−1�−1 and ��¯ ; ¯ ���+� denotes the anti-
commutator Green function. The on-site correlators C0

�� are
related by the sum rule

C0
+− + C0

zz = S�S + 1� �7�

which follows from the operator identity Si
2=Si

+Si
−−Si

z

+ �Si
z�2 and �Si

z�=0.
To obtain the spectra �q

�� in Eq. �2� in terms of two-spin
correlation functions we approximate the time evolution of

the spin operators −S̈q
� in the spirit of the schemes proposed

in Refs. 6–12. That is, taking the site representation the prod-

ucts of three spin operators in −S̈i
� are expressed in terms of

one spin operator. Then, the projection method neglecting the
self-energy becomes equivalent to the equation of motion
decoupling in second order.

In −S̈i
+ we decouple the operators along NN sequences

�i , j , l� as12

Si
+Sj

+Sl
− = �+−�Sj

+Sl
−�Si

+ + �+−�Si
+Sl

−�Sj
+. �8�

Here, following the investigation of the isotropic
ferromagnet,8,9 the dependence on the relative site positions
of the vertex parameters �cf. Ref. 10� is neglected.

For S�1, in −S̈i
+ there appear products of three spin op-

erators with two coinciding sites which we decouple as pro-
posed in Refs. 7 and 9,

Si
+Sj

−Sj
+ = �Sj

−Sj
+�Si

+ + �+−�Si
+Sj

−�Sj
+. �9�

Furthermore, for D�0, −S̈i
+ contains the term D2Ai with

Ai � Si
+�Si

z�2 + 2Si
zSi

+Si
z + �Si

z�2Si
+. �10�

For S= 1
2 we have Ai=0, and for S=1 we get Ai=Si

+ �Ref. 17�
using the relation �Si

z�2Si
+=Si

zSi
+ �Ref. 21�. To obtain a

reasonable approximation of Ai for S�1, we calculate
exactly the average �AiSi

−��T� at T=0 and T→. We
obtain �AiSi

−��0�= �2S−1�2�Si
+Si

−��0� with �Si
+Si

−��0�=C0
+−�0�

=S and limT→�AiSi
−�= 1

5 �4S�S+1�−3�limT→�Si
+Si

−� with
limT→�Si

+Si
−�= 2

3S�S+1�. Due to those results, for S�1 we
approximately replace Ai by

Ai = ��2S − 1�2Si
+ �11�

with ��T=0�=1 and ��T→�= �4S�S+1�−3� /5�2S−1�2.
Note that Eq. �11� holds exactly for S=1 with ��T�=1. Con-
sidering the ratio R�� /C0

zz, for S=2 �3� we have
limT→ R=0.23 �0.09� as compared with R�0�=S−2=0.25
�0.11�. Accordingly, for 1�S�3, R�T� depends only weakly
on temperature. Neglecting this dependence, i.e., taking
R�T�=R�0�, ��T� in Eq. �11� may be calculated in a reason-
able approximation as

��T� =
1

S2C0
zz�T� . �12�

In −S̈i
zz we adopt the decouplings �cf. Refs. 12, 11, and 9�

Si
zSj

+Sl
− = �zz�Sj

+Sl
−�Si

z, �13�

Si
−Sj

zSj
+ = �zz�Sj

+Si
−�Sj

z. �14�

Finally, we obtain the spectra

��q
+−�2 = �1 − cos q�	�+− + 4J2�+−C1�1 − cos q�
 + ��0

+−�2,

�15�

�+− = J2	S�S + 1� + C0
zz + 2�+−C1 + 2�+−�C2 − 3C1�


+ 2DJ	2�+−C1
zz + 3C0

zz − S�S + 1�
 , �16�

��0
+−�2 = 2DJ	S�S + 1� − 3C0

zz + �+−�2C1
zz − C1

+−�


+ ��2S − 1�2D2, �17�

��q
zz�2 = �1 − cos q�	�zz + 4J2�zzC1

+−�1 − cos q�
 , �18�

�zz = 2J2	S�S + 1� − C0
zz + �zz�C2

+− − 3C1
+−�


+ 2J�J − 2D��zzC1
+−. �19�

To calculate the correlation functions Cn
�� from Eq. �5�, in

particular the term Dq
�� given in Eq. �6�, we follow the rea-

sonings of our previous paper.12 We obtain Dq
+−=0, because

�q=0
+− �0 for D�0, and Dq

zz=
nCn
zz�q,0. Then, the longitudi-

nal correlation functions are calculated as
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Cn
zz =

1

N
�

q��0�
Cq

zzeiqn + Czz �20�

with Czz= �1/N�
nCn
zz and Cq

zz given by the first term in Eq.
�5�. Note that the term Czz describes long-range order in the
infinite system. In previous work8,10,11,13 such terms are in-
troduced by hand and interpreted as condensation parts.

By Eqs. �2�, �4�, �18�, and �19� we get the longitudinal
static susceptibility

�q
zz = �0

zz	1 + 4�zzC1
+−��zz�−1�1 − cos q�
−1, �21�

where �0
zz=2C1

+− /J�zz. Expanding the denominator for small
q up to O�q2� we obtain the correlation length
�zz=�2�zzC1

+− /�zz.
The uniform static susceptibilities �0

�� may be also ex-
pressed in terms of Cn

��. From Eqs. �2� and �5� with
limq→0 Cq

zz=T limq→0 �q
zz, we get

�0
zz =

1

T
�

n

Cn
zz, �22�

which agrees with the general formula of thermodynamics in
the case �Si

z�=0. For �0
+− we obtain

�0
+− = g�

n

Cn
+− �23�

with g=2	�0
+−�1+2n��0

+−��
−1, following from Eqs. �2�, �3�,
�5�, and �15�.

For large temperatures, T��q
+−, the static susceptibilities

and the structure factors Cq
�� are related by

�q
�� =

1

T
Cq

�� =
1

T
�

n

Cn
��e−iqn. �24�

At very high temperatures, in Eq. �24� only the n=0 term
may be taken into account, and, with C0

+−=2C0
zz= 2

3S�S+1�,
we get the Curie law �q

+−=2�q
zz=2S�S+1� /3T.

To provide a better comparison of the Green-function
theory with ED data, it is useful to consider the theory also
for finite systems with periodic boundary conditions. For a
ring with an even number N of spins we have the discrete q
values qi= �2	 /N�ni with −N /2�ni�N /2−1 and N /2+1
correlators Cn

�� with 0�n�N /2. In the calculation of Cn
zz

according to Eq. �20� we must take care of the term Czz

which, for finite N, is finite at arbitrary temperatures and is
given by

Czz =
1

N
�C0

zz + CN/2
zz + 2 �

n=1

N/2−1

Cn
zz . �25�

Then, it turns out that two equations for Cn
zz are linearly

dependent. As additional equation, we use the expression of
�0

zz in Eq. �21� in terms of Cn
zz according to Eq. �22�, i.e.,

2C1
+−

J�zz =
1

T
�

n

Cn
zz. �26�

III. LIMITING CASES

To test the approximations made for S�1 in addition to
those for S= 1

2 , in particular the decouplings �9� and �14�,
where ����S= 1

2
�=0, and the replacement �11� with Eq. �12�,

we first consider the limiting cases J=0 and D=0.
In the J=0 limit, by Eqs. �5�, �3�, �7�, and �17� we obtain

C0
+− =

2S�S + 1�
3 + ���2S − 1��1 + 2n��0

+−��−1
, �27�

where �0
+−=���2S−1�D and � is calculated by Eq. �12�. The

longitudinal on-site correlator C0
zz is obtained from Eq. �7�.

At T=0 and T→ we get C0
zz=S2 and C0

zz= 1
3S�S+1�, respec-

tively, agreeing with the exact results. Figure 1 shows the
specific heat for S= 3

2 and S=2 derived from C0
zz, where the

temperatures of the maximum Tm
C�S= 3

2
�=0.97D and

Tm
C�S=2�=1.6D nearly agree with the exact values

Tm
C =0.83D and Tm

C =1.4D for S= 3
2 and S=2, respectively.

This yields a justification for the approximations �11� and
�12�. The result for S=1, not depicted in Fig. 1 for clarity,
shows qualitatively the same temperature dependence as that
for S�1; it is exact, because Eq. �11� becomes the exact
relation Ai=Si

+.
In the D=0 limit, we have Cn

+−=2Cn
zz, ���=�, ���=�,

���=�, and �q
��=�q. The vertex parameter ��T� is deter-

mined by Eq. �7�, C0
zz=S�S+1� /3. To derive an equation for

��T�, we first consider the long-range ordered ground state
with �−1�0�=0 corresponding, by Eq. �21�, to ��0�=0. Then,
by Eq. �15� we have �q=2J�2�C1

zz�1−cos q� and, by Eq.
�20�, Cn

zz=��C1
zz /2���n,0+Czz. Taking into account the exact

result Cn�0
zz �0�= 1

3S2 we get ��0�= 3
2 and ��0�=2− 1

S �cf.
Ref. 9�. At nonzero temperatures there is no long-range or-
der, i.e., Czz=0 and ��0. To improve the approximation of
Ref. 9, ��T�=��0�, we first derive the exact high-temperature
series expansion of C1

zz up to O�T−2�,

C1,ex
zz = �S�S + 1�

3
�2� J

T
−

1

4

J2

T2 + O�T−3� . �28�

Expanding Eq. �20� for n=1 and n=0 up to O�T−1� and us-
ing, for n=0, Eq. �28� we obtain

FIG. 1. J=0 limit: Specific heat for S�1. The Green-function
theory for S= 3

2 �dashed� and S=2 �solid� is compared with the exact
results for S= 3

2 �dotted� and S=2 �dot-dashed�, respectively.
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C1
zz = �S�S + 1�

3
�2

�0
J

T
, �29�

C0
zz =

S�S + 1�
3

�1 −
1

12
�3 + 4S�S + 1���0 − �0��

J

T
� ,

�30�

where �0 and �0 are the lowest orders in the expansions of
��T� and ��T�, respectively. The comparison with the exact
results Eq. �28� and C0

zz=S�S+1� /3 yields

�0 = 1, �0 = 1 − 3�4S�S + 1��−1. �31�

The result �0=1 confirms the general suggestion �cf. Refs. 8,
10, and 11� that the vertex parameters � approach unity at
high temperatures. Considering the ratio Q�� /�, for S=1,
2, and 3 we have limT→Q=0.63, 0.88, and 0.94, respec-
tively, as compared with Q�0�=0.67, 1, and 1.1. Accordingly,
for 1�S�3,Q�T� is only weakly temperature dependent.
Setting Q�T�=Q�0� , ��T� may be calculated in a rather good
approximation as

��T� =
2

3
�2 −

1

S
��T� . �32�

In Fig. 2 our results for S=1 are plotted, where a remarkably
good agreement of the Green-function theory for N=12 with
the ED data is found. This justifies the decouplings �9� and
�14� with � calculated by Eq. �32�. Considering the specific
heat, the temperature of the maximum in the theory,
Tm

C =0.9J for both N=12 and N→, only slightly deviates
from the ED result Tm

C =0.8J. Note that Tm
C in the semiclassi-

cal approach of Ref. 22 agrees with the ED value. Concern-
ing the uniform static susceptibility in the thermodynamic
limit, we have �see also Ref. 9� limT→0�0

zzT2 /J= 2
3S4.

This low-temperature behavior, �0
zz�T−2, qualitatively agrees

with the result of the renormalization-group approach of
Ref. 23, but quantitatively deviates from the finding
limT→0�0

zzT2 /J=1.58S2.23

Finally, let us compare our theory with the Green-function
approach of Ref. 24 for the S=1 antiferromagnetic Heisen-
berg chain. There, instead of the decoupling �14�, the left-
hand side is rewritten as Si

−Sj
zSj

+=Si
−Sj

+Sj
z+Si

−Sj
+. The first term

is decoupled analogous to Eq. �14� as ��Si
−Sj

+�Sj
z, whereas the

second term yields a contribution to iṠi
z. This results in a gap

� in �q
zz at q=0 which, for D=0, is given by �=J. In Ref.

24, � is interpreted as a Haldane gap. As we have verified, �
is independent of S. However, for S= 3

2 , for example, there is
no Haldane gap. That means, the gap � is an artefact of the
approach of Ref. 24 employing commutation before decou-
pling. According to our experience �see, e.g., the Green-
function theory for the t−J model25� such a procedure should
be avoided. Furthermore, we argue that the approach of Ref.
24 yields ��0 for the S=1 antiferromagnet also in higher
dimensions and for the S�1 ferromagnetic chain. Conclud-
ing, contrary to the reasonings of Ref. 24, the Haldane phys-
ics cannot be captured by the second-order Green-function
theory.

IV. EFFECTS OF SPIN ANISOTROPY

To complete our Green-function scheme for model �1�
with D�0 and J�0 �hereafter, we set J=1�, the four param-
eters ��� and ��� have to be determined. In the ground state,
for D�0 we have the exact results

Cn
+−�0� = S�n,0; Cn

zz�0� = S2 �33�

so that Cn�0�0�=S2. By Eq. �5� we get Cn
+−�0�

= �1/N��q�Mq
+− /2�q

+−�eiqn and, comparing with Eq. �33�,

Mq
+− = 2S�q

+−. �34�

Inserting Mq
+− and �q

+− given by Eqs. �3� and �15�–�17� with
��0�=1 �see Eq. �11�� and comparing the coefficients in Eq.
�34� in front of �1−cos q�n �n=2 and 0 or 1�, we obtain

�+−�0� = 1; �+−�0� = 1 −
1

2S
. �35�

Considering finite temperatures and suggesting
limT→�+−�T�=1 �see Sec. III�, we put �+−�T�=1 because of
�+−�0�=1. Following the reasonings in the D=0 limit, for
the ratio Q+−��+− /�+− we assume Q+−�T�=Q+−�0�, i.e.,
�+−�T�=�+−�0�. The parameter �zz�T� is calculated from the
sum rule �7�. Concerning the remaining parameter �zz and
the ratio Qzz��zz /�zz, it turns out that Qzz has very different
values in the T→0 and T→ limits. Therefore, we adjust
�zz�T� to the ED data for C1

zz�T� which are depicted, for
S=1, in the inset of Fig. 3. Thus, we have a closed system of
equations for seven quantities �C0

�� ,C1
+− ,C2

�� ,�zz ,�zz� to be
determined self-consistently as functions of temperature.

As a first test of our approach, in Fig. 3 the NN correla-
tion function C1

+− for S=1 is plotted, where a very good
agreement with the ED results is found. The correlator C0

+−

�not shown� also agrees very well with the ED data. As can
be seen, we have C1

+−�2C1
zz; that is, due to the easy-axis

anisotropy the transverse correlations are suppressed as com-
pared with the longitudinal correlations. The maximum in

FIG. 2. D=0 limit: Nearest-neighbor correlation function C1
+−,

longitudinal spin susceptibility �0
zz �upper inset�, and specific heat C

�lower inset� for S=1, as obtained by the Green-function theory in
the thermodynamic limit �solid� and for a finite system with
N=12 �dashed� in comparison with the ED data for N=12 ���. The
Green-function results for C1

+− obtained for N=12 and N→ agree
within the accuracy of drawing.
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the temperature dependence of C1
+− indicates the crossover

from Ising-like to Heisenberg-like behavior, where the maxi-
mum position increases with increasing D.

A. Spin waves

At T=0, by Eq. �34� with Eqs. �3� and �33� we obtain the
spin-wave spectrum

�q
+−�0� = 2S�1 − cos q� + �2S − 1�D �36�

with the spin-wave gap �0
+−�0�= �2S−1�D. Let us point out

that the dispersion �36� agrees with the result obtained by the
RPA and the Anderson-Callen decoupling �see, e.g., Ref. 16�
given by Bi�Si

+Si
z+Si

zSi
+=2�Sz�	1−1/2S2�S�S+1�−C0

zz�
Si
+;

putting, at T=0, �Sz�=S and C0
zz=S2 so that Bi=2S−1, the

spectrum �36� results. In the RPA approach of Ref. 17, where
the D term for S=1 is treated exactly, we calculate
�q

+−���=−2��−�q�−1 �correcting a misprint in Eq. �51� of
Ref. 17� with �q given by Eq. �36� with S=1.

Let us compare Eq. �36� with previous spin-wave theo-
ries. The generalized spin-wave theory by Becker26 for
S=1, which extends the Holstein-Primakoff transformation
to two sets of Bose operators treating the single-ion aniso-
tropy exactly, yields �0

+−�0�=D, in agreement with Eq. �36�.
Contrary, in the ordinary spin-wave theory �with only one
Bose operator ai�, �Si

z�2 with Si
z=S−ni and ni=ai

+ai is ap-
proximated as �Si

z�2=S2−2Sni neglecting the ni
2 term. This

yields the wrong result �0
+−=2SD violating the condition

�0
+−�S= 1

2
�=0. Note that such an approach was used to fit the

inelastic neutron-scattering data on LaMnO3 on the basis of
an effective spin model with easy-axis single-ion anisotropy.5

From our results we conclude that this fit should be recon-
sidered by means of an improved theory.

In Fig. 4 the temperature dependence of the spin-wave
spectrum for S=1 is shown, where a spin correlation-induced
flattening of the shape with increasing temperature is ob-
served. The spin-wave gap as function of temperature exhib-
its a minimum and approaches the high-temperature limit
limT→�0

+−�T�=�0
+−�0�. In the paraphase �T�0� with SRO,

well-defined spin waves exist, if their wavelength is much
smaller than the correlation length, i.e., if q� ��zz�−1. To es-
timate the validity region of the spin-wave picture, in Fig. 5
the inverse correlation length is plotted. For D=0 we get
limT→0�zzT=S2 �cf. Ref. 9� which nearly agrees with the re-
sult of the renormalization-group approach,23 limT→0�zzT
=1.14S2. For D�0 the low-temperature behavior of �zz is
quite different. By Eq. �21� we have �zz=�2�̄zz /�zz and
��zz�−2�0

zz=C1
+− / �̄zz with �̄zz��zzC1

+−, where the numerical
evaluation yields a finite value of �̄zz as T→0. Because
��0

zz�−1�0�=0, ��zz�−2 approaches zero as T→0 much stronger
than C1

+− and ��0
zz�−1 �compare Fig. 5 with Figs. 3 and 6�.

Correspondingly, the easy-axis anisotropy drives the
paraphase at low temperatures close to long-range order. As
can be seen from Fig. 5, the validity region of the spin-wave
picture, q� ��zz�−1, shrinks with increasing temperature,
where predominantly high-energy magnons may be ob-
served.

B. Spin susceptibility

The spin anisotropy results in a qualitatively different
temperature dependence of the uniform static susceptibilities
�0

+− and �0
zz, as can be seen from Fig. 6. Note that the ED

FIG. 3. Nearest-neighbor transverse spin correlation functions
C1

+− for S=1 at D=0.1, 1, 5, 10, and 25, from top to bottom, show-
ing the Green-function �solid� and ED results �� , N=12�. The inset
shows the ED data for the nearest-neighbor longitudinal correlation
functions C1

zz at the same values of D with D increasing from bot-
tom to top, which are used as input to the Green-function theory.

FIG. 4. Spin-wave spectrum �q
+− for S=1 at T=0, 1, and 5, at

q=	 from top to bottom. The inset shows the spin-wave gap �0
+− at

D=0.1, 1, and 5, at T=1 from bottom to top.

FIG. 5. Inverse correlation length for S=1 at D=0.1 1, 5, 10,
and 25, from top to bottom �solid�, compared with the D=0 limit
�dashed�.
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calculation of �0
+− requires a small magnetic field in the x

direction so that the S=1 data can be obtained only for
N=8.

The transverse susceptibility �0
+− �Fig. 6�a�� reveals a

maximum at Tm
� , where Tm

� increases with D �right inset�, in
very good agreement with the ED results. For small anisotro-
pies �left inset� a pronounced finite-size effect is observed,
where the theory for N=8 agrees well with the ED data. The
temperature dependence of �0

+− may be explained as follows.
The anisotropy-induced longitudinal SRO �cf. Fig. 5� results
in a spin stiffness against the orientation of the transverse
spin components along an external field perpendicular to the
z direction. Consequently, at zero temperature �0

+−�0�=2/D
decreases with increasing D, and at intermediate tempera-
tures �0

+−�T� exhibits a maximum.
Considering the longitudinal susceptibility �0

zz �Fig. 6�b��,
it shows qualitatively the same behavior as in the D=0 limit;
in particular, �0

zz diverges as T→0 indicating the ferromag-
netic phase transition. For T�T0 the Curie law �0

+−=2�0
zz

=4/3T holds approximately, where, e.g., T0=2.5�3� for
D=0.1�1� and S=1.

C. Specific heat

In Figs. 7–9 the temperature dependence of the specific

heat for the S=1 chain is presented. As the main result, the
ED on N=12 chains with periodic boundary conditions
yields two maxima at Tm1

C and Tm2

C , if D�D0 with D0=7.4,
and only one maximum at Tm

C for D�D0. Let us first con-
sider the specific heat for D�1 plotted in Fig. 7. The Green-
function results for N→, agreeing with those for N=12
within the accuracy of drawing, are in a very good agreement
with the ED data. Our results for the maximum positions
nearly agree with those of Blöte18 obtained by the ED of
N=7 chains with open boundary conditions and subsequent
extrapolations to N→. For example, for D=1 �5� we get
Tm

C =0.57 �0.85�, as compared with Tm
C =0.5 �1.0� in Ref. 18;

for D=10�D0 we obtain the maximum temperatures Tm1

C

=0.85 and Tm2

C =3.93 which are slightly larger than the values
found in Ref. 18, Tm1

C =0.79 and Tm2

C =3.77. At D=D0 the
specific heat reveals a plateau within a small temperature
region, 2.4�T�2.7 �cf. Fig. 7�. Correspondingly, the depen-
dence on D of the maximum position exhibits a jump at D0,
as seen in the inset of Fig. 7. For D�D0, following the
reasonings of Ref. 18 the upper maximum at Tm2

C may be
interpreted as Schottky anomaly due to the D term.

FIG. 6. Transverse �a� and longitudinal �b� uniform static spin
susceptibility for S=1 at D=1, 5, 10, and 25, from left to right,
obtained by the ED ��� for N=8 �a� and N=12 �b� and by the
Green-function theory �solid�. In the insets on the left-hand side, for
D=0.1 the Green-function results for N→ �solid� and N=8
�dashed� are compared with the ED data for N=8. In the inset on
the right-hand side of �a� the position of the susceptibility maximum
Tm

� vs D is depicted.

FIG. 7. Specific heat C for S=1 vs T /D at D=1, 5, 7.4, and 25,
from right to left, comparing the Green function �solid� with the ED
��, N=12� results. The inset shows the positions of the maxima Tm

C

in the temperature dependence of the specific heat as functions of
D.

FIG. 8. Specific heat for S=1 at D=1 and D=25 �inset:
N=4,12� and its dependence on the number of spins, where the
Green-function results �line styles� are compared with the ED data
�circles�.
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To analyze the finite-size effects on the specific heat for
D�1 and the accuracy of the Green-function approach in
dependence on the chain length N and on D, in Fig. 8 the
specific-heat curves for different values of N with 4�N
�12 and for D=1 and D=25 �see inset� are plotted. As can
be seen, the deviation of the Green-function results from the
corresponding ED data decreases with increasing N and D.
Comparing the curves for D=1 and D=25, the finite-size
effects decrease with increasing D. Moreover, they are found
to decrease with increasing temperature which is not shown
in Fig. 8, where, e.g., for D=25, only the low-temperature
maximum is depicted �cf. Fig. 7�.

Considering the specific heat at small anisotropies, the
detailed analysis of our ED calculations for different chain
lengths with periodic versus open boundary conditions re-
veals considerable finite-size effects, in contrast to the case
D�1 discussed above, and a remarkable dependence of the
ED data on the chosen boundary condition. In this paper we
prefer to use periodic boundary conditions, since, due to the
translational symmetry implying equivalent lattice sites, �i�
the finite-size effects are expected to be less pronounced and
�ii� ED calculations for larger systems �N�12� can be per-
formed, as compared with open boundary conditions used by
Blöte18 for N�7. In Fig. 9 we illustrate the finite-size effects
and the influence of boundary conditions for D=0.1. The ED
data for N=4 yield a maximum at Tm1

C �0.05 which vanishes
for N=12. This may be understood as follows. In finite sys-
tems the spin excitations are gapped, even in the D=0 limit,
where the finite-size gap �N scales as N−� with ��0. If D
��N, a low-temperature Schottky-type anomaly in the spe-
cific heat may appear and vanish for larger N with D��N.
Note that both ED curves approach each other at T�5. In
the Green-function theory for N=4 a maximum is also found
at the same temperature Tm1

C =0.1, but with a too large height.
However, for N→ this maximum is only weakened, but
does not disappear. In view of our ED results for N=12, this
behavior of the specific heat has to be considered as an arti-
fact of the Green-function theory for small anisotropies. As
can be seen from the inset of Fig. 9, the use of open bound-

ary conditions favors the appearance of a spurious low-
temperature maximum in the specific heat.

In view of our analysis described above, we consider the
ED results by Blöte18 on the specific heat of the S=1 ferro-
magnetic chain with D�0.25 as questionable, in particular,
because the extrapolation of the data for small systems with
N�7 and open boundary conditions was performed. Our ED
results on the specific heat at small anisotropies qualitatively
deviate from the data by Blöte.18 In Ref. 18 two maxima
were obtained not only for large values of D �see above�, but
also for D�0.25, where for D=0.1 a low-temperature maxi-
mum was found at Tm1

C =0.12. In our ED data at large enough
N such a maximum does not appear.

D. Comparison with experiments

Finally, let us compare the results of the Green-function
theory with some experiments on Ni complexes19 and derive
predictions for quantities not yet measured. In Fig. 10 the
specific heat of the dibromo Ni complexes NiBr2L2 with L
=pyrazole �pz, N2C3H4� and L=pyridine �py, NC5H5� is de-
picted. Those compounds can be considered as weakly anti-
ferromagnetically coupled ferromagnetic chains with a large
easy-axis single-ion anisotropy.19 The small values of the
Néel temperatures TN indicated in Fig. 10 reflect the pro-
nounced quasi-1D behavior. The anomaly of the specific heat
at TN cannot be described by our theory for a purely 1D

FIG. 9. Specific heat for S=1 at D=0.1 and its dependence on
the number of spins, where the ED results for N=12 ��� and
N=4 ��� are compared with the Green-function theory for N→
�solid� and N=4 �dashed�. In the inset, the dependence of the spe-
cific heat on the periodic �solid� versus open �dashed� boundary
conditions in the ED calculations for N=8 is demonstrated.

FIG. 10. Specific heat C of the Ni complexes NiBr22py �a� and
NiBr22pz �b�, where the Green-function theory �solid� is fit to the
experimental data ��, Ref. 19�. The insets show the predicted tem-
perature dependences of the transverse magnetic susceptibility �m

+−.
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system. For NiBr22py �Fig. 10�a��, this anomaly masks the
low-temperature maximum at Tm1

C . At sufficiently high tem-
peratures T�TN the systems exhibit 1D behavior, and the
theory may be compared with experiments. For NiBr22py
�2pz� the fit to the specific heat data yields J=0.4 meV
�0.48 meV� and D=3 meV �2.7 meV� so that D /J=7.5
�5.6�, where the first ratio slightly exceeds D0 /J. Note that
those values nearly agree with the findings of Ref. 19. Using
the fit values for J and D we calculate the temperature de-
pendence of the transverse magnetic susceptibility
�m

+−=4�B
2NA�0

+− �NA is the Avogadro constant�. The results
�see insets of Fig. 10� show a maximum of �m

+−�T� at
Tm

� �TN, where

Tm
� = �5.35 K ; 2py

6.25 K ; 2pz ,
� �37�

which should be confirmed experimentally.
Furthermore, in Fig. 11 we show the spin-wave spectrum

and the correlation length �inset� calculated for the J and D
values given above. Those results may be verified by neutron
scattering experiments on single crystals. As disscussed in

Sec. A, spin waves in the paramagnetic phase may be ob-
served, if q� ��zz�−1. For example, at T=5 K this condition
may be fulfilled for NiBr22py �2pz� with ��zz�−1=0.47 �0.16�.
At T=10 K we have ��zz�−1=1.16 �0.74� for the 2py �2pz�
complex, so that only Brillouin-zone boundary magnons in
NiBr22pz may be observable.

V. SUMMARY

In this paper we have developed a Green-function theory
for S�1 ferromagnetic Heisenberg chains with an easy-axis
on-site anisotropy, where products of three spin operators are
approximated in terms of one spin operator. Moreover, we
have performed exact diagonalizations of chains with up to
N=12 sites imposing periodic boundary conditions. To in-
vestigate the spin-wave picture in the paramagnetic phase,
we have calculated the magnon spectrum and the correlation
length. The thermodynamic properties �longitudinal and
transverse susceptibilities, specific heat� at arbitrary tempera-
tures were found to be in good agreement with the exact
results for finite chains. A detailed analysis of the ED data
for the specific heat yields two maxima in the temperature
dependence for D /J�7.4, whereas for D /J�7.4 only one
maximum appears. Our results at low ratios D /J contradict
those of Ref. 18 obtained on smaller chains with open
boundary conditions. The Green-function theory was com-
pared with specific heat experiments on dibromopyrazole/
pyridine Ni complexes, and predictions for the spin-wave
spectrum, the correlation length, and the maximum in the
temperature dependence of the transverse magnetic suscepti-
bility were made.
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