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The nearest-neighbor antiferromagnetic Heisenberg model is considered for spins si=
1
2 and 1 located on the

vertices of the dodecahedron and the icosahedron, which belong to the point symmetry group Ih. Taking into
account the permutational and spin-inversion symmetries of the Hamiltonian results in a drastic reduction of
the dimensionality of the problem, leading to full diagonalization for both clusters. There is a strong signature
of the frustration present in the systems in the low-energy spectrum for si=

1
2 , where the first excited states are

singlets. Frustration also results in a doubly peaked specific heat as a function of temperature for the dodeca-
hedron. Furthermore, there is a discontinuity in the magnetization as a function of magnetic field for the
dodecahedron, where a specific total spin sector never becomes the ground state in a field. This discontinuity
is accompanied by a magnetization plateau. For si=1 both systems again have singlet excitations. The mag-
netization of the dodecahedron has now two discontinuities in an external field and also magnetization pla-
teaux, and the specific heat of the icosahedron, a two-peak structure as a function of temperature. The simi-
larities between the two systems suggest that the antiferromagnetic Heisenberg model on a larger cluster with
the same symmetry, the 60-site cluster, will have similar properties.
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I. INTRODUCTION

The antiferromagnetic Heisenberg model has been the ob-
ject of intense investigation in recent years as a prototype of
strongly correlated electronic behavior.1 The effects of low
dimensionality, quantum fluctuations, and frustration com-
bine together to produce phases different from conventional
Neél-like order, where the order parameter is not the stag-
gered magnetization or there is a lack of a local order param-
eter altogether.2–4 They can also have dramatic consequences
on the energy spectrum, as is the case for frustrated multiple
spin-exchange models and the Kagomé lattice, where the
low-energy excitations are singlets.5 Specific-heat calcula-
tions of small Kagomé lattice samples have revealed a two-
peak structure, with the first peak below the singlet-triplet
gap.6,7 The double-peak structure was also obtained for other
multi-spin-exchange models,8,9 a pyrochlore slab,10 and the
� chain.11 It is a natural question to ask whether there are
other frustrated systems with such unconventional behavior.

Here clusters with the connectivity of the fullerenes will
be considered.12,13 These molecules weakly bound to form
crystals that become superconductors when doped with alkali
metals.14,15 Their transition temperature is above 40 K, a
transition temperature much higher than the one of conven-
tional superconductors. Chakravarty and Kivelson suggested
that an electronic mechanism at intermediate scales is re-
sponsible for superconductivity in C60, the fullerene with 60
carbon atoms, when doped with alkali metals.16 It is an open
question if a repulsive interaction can produce pairing in
such systems. The Hubbard model has been used to investi-
gate an electronic mechanism for superconductivity on this
cluster.17,18 Estimates for the nearest-neighbor hopping t and
the on-site repulsion U are 2 to 3 eV and 9 eV
respectively.19,20 An exact treatment of the model in the full
Hilbert space of the molecule is prohibitive because of its
size. Therefore, as a first step, smaller molecules of the
fullerene type were considered to gain insight, as well as the

strong on-site repulsion limit of the Hubbard model at half
filling, the antiferromagnetic Heisenberg model, even though
the 60-site molecule is in the intermediate U regime and not
in the large U limit.21,22 Coffey and Trugman found that con-
nectivity and frustration lead to nontrivial behavior at the
classical level in a magnetic field.21 To study the effect of
quantum fluctuations on the classical results, a 20-site
cluster—the dodecahedron—was considered �Fig. 1�. It is
threefold coordinated, has all sites equivalent, and consists of
12 pentagons. The model was studied with perturbation
theory for si=

1
2 around the classical limit and was found to

possess a singlet as the first excited state and a discontinuity
in the magnetization as a function of quantum fluctuations.23

This discontinuity was originally found at the classical
level.21 Therefore, it is of interest to study the structure of the
low-energy spectrum of the dodecahedron and its response in
a magnetic field for si=

1
2 . A more general question is if the

presence of singlets in the excitation spectrum is also a prop-
erty of other clusters, and if there is a correlation of magnetic
behavior with space group symmetry and connectivity.24 The

FIG. 1. Projection of the dodecahedron on a plane. The solid
lines are antiferromagnetic bonds J. The black circles are spins si.
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determination of the full energy spectrum will reveal if the
double-peak specific heat structure is also a property of the
dodecahedron. However, the projection of the total spin on
the z axis, Sz, is not a good quantum number when perturbing
around the classical state. In addition, multiprecision arith-
metic was needed to analytically continue the series expan-
sions in Ref. 23. Thus, the full calculation of the energy
spectrum was prohibited due to memory requirements, even
though the symmetries of the Hamiltonian were partially
taken into account. The ground-state properties of the model
were calculated by Modine and Kaxiras.25

In this paper the antiferromagnetic Heisenberg model is
studied on the dodecahedron and a smaller cluster with 12
equivalent sites and the same spatial symmetry, the icosahe-
dron �Fig. 2�, for si=

1
2 and 1. The permutational and spin

symmetries of the Hamiltonian are taken into account,26–28

and this leads to full diagonalization except for the dodeca-
hedron when si=1, where Lanczos diagonalization is
used.29,30 The symmetry group of the clusters is Ih, the larg-
est point symmetry group with 120 operations.31 The icosa-
hedron has 20 triangles, and the spins on the vertices are
fivefold coordinated. Therefore, the two clusters share the
same symmetry, but their connectivity is different. The re-
sults for the low-energy spectrum of the dodecahedron for
si=

1
2 show that the ground state is a singlet, whereas the first

excited state is also a singlet, but fivefold degenerate. The
next excited state is also a singlet, and then a series of states
with total spin S=1 follows. This series of low-lying singlets
is a consequence of the connectivity and frustration of the
model. The specific heat also shows a nonconventional be-
havior as a function of temperature, with a peak inside the
energy gap and a second peak at higher temperatures. The
low-energy spectrum of the icosahedron is similar to the one
of the dodecahedron, with the same ordering and relative
spacing of low energy levels. The specific heat has a well-
pronounced peak inside the energy gap, but there is no sec-
ond peak, rather a shoulder at higher temperatures. For spins
with magnitude si=1, the ground and first excited state of the
dodecahedron are closely spaced singlets. The next excited
state is a threefold degenerate triplet. The low-energy spec-
trum for the icosahedron is again the same in the symmetry,
ordering, and relative spacing of the low-lying levels. The
specific heat can only be calculated for the icosahedron and
has now two peaks, however there is no peak inside the

energy gap. This along with the reduced number of low-
energy singlet states compared to the full quantum si=

1
2 case,

indicates a change in the spectrum with increasing si.
The behavior of the magnetization in a magnetic field is

nontrivial for the dodecahedron. There is a discontinuity as
the energy of a particular S sector never becomes the ground
state in a field. This feature, observed at the classical level by
Coffey and Trugman,21 survives in both the si=

1
2 and 1

cases, twice in the latter. Similar behavior is not observed for
the icosahedron, which also has discontinuous magnetization
in a field at the classical level. Schröder et al. calculated the
lowest quantum number with a discontinuity in a field to be
si=4.32 However, for small fields and some of the lower si,
the magnetization cannot be calculated due to memory re-
quirements. Although the two clusters have the same spatial
symmetry, the behavior in a field for small si appears to
depend on their polygon structure. The magnetization dis-
continuities in the dodecahedron are accompanied by mag-
netization plateaux.

The similarities of the dodecahedron and icosahedron
spectra suggest that predictions about the low-energy struc-
ture can be made for the larger cluster of fullerene-type con-
nectivity with the same symmetry Ih, the 60-site cluster,
where again all sites are equivalent.13 Although the 12- and
20-site clusters have different coordination number and con-
sist of different types of polygons, the structure of the low-
energy spectrum is the same. The 60-site cluster has also a
discontinuity in the magnetization in a field at the classical
level.21 However, it is not clear what the response in a mag-
netic field will be for the quantum case, since the two smaller
clusters have different behavior for si=

1
2 and 1, which seems

to depend on the connectivity as well as their polygon struc-
ture. Similar considerations could correlate the behavior of
more complicated models with orbital degrees of freedom,
such as the Hubbard model on the 60-site cluster with the
behavior of the same models on the dodecahedron and the
icosahedron.

The plan of this paper is as follows: in Sec. II the model
and method are introduced, in Sec. III the low-energy spectra
of the two clusters are presented for both si=

1
2 and 1, in Sec.

IV specific heat and magnetic susceptibility data are pre-
sented, in Sec. V the ground-state magnetization is consid-
ered, and finally in Sec. VI the conclusions are presented.

II. MODEL AND METHOD

The Hamiltonian for the antiferromagnetic Heisenberg
model is

H = J�
�i,j�

s�i · s� j − hSz, �1�

where the spins s�i are located at the vertices of the clusters
and �i , j� denotes nearest neighbors. The coupling constant J
is positive and will be set to 1 from now on, defining the unit
of energy. h is the strength of an external magnetic field.

Minimization of memory requirements for diagonaliza-
tion is possible with the use of the symmetries of the model.
These include permutational and spin-space symmetries.26–28

FIG. 2. Projection of the icosahedron on a plane. The solid lines
are antiferromagnetic bonds J. The black circles are spins si.
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The Hamiltonian commutes with S and Sz. However, even
though it is straightforward to work in an Sz subspace, there
is no efficient method to construct symmetry-adapted eigen-
states of S. The Hamiltonian is symmetric under combina-
tions of permutations of the spins that respect the connectiv-
ity of the cluster. The group of permutations is the symmetry
group of the cluster in real space.28 The model also posseses
time-reversal symmetry, and inverting the spins is a symme-
try operation in the Sz=0 sector. The corresponding group is
comprised of the identity and the spin inversion operation.
The full symmetry group of the Hamiltonian is the product
of the space group and the group of spin inversion. Taking
the full symmetry into account, the Sz basis states can be
projected into states that transform under specific irreducible
representations of the symmetry group. In this way the
Hamiltonian is block diagonalized into smaller matrices, and
their maximal dimension is dramatically reduced compared
to the full Hilbert space size. The largest submatrix of the
block-diagonalized Hamiltonian for the dodecahedron has
dimension 7058 for spins si=

1
2 , and full diagonalization is

possible. For si=1 only a few of the lowest eigenvalues for
each irreducible representation were obtained with Lanczos
diagonalization,29,30 and for the subspace Sz=1 this was not
possible for the five-dimensional representations. The largest
matrix for which the lowest eigenvalue was found has di-
mensionality 13,611,598, and is complex. In the case of the
icosahedron full diagonalization is possible for both si=

1
2

and 1, the largest matrix having a dimension of 2982 in the
latter case. It is noted that degeneracies are reported with
respect to states with a specific value of S, and that each of
these states has a number of 2Sz+1 projections along the
z-axis.

III. LOW-ENERGY SPECTRA AND CORRELATION
FUNCTIONS

A. si=
1
2

The low-energy spectrum of the icosahedron is presented
in Table I. The ground state energy is a singlet and belongs to
the irreducible representation Au,s, where the first index g or
u denotes symmetry or antisymmetry with respect to space

inversion,31 and the second s or a symmetry or antisymmetry
with respect to spin inversion when Sz=0. The energy per
spin equals −0.51566. The first excited state is also a singlet,
belongs to the representation Hg,s and is fivefold degenerate.
The next excited state is also an S=0 state, it is nondegen-
erate and belongs to Ag,s. Then a series of S=1 states fol-
lows. The gap to the first excited state is 0.5334 and the
singlet-triplet gap 0.89988.

The nearest-neighbor correlation function for the ground
state equals −0.20626, almost four times less in strength than
the value of an isolated dimer, −0.75. For the first excited
state there are two different types of nearest neighbor corre-
lation functions. The first equals −0.16930 for the pairs �1,3�,
�9,11�, �5,8�, �6,7�, �2,10�, and �4,12� in Fig. 2, and the sec-
ond −0.19328 for the rest of the bonds. The six pairs face
each other in pairs and belong in different triangles. There
are five different ways of distributing the pairs, thus the state
is fivefold degenerate. The second excited singlet has all
nearest-neighbor correlation functions equal to −0.18748.
The correlation functions other than the nearest neighbor in
the ground state between site 1 and the rest of the sites are
equal to −0.13908 for spin 11, more than half the value of the
nearest-neighbor correlation function, and 0.08408 for the
rest of the spins.

The low-energy spectrum of the dodecahedron is shown
in Table II and has the same structure as the one of the
icosahedron, after comparison with Table I. In particular, the
four lowest energy states belong to exactly the same irreduc-
ible representations as the corresponding states in the icosa-
hedron. The spacing of the lowest energy states is also simi-
lar. The ground-state energy equals −9.72219,23,25 and the
energy per spin in the ground state is now higher and equal
to −0.48611. Classically, the ground-state energy per bond is
−�5/3 for the dodecahedron23 and −�5/5 for the icosahe-
dron �previously reported by Schmidt and Luban in Ref. 33�;
therefore, the energies per spin are equal. Quantum fluctua-
tions reduce the energy more for the cluster with the highest
coordination number, even though the number of bonds is
the same for both. The gap to the first excited state is also
smaller and equal to 0.31567, and the same is true for the
singlet-triplet gap, which is 0.51383. The nearest-neighbor
correlation function is equal to −0.32407 for the ground

TABLE I. Low-energy spectrum for the icosahedron for si=
1
2 . The first index of the irreducible repre-

sentations indicates the behavior under spatial inversion, where g stands for symmetric and u for
antisymmetric,31 and the second under spin inversion when Sz=0, where s stands for symmetric and a for
antisymmetric.

Energy Multiplicity
Irreducible

representation S Energy Multiplicity
Irreducible

representation S

−6.18789 1 Au,s 0 −4.82887 5 Hu,s 0

−5.65445 5 Hg,s 0 −4.76398 5 Hu,a 1

−5.62426 1 Ag,s 0 −4.50000 4 Fg,s 0

−5.28801 3 T2g,a 1 −4.50000 1 Ag,s 0

−5.17728 3 T1u,a 1 −4.44972 4 Fu,a 1

−5.10989 3 T2u,a 1 −4.31691 5 Hg,a 1

−4.86352 4 Fg,a 1 −4.29999 3 T2u,a 1
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state,23,25 quite stronger in magnitude than the one of the
icosahedron, as in the classical case. This is attributed to the
lower coordination number of the dodecahedron. For the first
excited state, the value is −0.33585 for the pairs of spins
numbered �1,2�, �9,10�, �14,15�, �4,12�, �17,18�, �7,20� in
Fig. 1; whereas for the rest of the pairs, it is −0.30797. The
above six pairs are facing each other in pairs in the dodeca-
hedron and belong in different pentagons. As in the icosahe-
dron, there are five different ways of distributing the six pairs
of spins in the above manner, thus the state is fivefold de-
generate. The bonds on these pairs are more singletlike than
the ground state, unlike the icosahedron. Another difference
is that the bonds on the six pairs have now lower energy than
the rest of the bonds. For the next excited state, the nearest-
neighbor correlation functions are all equal to −0.31175. The
correlation functions other than the nearest neighbor in the
ground state between site 1 and the rest of the sites are equal
to 0.06540 for spins 3, 4, 7, 8, 14, and 15; −0.03882 for spins
9, 10, 12, 13, 16, and 20; 0.03307 for spins 11, 17, and 19;
and −0.03649 for spin 18. They are significantly smaller than
the nearest-neighbor correlations. This is in contrast to the
icosahedron, where correlations survive longer distances.

B. si=1

Full diagonalization is still possible for the icosahedron
when si=1. The low-energy spectrum is shown in Table III.
The ground state is a singlet in the Ag,s irreducible represen-
tation, and its energy is −18.56111. It is now symmetric with
respect to space inversion, in contrast to the si=

1
2 case. The

first excited state is a singlet in the Au,s representation, which

included the ground state for si=
1
2 , with energy close to the

ground state and equal to −18.42539. The next excited state
is a threefold degenerate triplet in the representation T2u,a
with energy −17.83998, followed by another threefold de-
generate triplet in the representation T2g,a with energy
−17.80499. The energy per spin in the ground state is
−1.54676 and the nearest-neighbor correlation function
−0.61870. This value is to be compared to the singlet
ground-state energy of a dimer with spins si=1, which equals
−2. The ratio of the two values is larger compared to the
corresponding ratio for the si=

1
2 case and closer to the clas-

sical result. For the first excited state the nearest-neighbor
correlation is −0.61418, much closer to the ground-state
value compared to the si=

1
2 case. The gap to the first excited

state equals 0.13572 and the singlet-triplet gap 0.72113. The
correlation functions other than the nearest neighbor in the
ground state between site 1 and the rest of the sites are equal
to −0.74630 for spin 11 and 0.36796 for the rest of the spins.
Compared to the si=

1
2 case, the magnitudes of the next-than-

nearest-neighbor correlation functions are significantly in-
creased with respect to nearest neighbors, and the correlation
with site 11 is even stronger than the nearest-neighbor cor-
relation.

As was the case for si=
1
2 , the low-energy spectrum �Table

IV� is similar for the clusters when si=1. The ground state
for the dodecahedron is a nondegenerate singlet with energy
−30.24551 and an energy per spin equal to −1.51228. Again
the energy per spin is higher than the one of the icosahedron.
The first excited state is also a singlet close to the ground
state with energy −30.21750, and the next two excited states
are triply degenerate triplets with very close energies,

TABLE II. Low-energy spectrum for the dodecahedron for si=
1
2 . Notation as in Table I.

Energy Multiplicity
Irreducible

representation S Energy Multiplicity
Irreducible

representation S

−9.72219 1 Au,s 0 −8.87964 5 Hu,s 0

−9.40651 5 Hg,s 0 −8.69499 3 T2u,a 1

−9.35236 1 Ag,s 0 −8.69441 5 Hu,a 1

−9.20836 3 T2g,a 1 −8.66571 3 T1u,a 1

−9.18649 4 Fu,a 1 −8.65030 4 Fg,s 2

−9.13048 3 T2u,a 1 −8.63614 5 Hg,a 1

−8.97112 3 T1g,a 1 −8.63178 4 Fg,a 1

TABLE III. Low-energy spectrum for the icosahedron for si=1. Notation as in Table I.

Energy Multiplicity
Irreducible

representation S Energy Multiplicity
Irreducible

representation S

−18.56111 1 Ag,s 0 −17.15212 3 T1g,a 1

−18.42539 1 Au,s 0 −17.00416 5 Hg,s 0

−17.83998 3 T2u,a 1 −16.97485 4 Fu,a 1

−17.80499 3 T2g,a 1 −16.82345 5 Hg,a 1

−17.60137 5 Hu,s 0 −16.75333 5 Hu,a 1

−17.19717 4 Fg,s 0 −16.74705 1 Ag,s 0

−17.17453 5 Hg,s 0 −16.73750 4 Fg,a 1
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−29.92161 and −29.91011. The energy gap is 0.02801 and
the singlet-triplet gap 0.32390, values again smaller than the
ones of the icosahedron. The nearest-neighbor correlation
functions in the ground and first excited states are equal to
−1.00818 and −1.00725, respectively. The correlation func-
tions other than the nearest neighbor in the ground state be-
tween site 1 and the rest of the sites are equal to 0.27896 for
spins 3, 4, 7, 8, 14, and 15, −0.20912 for spins 9, 10, 12, 13,
16, and 20, 0.35962 for spins 11, 17, and 19, and −0.47333
for spin 18. Similarly to the icosahedron, the magnitudes are
increased with respect to the nearest-neighbor correlations
compared to the si=

1
2 case. Farther-than-nearest-neighbor

correlations are stronger for the icosahedron, as was the case
for si=

1
2 . It was not possible to diagonalize the fivefold de-

generate irreducible representations for Sz=1, and the S val-
ues in parentheses in Table IV are deduced by comparison to
the similar low-energy spectrum of the icosahedron, since
the spectra are similar. In any case, these S values can only
be 0 or 1, with these energies absent from the Sz=2 spec-
trum.

IV. SPECIFIC HEAT AND MAGNETIC SUSCEPTIBILITY

The temperature dependence of the specific heat and the
magnetic susceptibility for the cases where exact diagonal-
ization is possible are shown in Figs. 3 and 4, respectively.

For the icosahedron and si=
1
2 , there is a peak in the specific

heat around T=0.219 and a shoulder around T=0.8. The
peak is inside the energy gap, a feature characteristic of frus-
trated systems.6,7 For the dodecahedron there are two well-
defined peaks. The first peak is centered around T=0.120 and
the second around T=0.627. The first peak is inside the en-
ergy gap. Similar results have been obtained for other frus-
trated systems, and Sindzingre et al. attributed the peak to
the combined effect of singlet excitations inside the singlet-
triplet gap and low-lying triplet excitations for the Kagomé
lattice.6 In contrast, Syromyatnikov and Maleyev considered
a Kagomé star where the peak results from the increase in
the density of states just above the spin gap.7 In the present
case both the S=0 and S=1 sectors contribute for the peak
inside the energy gap. The S=0 contribution is due to the
low-lying singlets, whereas the S=1 contribution is also due
to a few of the lowest energy triplets. For the shoulder and
the higher energy peak in the two systems, respectively,
higher S sectors contribute as well. For the icosahedron and
si=1, there are three regions in the graph. At temperatures
lower than the energy gap, the specific heat initially rises
slowly toward an area between T�0.055 to 0.07, where it
almost stabilizes with temperature. The contributions come
from the lowest energy states in the S=0 and S=1 sectors.
The specific heat then increases rapidly reaching a peak
around T=0.395, followed by a slight decrease to a local
minimum at a temperature around the singlet-triplet gap, T

TABLE IV. Low-energy spectrum for the dodecahedron for si=1. Notation as in Table I. The S numbers
in parentheses can be 0 or 1 since they are missing from the Sz=2 spectrum, and they are assigned values
after comparison with the icosahedron low-energy spectrum in Table III.

Energy Multiplicity
Irreducible

representation S Energy Multiplicity
Irreducible

representation S

−30.24551 1 Ag,s 0 −29.61145 3 T1g,a 1

−30.21750 1 Au,s 0 −29.57332 4 Fg,s 0

−29.92161 3 T2u,a 1 −29.50512 3 T1u,a 1

−29.91011 3 T2g,a 1 −29.45063 4 Fg,a 1

−29.85881 5 Hg,s �0� −29.39457 5 Hu,a �1�
−29.67223 5 Hu,s �0� −29.35464 5 Hg,a �1�
−29.65951 4 Fu,a 1 −29.31754 3 T2u,a 1

FIG. 3. Specific heat C of the nearest-neighbor antiferromag-
netic Heisenberg model as a function of temperature T. Solid line:
icosahedron with si=

1
2 , dotted line: dodecahedron with si=

1
2 ,

dashed line: icosahedron with si=1. C is in arbitrary units and T in
units of energy.

FIG. 4. Magnetic susceptibility � of the nearest-neighbor anti-
ferromagnetic Heisenberg model as a function of temperature T.
Solid line: icosahedron with si=

1
2 , dotted line: dodecahedron with

si=
1
2 , dashed line: icosahedron with si=1. � is in arbitrary units and

T in units of energy.
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=0.619. Following that it increases again to another peak
around T=0.786 and then starts dropping toward zero. The
contributions to the two peaks and the local minimum come
from various spin sectors. Even though the double-peak
structure is similar to the specific heat of the dodecahedron
for si=

1
2 , there is no peak inside the energy gap, and this

signifies a change with respect to the si=
1
2 case. The mag-

netic susceptibility is plotted in Fig. 4, with a temperature
dependence similar for the three cases. The position of the
maximum follows the pattern for the lowest temperature
peak of the specific heat, with a peak temperature decreasing
with size and increasing with spin magnitude.

V. GROUND-STATE MAGNETIZATION

Frustrated spin systems have been found to exhibit mag-
netization jumps in the presence of an external field, where
the lowest state in a particular S sector never becomes the
ground state in the field.34 The magnetization in an external
field has been calculated for the dodecahedron at the classi-
cal level, and such a discontinuity was found.21 A disconti-
nuity in the magnetization was also found when the classical
state is perturbed with the quantum fluctuations for si=

1
2 .23

The calculation for the classical ground state of the icosahe-

dron shows also the presence of a magnetization jump in a
field. Taking the magnitude of the classical spins equal to 1,
the saturation field for the dodecahedron is hs=3+�5 and the
discontinuity takes place at h=0.26983 hs. The magnetiza-
tion jump is between Sz=4.73765 and 5.50362 �for the icosa-
hedron the jump is between Sz=4.71461 and 5.10784, re-
ported in Ref. 32�. In the quantum case, the lowest energy in
a magnetic field in a particular S sector is calculated from the
lowest energy in the absence of a field by adding the Zeeman
term. The lowest energies in the different S sectors are shown
in Tables V and VI for the dodecahedron for si=

1
2 and si

=1, respectively. As was previously mentioned, calculation
of the lowest energies is not possible for the five-dimensional
irreducible representations when Sz=1. However, by compar-
ing the spectra of the five-dimensional representations for
Sz=0 with the spectra of the rest of the representations for
Sz=1, it is seen that the lowest energy for S=1 does not
belong to the five-dimensional representations �Table IV�.
The ground state magnetization is found by comparing the
energies in a field in the different sectors. The plots for the
dodecahedron for both si=

1
2 and 1 are shown in Fig. 5, where

the magnetization M is the total spin S normalized to the
number of sites and the magnitude of each spin, with steps

TABLE V. Lowest energy in the various S sectors for the dodecahedron for si=
1
2 . Notation as in Table

I.

S Energy Multiplicity
Irreducible

Representation S Energy Multiplicity
Irreducible

Representation

0 −9.72219 1 Au,s 6 −2.47099 1 Au,s

1 −9.20836 3 T2g,a 7 −0.13397 3 T1u,a

2 −8.65030 4 Fg,s 8 2.34152 5 Hg,s

3 −7.72967 4 Fg,a 9 4.88197 3 T2u,a

4 −6.40730 1 Ag,s 10 7.5 1 Ag,s

5 −4.37206 4 Fg,a

TABLE VI. Lowest energy in the various S sectors for the dodecahedron for si=1. Notation as in Table
I. For sectors with S higher than 1 the symmetry under spin inversion for the Sz=0 component has not been
determined due to memory requirements �except for S=20�.

S Energy Multiplicity
Irreducible

representation S Energy Multiplicity
Irreducible

representation

0 −30.24551 1 Ag,s 11 −9.72811 3 T2g

1 −29.92161 3 T2u,a 12 −6.26689 5 Hu

2 −29.30598 5 Hg 13 −2.61717 4 Fg

3 −28.39788 3 T1u 14 1.22128 1 Ag

4 −27.20612 4 Fg 15 5.52324 3 T2g

5 −25.49868 4 Fg 16 9.80295 1 Au

6 −23.64370 1 Ag 17 14.65742 3 T1u

7 −21.26717 4 Fg 18 19.65432 5 Hg

8 −18.82343 1 Ag 19 24.76393 3 T2u

9 −15.88505 4 Fg 20 30 1 Ag,s

10 −12.98367 1 Au
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between different S sectors equal to 0.1 for si=
1
2 and 0.05 for

si=1. There is a discontinuity of M between 0.4 and 0.6 for
si=

1
2 �S=4 and 6�, and two discontinuities for si=1, between

0.4 and 0.5 �S=8 and 10�, and between 0.7 and 0.8 �S=14
and 16�. These discontinuities are associated with magneti-
zation plateaux on both sides of the jumps.35 Magnetization
plateaux are also observed in Fig. 5 for M =0 when si=

1
2 , and

for M =0.2 and 0.3 for si=1. The saturation field is hs1

=hs /2 for si=
1
2 , and the magnetization jump occurs at h

=0.75177 hs1. For si=1, the saturation field is hs2=hs, and
the jumps take place at h=0.55765 hs2 and h=0.81948 hs2.

As seen from Tables V and VI, the ground states on each
side of the jumps are nondegenerate, and the spatial inver-
sion symmetry of the ground state switches from symmetric
to antisymmetric as the field increases. Spin-inversion sym-
metry has only be determined for si=

1
2 for the cases of in-

terest due to memory requirements, and in that case this sym-
metry does not change as the discontinuity takes place. The
lowest state of M that never becomes the ground state is in
every case symmetric with respect to spatial inversion, and it
belongs to the same irreducible representation for the si=

1
2

and the lowest field si=1 jump. It is also interesting that in
the si=1 case, even though the lowest state for S=6 is non-
degenerate �as is the S=8 state�, there is no discontinuity
associated with these two states, indicating the significance

of the different spatial inversion symmetry for the states on
the two sides of a magnetization jump. However, a magneti-
zation plateau exists for the corresponding magnetization
M =0.3.

The behavior of the correlation functions on both sides of
the magnetization jumps is shown in Table VII. The nearest-
neighbor and next-nearest-neighbor correlation functions, as

well as S�1 ·S�11, become more positive as the magnetic field is

getting stronger. For S�1 ·S�18, the magnetization jump de-
creases its value with increasing field. However, this weak-
ening is very pronounced for the S=8 to S=10 transition for

si=1. For S�1 ·S�9, the lower jump in the si=1 case decreases
its strength, contrary to what happens for the other two dis-
continuities. It is concluded that the first discontinuity in the
si=1 case has different characteristics from the other two
jumps, as far as longer range correlation functions are con-
cerned. This could possibly be due to different change in
behavior with respect to spin inversion as this discontinuity
takes place, compared to the other two discontinuities.

The data for the two lowest quantum numbers si shows
that the discontinuity in the classical solution survives the
quantum fluctuations. The presence of jumps for si=

1
2 , 1, and

� indicates that this is probably a characteristic of the system
for any quantum number. The common features of the
mechanism of the effect for the two lowest quantum numbers
also point in this direction. For the icosahedron, there is no
such jump for si=

1
2 or 1, even though there is a jump at the

classical level, and for si=4,32 and quantum fluctuations are
stronger. It is therefore concluded that the discontinuity in
the magnetization at the full quantum level is not a conse-
quence of the symmetry, but rather of the polygon structure
of the clusters. For larger clusters with nonequivalent sites
and including hexagons, no such discontinuity was found for
si=

1
2 , even though there are jumps at the classical level.24

Thus, the pentagon-only structure of the dodecahedron ap-
pears crucial for the presence of the discontinuities for the
lowest si.

VI. CONCLUSIONS

The antiferromagnetic Heisenberg model was solved on
the icosahedron and the dodecahedron, which belong to the
point symmetry group Ih. It was found that the low-energy

FIG. 5. Ground-state magnetization M as a function of magnetic
field h for the dodecahedron. M is the total spin S normalized to the
number of sites and the magnitude of spin. Solid line: si=

1
2 , dotted

line: si=1. M has no units and h is in units of energy. The steps
between S sectors are 0.1 for si=

1
2 and 0.05 for si=1. The discon-

tinuities are between 0.4 and 0.6 for si=
1
2 , and between 0.4 and 0.5,

and 0.7 and 0.8 for si=1.

TABLE VII. Ground-state correlation functions of spin 1 for the lowest energy states on both sides of the
magnetization discontinuities for the dodecahedron. Correlations are the same between spin 1 and each of the
spins in these groups: �2,5,6�, �3,4,7,8,14,15�, �9,10,12,13,16,20�, �11,17,19�, and �18� �see Fig. 1�.

Correlation
function

si=
1

2
S=4

si=
1

2
S=6

si=1
S=8

si=1
S=10

si=1
S=14

si=1
S=16

S�1 ·S�2
−0.21358 −0.08237 −0.62745 −0.43279 0.04071 0.32677

S�1 ·S�3
0.08764 0.12061 0.34296 0.43033 0.60512 0.72748

S�1 ·S�9
0.04971 0.08038 0.18218 0.16926 0.47185 0.59169

S�1 ·S�11
−0.01650 0.12180 −0.04887 0.36408 0.45061 0.73273

S�1 ·S�18
0.11611 0.02574 0.47814 0.10860 0.56423 0.50655
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spectra are similar and consist of excited states that are sin-
glets for both si=

1
2 and 1. Spin correlations survive longer

distances for the icosahedron. The specific-heat calculation
revealed a nontrivial dependence on temperature, with more
than one peak for the dodecahedron for si=

1
2 , and the icosa-

hedron for si=1. This feature has also been found for other
frustrated spin systems.6–11 There are discontinuities in the
ground-state magnetization as a function of magnetic field
for the dodecahedron for both si=

1
2 and 1, but this is not the

case for the icosahedron. This discontinuity was found at the
classical level,21 and here it has been shown to survive the
quantum fluctuations. It appears to be a characteristic of the
system for any quantum number. There is also a number of
magnetization plateaux for both quantum numbers. These
nontrivial properties of the clusters are a consequence of the
frustrated interactions and the connectivity. Other clusters of
fullerene-type geometry show similar properties in their low-
energy spectrum.24 The similarities in the spectra and the
specific heat of the icosahedron and the dodecahedron point
in similar properties for the larger cluster with the same sym-
metry and 60 equivalent sites. It also shows that more com-
plicated fermionic models for the 60-site system, such as the
Hubbard model, could instead be considered on the icosahe-
dron and the dodecahedron, and the results will be reliable
predictions for the properties of the models on the larger
system. However, no prediction can be made for the response
in a field for the si=

1
2 antiferromagnetic Heisenberg model,

which depends not only on the symmetry, but also on the
polygons that make up the clusters. At the classical level
both the dodecahedron and the 60-site cluster have discon-
tinuous magnetization in a field.21 The dodecahedron exhib-
its jumps for both si=

1
2 and 1 and has only pentagons,

whereas the 60-site system has hexagons as well. It has been
found that hexagon correlations are more important for frus-
trated systems of the fullerene type with more than 20 sites,
for which there is no magnetization discontinuity for si=

1
2 ,

even though there are jumps at the classical level.24 Another
point deserving further attention is the transition from the
quantum to the classical limit, regarding the low-energy
spectra and the presence of singlets, the temperature depen-
dence of the specific heat and the presence of magnetization
discontinuitites. The general behavior of the clusters with Ih

point group symmetry is determined to a significant extent
by the symmetry; however, the coordination number and the
polygons that make up the structures are also important for
the determination of their properties.
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gram Development Host Fellowship under Contract No.
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