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The classical, square lattice, uniaxially anisotropic Heisenberg antiferromagnet in a magnetic field parallel to
the easy axis is studied using Monte Carlo techniques. The model displays a long-range ordered antiferromag-
netic, an algebraically ordered spin-flop, and a paramagnetic phase. The simulations indicate that a narrow
disordered phase intervenes between the ordered phases down to quite low temperatures. Results are compared
to previous, partially conflicting findings on related classical models as well as the quantum variant with spin
S=1/2.
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I. INTRODUCTION

The square lattice, uniaxially anisotropic Heisenberg an-
tiferromagnet in an external field H parallel to the easy axis
has been studied for more than two decades both in its clas-
sical version1–4 and in the quantum variant.5,6 However, im-
portant features of the phase diagram have not been defi-
nitely clarified.

The anisotropy may be introduced in various ways. In the
case of the XXZ model, the Hamiltonian may be written as1

H = J�
�i,j�

���Si
xSj

x + Si
ySj

y� + Si
zSj

z� − H�
i

Si
z, �1�

where for the classical model Si
x ,Si

y ,Si
z are the components of

a unit vector corresponding to the spin at site i of the lattice,
and the sum �i , j� runs over all nearest-neighbor pairs. The
coupling constant J and the field H are positive; the aniso-
tropy parameter � may range from zero to one. The model is
known to exhibit, for 0���1, both for simple cubic and
square lattices, an antiferromagnetic �AF� phase at low tem-
peratures and low fields, a spin-flop �SF� phase with spins
canted towards the z axis at larger fields, and the disordered,
paramagnetic phase.

For the simple cubic lattice, the three phases are believed
to meet at a bicritical point,7 belonging to the universality
class of the isotropic Heisenberg model with O�3� symmetry.
Elsewhere, the boundaries to the disordered phase display
either Ising criticality in the AF case or XY criticality in the
SF case.

For the square lattice, different scenarios on the fate of the
bicritical point have been discussed following the early
analysis of Landau and Binder.1 In particular, �a� the bicriti-
cal point may move to zero temperature, in accordance with
the well-known theorem by Mermin and Wagner,8 with a
presumably narrow disordered phase in between the AF and
SF phases; �b� at low temperatures, there may be a direct
transition of first order between the AF and SF phases, with
a tricritical point on the boundary of the AF to the paramag-
netic phase; and �c� a “biconical phase,” in which the spins
on only one of the sublattices of the antiferromagnet are
canted, may intervene between the AF and SF phases at low

temperatures. However, based on the early simulations1 at
�=4/5, none of these three scenarios has been strongly or
even definitely favored.

More recently, related two-dimensional antiferromagnets
in a field have been studied. For a classical antiferromagnet
with nearest-neighbor interactions and a single-ion aniso-
tropy, it has been suggested that the bicritical point occurs
at zero temperature. However, evidence is provided by ana-
lytic approximations which are in quantitatively rather poor
agreement with Monte Carlo data.4 A phase diagram with a
tricritical point and a direct transition between the AF and SF
phases has been determined for the quantum variant of the
XXZ model with spin S=1/2 and �=2/3, see Eq. �1�, cor-
responding to the hard-core boson Hubbard model.6 For an
experimentally motivated classical model9 with single-ion
anisotropy and further neighbor couplings a topologically
similar phase diagram has been obtained.10

Experimentally, there seem to be quite a few quasi-two-
dimensional antiferromagnets with uniaxial anisotropy, in-
cluding, for instance, Rb2MnF4, Rb2MnCl4, K2MnF4,
La5Ca9Cu24O41, and Mn�HCOO�2.2,3,9,11–14 However, the
above sketched subtleties of the phase diagram have not been
fully elucidated, perhaps due to additional interactions like
interlayer couplings, or additional anisotropies like the
breaking of the XY isotropy, which, even when being weak,
are expected to affect significantly critical properties.4 Inevi-
table defects may eventually play an important role in two-
dimensional antiferromagnets in a field being related to
random-field systems.15

In this paper, we shall present results of extensive Monte
Carlo simulations on the classical XXZ Heisenberg antifer-
romagnet on a square lattice, mostly setting the anisotropy
parameter to �=4/5 and �=2/3. Our findings indicate that a
narrow disordered phase intervenes between the AF and SF
phases down to quite low temperatures.

The layout of the paper is as follows. In the next section,
basic properties of the model will be discussed and the quan-
tities computed in the simulations will be listed. The transi-
tion from the SF to the paramagnetic phase will be discussed
in Sec. III, followed by a section dealing with the boundary
line of the AF phase. A brief discussion and summary will
conclude the paper.

PHYSICAL REVIEW B 72, 064443 �2005�

1098-0121/2005/72�6�/064443�7�/$23.00 ©2005 The American Physical Society064443-1

http://dx.doi.org/10.1103/PhysRevB.72.064443


II. BASIC PROPERTIES AND QUANTITIES OF INTEREST

At zero temperature, T=0, the XXZ model on a square
lattice, see Hamiltonian �1�, may be easily solved exactly.1

The antiferromagnetic structure, being the ground state at
low fields, becomes unstable against the spin-flop state at

Hc1 = 4J�1 − �2. �2�

Increasing the field, the paramagnetic state gets stable at
H�Hc2, with

Hc2 = 4J�1 + �� . �3�

The tilt angle, �, between the z axis and the direction of the
spins in the SF state, Hc1�H�Hc2, is given by

� = cos−1�H/4J�1 + ��� . �4�

Obviously, in the isotropic limit, �=1, one gets Hc1=0
and Hc2=8J, with the Ising-like AF state being squeezed out,
the ground state at H=0 having the rotationally invariant
O�3� symmetry. In the Ising limit, �=0, one has Hc1=Hc2

=4J, i.e., the SF structure is certainly not a ground state.
At low temperatures, considering 0���1, the AF and

SF states give rise to ordered phases. In the AF case, one
expects long-range order with the z-component of the sublat-
tice magnetization as the order parameter. The transition to
the paramagnetic phase is believed to be continuous and of
Ising type, at least at small fields. In the SF phase, the rota-
tional invariance of the x- and y-components of the canted
spins may lead to algebraic order and a transition of
Kosterlitz-Thouless type to the disordered phase,1,4,16 as it is
known to hold, for instance, for the two-dimensional XY
model.

Phase diagrams of the XXZ model, as obtained from our
Monte Carlo simulations, are depicted in Figs. 1�a� and 1�b�.
We set �=4/5 and �=2/3 to allow for comparison with
previous findings.1,6 The diagrams will be discussed in detail
later. Unless indicated otherwise, here and in the following
error bars in the figures are smaller than the size of the sym-
bols.

In the Monte Carlo �MC� simulations, we consider square
lattices with L�L sites, employing full periodic boundary
conditions. The linear dimension L ranges from 2 to 240,
especially to study finite-size effects allowing for extrapola-
tion to the thermodynamic limit, L→� �see below�. Apply-
ing the standard Metropolis algorithm, each MC run consists
of at least 106 �and up to 108� Monte Carlo steps per site. To
obtain averages and error bars, we usually take into account
several, typically about 10 �and up to 40�, realizations choos-
ing various random numbers. In selected cases, especially at
low temperatures close to the boundaries of the AF and SF
phases, the MC runs are started with different initial configu-
rations to check for correct equilibration.

We compute quantities of direct experimental interest as
well as other quantities which enable us to conveniently de-
termine the phase transition lines and critical properties. In
particular, we calculated the specific heat C, both from the
energy fluctuations and from the temperature derivative of

the energy. Various magnetizations were computed: Espe-
cially, we recorded �i� the z-component of the total magneti-
zation,

�Mz� = 	�
i

Si
z
/L2; �5�

�ii� the square of the z-component of the staggered magneti-
zation ��Ms

z�2� �or, similarly, the absolute value� to describe
the order in the antiferromagnetic phase,

��Ms
z�2� = 	��

ia

Sia
z − �

ib

Sib
z �2
/L2, �6�

summing over all sites, ia and ib, of the two sublattices a and
b of the antiferromagnet; as well as �iii� the square of the
staggered transverse sublattice magnetization ��Ms

xy�2�, to de-
scribe the ordering in the SF phase,

FIG. 1. Simulated phase diagrams of the XXZ model on a
square lattice, for the values �a� �=2/3 and �b� �=4/5 of the
anisotropy parameter. Squares denote transitions between the SF
and paramagnetic phases, circles refer to the boundary of the AF
phase. Lines, here and in the following figures, are guides to the
eye.
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��Ms
xy�2� = ��Ms

x�2� + ��Ms
y�2� , �7�

in full analogy to Eq. �6�. Alternately, one may compute the
sum of the squares of each sublattice magnetization for both
transverse components, as before.10

In addition, we monitored the magnetic �staggered� sus-
ceptibility ��s�

z , which may be obtained from the fluctuations
of the �staggered� magnetization or its derivative with re-
spect to the �staggered� field. To identify the type of transi-
tion along the boundary of the AF phase, the fourth-order,
size-dependent cumulant UL

z of the staggered magnetization,
the Binder cumulant,17 is supposed to be rather useful:

UL
z = 1 − ��Ms

z�4�L/�3��Ms
z�2�L

2� , �8�

where ��Ms
z�4� is defined in analogy to ��Ms

z�2�. The corre-
sponding cumulant UL

xy may be useful to study the boundary
of the SF phase. To identify the type of the phase transition,
we also study the fourth-order cumulant of the energy18

VL = 1 − �E4�L/�3�E2�L
2� , �9�

with E being the energy per site.
Further relevant information on the phase transitions may

be inferred from histograms of the order parameter and of the
energy.

III. TRANSITION FROM THE SPIN-FLOP TO THE
PARAMAGNETIC PHASE

For square lattices, the spin-flop phase has been argued to
be of Kosterlitz-Thouless type,1,4,6 where transverse spin cor-
relations, i.e., �Si

xSi�
x +Si

ySi�
y �, decay algebraically with dis-

tance i− i� for widely separated sites i and i�. Closely re-
lated, the transverse sublattice magnetization ��Ms

xy�2�, see
Eq. �7�, describing the ordering in the SF phase, is expected
to behave for T	0 and sufficiently large systems as

��Ms
xy�2�L 
 L−g, �10�

with g approaching 1/4 at the transition from the SF to the
paramagnetic phase,16,19 and g=2 in the paramagnetic phase.
Thence, in two dimensions, the order parameter, ��Ms

xy�2�,
vanishes in the SF phase as L→� at all temperatures T	0.

In fact, as illustrated in Fig. 2, the MC data clearly show
that the magnetization decays with system size both in the
SF and the paramagnetic phase. To determine the boundary
of the SF phase, TSF, from the size dependence of the trans-
verse sublattice magnetization, Eq. �10�, one may study the
effective exponent, as usual,20

geff�L� = −
d ln��Ms

xy�2�L

d ln L
, �11�

in its discretized form, comparing data for consecutive sys-
tem sizes, L1 and L2, L2	L1, with

geff�L0� = −
ln���Ms

xy�2�L2
/��Ms

xy�2�L1
�

ln�L2/L1�
, �12�

where L0=�L1L2. Indeed, when crossing the phase boundary
by, for instance, fixing the field and decreasing the tempera-

ture �see Figs. 1�a� and 1�b��, for large systems geff tends to
drop rapidly from rather high values approaching 2, charac-
terizing the decay in the disordered phase, to a small value
close to 1/4 at the transition to the SF phase. Deeper in the
SF phase, geff decreases somewhat to even lower values.

This behavior of the effective exponent is exemplified in
Fig. 3, allowing one to estimate TSF. We checked the ap-
proach by analyzing the two-dimensional �planar� XY
model, reproducing quite accurately the transition tempera-
ture as obtained from elaborate numerical studies.21

The Kosterlitz-Thouless character of the transition be-
tween the SF and the paramagnetic phases is also reflected in
the thermal behavior of the specific heat C, which displays a
noncritical maximum close to, but not exactly at, the transi-
tion. Of course, from simulational data one cannot identify
the expected essential singularity of C at the transition.

Approximate analytic expressions for the boundary be-
tween the SF and the paramagnetic phases may be obtained
by the following considerations, slightly modifying previous
arguments.1 Using polar coordinates and fixing the
z-component of the spins in the SF phase to its value in the
ground state, Eq. �4�, the transition temperature TSF may be
approximated by1

kBTSF

J
=

kBTKT

J
��1 − �H/Hc2�2� , �13�

where kBTKT/J refers to the Kosterlitz-Thouless transition
temperature of the XY model with coupling J, i.e., the clas-
sical isotropic model with a two-component spin vector of
length one.21 Indeed, this approximate expression may be
regarded as an upper bound to the true transition temperature

FIG. 2. Square of the staggered transverse sublattice magnetiza-
tion, ��Ms

xy�2�L, vs temperature at fixed field H /J=6.0 for systems
of size L=10, 20, 40, 80, and 120 �from top to bottom�, close to the
boundary between spin-flop and disordered phases. The anisotropy
parameter is �=4/5.
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because the fluctuations in the z-component �which, in turn,
are coupled to the fluctuations in the transverse spin compo-
nents� tend to reduce the transition temperature. In addition,
the change of the tilt angle � with temperature, at fixed field,
will affect the transition temperature. In fact, TSF, as deter-
mined in the simulations, see Figs. 1�a� and 1�b�, is seen to
be lower than that suggested by Eq. �13�. In any event, the
approximation does not hold in the vicinity of Hc1, where the
fluctuations of the longitudinal and transverse spin compo-
nents are strongly correlated. Among others, that region will
be discussed in the next section.

IV. THE BOUNDARY LINE OF THE
ANTIFERROMAGNETIC PHASE

We determined the boundary line of the AF phase by
monitoring especially the specific heat C, the square of the
z-component of the staggered magnetization, ��Ms

z�2�, the
staggered susceptibility, �s

z, and the Binder cumulant, UL
z .

The transition temperatures follow from finite-size ex-
trapolations of the Monte Carlo data. Results for �=4/5 and
�=2/3 are displayed in Fig. 1.

At low fields and high temperatures the transition is ex-
pected to be continuous and of Ising type. Indeed, we ob-
serve, for instance, a logarithmic divergence in the height of
the peak in the specific heat as a function of system size,
Cmax
 ln L, and an effective critical exponent of the order
parameter �eff consistent with the asymptotic value 1/8
when approaching the transition, fixing the field and varying
temperature.

The transition line of the AF phase shows a maximum in
the critical field, as a function of temperature, being some-

what higher than Hc1, Eq. �2�, both for �=2/3 and �=4/5 �a
feature which has not been mentioned in the early work1�. In
that part of the phase diagram, see Fig. 4 for �=4/5, the
boundary lines of the SF and AF phases approach each other
when lowering the temperature.

Fixing the field to be slightly below its maximal critical
value and decreasing the temperature, one observes a rather
asymmetric behavior in the staggered magnetization ��Ms

z�2�,
as illustrated in Fig. 5. The order parameter of the AF phase
rises fairly gradually entering the AF phase from the para-
magnetic phase, while it drops down rather rapidly on ap-
proach to the SF phase. This asymmetry signals either a
change in the type of the transition at the lower temperature,
becoming, possibly, of first order, or in the extent of the
critical region becoming, possibly, very narrow.

To study the transition along the boundary of the AF
phase in more detail, the Binder cumulant UL

z may be quite
useful, as had been employed before.6,10 In the thermody-
namic limit the value of the cumulant at the transition point,
the critical cumulant UL=�

z �TAF�, is believed to reflect the
type and universality class of the transition. From simula-
tional data, the critical cumulant may be estimated from the
intersection value UI�L� of the cumulant for different system
sizes L and L�=bL �in the following, we set b=2�, doing
finite-size extrapolations.17 In Fig. 6 we depict results for
�=4/5, monitoring UI�L� as a function of temperature in the
vicinity of the AF boundary line. The intersection value UI

seems to display one plateau at higher temperatures and an-
other plateau, with a smaller height, at lower temperatures,
with a fairly rapid change in between. The plateaus tend to
get more pronounced and the change becomes sharper as the
system size L is increased. In fact, the plateau at high tem-
peratures is obviously related to the critical cumulant in the

FIG. 3. Effective exponent geff, see Eqs. �11� and �12�, vs tem-
perature at fixed field H /J=2.7, comparing systems of size
�L2 ,L1�= �20,10�, �30,20�, �40,30�, �60,40�, and �80,60� �from bot-
tom to top�, close to the boundary between spin-flop and disordered
phases. The anisotropy parameter is �=4/5.

FIG. 4. Details of the phase diagram of the XXZ model on a
square lattice with �=4/5. Squares refer to the boundary of the SF,
circles to that of the AF phase.
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universality class of the two-dimensional Ising model, where
UL=��TAF��0.6106.22 Note that UL

z , computed exactly at the
transition �TAF,HAF�, approaches this value closely with only
minor finite-size corrections for low fields and high tempera-
tures. However, near the maximum of the boundary line of

the AF phase, significant corrections are observed, which
have not been discussed in the related quantum variant.6 The
critical cumulant of the apparent plateau at low temperatures
tends to increase weakly with T, being close to 0.4 at �
=4/5, for the system sizes we considered, L�120. Perhaps
interestingly, at the critical field Hc1���, the cumulant seems
to approach, at least for small lattices, in the limit T→0, a
value slightly below 0.38. With decreasing �, this limiting
value decreases.

Note that the turning point of the intersection value UI�L�
is shifted towards lower temperatures, Ttu, as L increases, see
Figs. 6 and 7. Obviously, there are uncertainties in extrapo-
lating those data to the thermodynamic limit. A naive linear
extrapolation yields an estimate of a temperature, T*, of
about 0.4 �in units of J /kB�, at which non-Ising criticality
may set in, possibly due to a transition of first order.

This interpretation, however, has to be viewed with much
care. Indeed, the fourth order energy cumulant18 gives no
hint of a transition of first order at the AF boundary, at quite
low temperatures, 0.3J /kB�T�T*. Its minimum near the
transition, becoming even more shallow at lower tempera-
tures, tends to vanish for larger lattices, as expected for a
continuous transition.

Even more strikingly, the size dependences of the specific
heat as well as of the staggered susceptibility suggest that the
boundary line of the AF phase is still in the Ising universality
class well below the anticipated change at T*. This behavior
is exemplified in Figs. 8 and 9 for the case �=4/5 and
H /J=2.42, where kBTAF/J�0.33, i.e., in the part of the
phase diagram where the AF and SF phase boundaries are
hardly discernible, see Fig. 4. We find consistency with Ising
criticality, especially, Cmax
 ln L, and the peak of the stag-
gered susceptibility, ��s

z�max, grows like L�/=L7/4, studying
lattices with L up to 160. We checked equilibration of the

FIG. 5. Staggered magnetization ��Ms
z�2� vs temperature at field

H /J=3.0 for �=2/3 with L=128 �squares�, and at H /J=2.42 for
�=4/5 with L=120 �circles�, close to the maximum of the bound-
ary of the AF phase.

FIG. 6. Binder cumulant UI�L�, as obtained from the intersec-
tion points of cumulants for lattices of sizes L and 2L close to the
boundary of the AF phase, as a function of temperature, with L
=10, 20, and 40 �from bottom to top�. The anisotropy parameter is
�=4/5.

FIG. 7. Size dependence of the turning point, Ttu, in the Binder
cumulant UI�L� comparing lattices of linear dimension L and 2L,
for �=4/5, see Fig. 6, with L ranging from 4 to 60.
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MC data by monitoring time series of the energy and the
staggered magnetization as well as by calculating the specific
heat from the energy fluctuations and the temperature deriva-
tive of the energy. The findings suggest that there is a very
narrow paramagnetic phase intervening between the AF and
SF phases at least down to that temperature, kBT /J�0.33. At
even lower temperatures, this type of analysis would require
very large computational resources to obtain reliable MC
data.

For �=2/3, similar features are observed in the corre-
sponding part of the phase diagram, where, e.g., a logarith-
mic size dependence of the height of the specific heat at
temperatures close to kBTAF/J�0.28 is found, compare
Fig. 1.

In contrast, results of our simulations of the XXZ model
on a simple cubic lattice, setting �=4/5, show at tempera-
tures below the bicritical point a direct transition of first or-
der between the AF and SF phases, as expected.7,23 For in-
stance, the maximum of the specific heat increases with a
power law in L, with an effective exponent, for moderate
system sizes, 8�L�20, being significantly larger than the
value characteristic for the universality class of the three-

dimensional Ising model. The behavior is, indeed, indicative
of a first order transition, where Cmax
L3. Likewise, energy
histograms show the usual properties of a transition of first
order, with an overlap of two distinct Gaussian peaks. The
critical energy cumulant in the three-dimensional case is ob-
served to be close to, but distinct from 2/3.

Note that at fixed low temperature and varying the field,
the z-component of the magnetization changes rapidly in
both sublattices simultaneously, within our field resolution,
both for �=4/5 and �=2/3, contradicting a biconical inter-
mediate phase with a canting of the spins in only one sub-
lattice.

V. DISCUSSION AND SUMMARY

We have studied the classical, square lattice, uniaxially
anisotropic Heisenberg antiferromagnet, the XXZ model, in
a magnetic field, doing extensive Monte Carlo simulations.
We mainly considered two cases of fairly weak anisotropy,
�=4/5 and �=2/3. The model displays an antiferromag-
netic, a spin-flop, and a paramagnetic phase.

The transition from the antiferromagnetic to the paramag-
netic phase is seen to be of Ising type at small fields, remain-
ing of that type at higher fields and rather low temperatures
�down to at least kBT /J�0.33 in the case �=4/5�, as in-
ferred, especially, from the size dependence of the maxima in
the staggered susceptibility and the specific heat. A naive
analysis of MC data of the Binder cumulant along the bound-
ary of the antiferromagnetic phase may lead to a different,
but supposedly erroneous conclusion. Presumably, the criti-
cal region at the AF phase boundary becomes rather tiny
when the SF and AF phase boundaries approach each other,
demanding very large lattices to identify the universality
class correctly, at least when studying the Binder cumulant.

FIG. 8. Specific heat C at H /J=2.42 and �=4/5 near the lower
transition temperature of the AF phase close to kBTAF/J�0.33, see
Fig. 4, depicting �a� raw data of C vs temperature for systems of
size L=80 �circles�, 100 �squares�, 120 �diamonds�, and 160 �tri-
angles�, and �b� the maximum of C vs logarithm of the system size
L, with the dashed line indicating a logarithmic size dependence.

FIG. 9. Doubly logarithmic plot of the size dependence of the
maximum in the staggered susceptibility at H /J=2.42 and �=4/5.
The dashed line refers to a slope with � /=7/4.
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The transition between the spin-flop and the disordered
phase is of Kosterlitz-Thouless type. It may be located accu-
rately by analyzing the finite-size behavior of the transverse
staggered magnetization, vanishing with increasing system
size with a characteristic power law at the transition.

In the quantum variant of the model with spin S=1/2 a
tricritical point on the AF boundary and a direct transition
between the AF and SF phases at low temperatures have
been obtained.6 Near the tricritical point the AF and SF
phases are still well separated. At present, we can only
speculate whether this, perhaps, surprising discrepancy be-
tween the classical and quantum models could be resolved
when the classical version would be analyzed for even larger
lattices and/or at even lower temperatures or when MC data
on the quantum version would be reanalyzed.

In the isotropic limit, �=1, one finds, in nonvanishing
field, H	0, a spin-flop phase of Kosterlitz-Thouless charac-
ter both in the classical and in the quantum model.1,24 For
��1 and H=0, an Ising type transition occurs at a nonzero
temperature, with the transition temperature moving to zero
as the anisotropy vanishes, �→1, again both in the classical
and the quantum case.5,25

One of the remaining open crucial questions is whether
there is a typical phase diagram for square lattice, uniaxially

anisotropic antiferromagnets. In the case of the antiferromag-
netic nearest-neighbor Heisenberg model with single-ion an-
isotropy, a phase diagram with a paramagnetic phase be-
tween the antiferromagnetic and spin-flop phases extending
down to arbitrarily low temperatures has been suggested.4 In
another study of that model, a conflicting scenario with a
direct transition between the AF and SF phases has been
favored, presenting, however, only few Monte Carlo data.3

Including more than nearest-neighbor interactions in an an-
tiferromagnet with single-ion anisotropy,9,10 or taking into
account quantum fluctuations,6 phase diagrams with a tric-
ritical point and a direct transition between the AF and SF
phases have been obtained.

In any event, we should like to encourage future work on
this and related models, which may also serve as a guide in
interpreting experiments on corresponding quasi-two-
dimensional anisotropic antiferromagnets.

ACKNOWLEDGMENTS

It is a pleasure to thank M. Troyer for a useful conversa-
tion. Financial support by the Deutsche Forschungsgemein-
schaft under Grant No. SE324 is gratefully acknowledged.

1 D. P. Landau and K. Binder, Phys. Rev. B 24, 1391 �1981�.
2 H. J. M. de Groot and L. J. de Jongh, Physica B & C 141, 1

�1986�.
3 R. van de Kamp, M. Steiner, and H. Tietze-Jaensch, Physica B

241, 570 �1997�.
4 B. V. Costa and A. S. T. Pires, J. Magn. Magn. Mater. 262, 316

�2003�.
5 A. Cuccoli, T. Roscilde, V. Tognetti, R. Vaia, and P. Verrucchi,

Phys. Rev. B 67, 104414 �2003�.
6 G. Schmid, S. Todo, M. Troyer, and A. Dorneich, Phys. Rev. Lett.

88, 167208 �2002�.
7 M. E. Fisher and D. R. Nelson, Phys. Rev. Lett. 32, 1350 �1974�.
8 M. E. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 �1966�;

17, 1307 �1966�.
9 M. Matsuda, K. Kakurai, J. E. Lorenzo, L. P. Regnault, A. Hiess,

and G. Shirane, Phys. Rev. B 68, 060406�R� �2003�.
10 R. Leidl and W. Selke, Phys. Rev. B 69, 056401 �2004�; 70,

174425 �2004�.
11 H. Rauh, W. A. C. Erkelens, L. P. Regnault, J. Rossat-Mignod, W.

Kullmann, and R. Geick, J. Phys. C 19, 4503 �1986�.
12 R. A. Cowley, A. Aharony, R. J. Birgeneau, R. A. Pelcovits, G.

Shirane, and T. R. Thurston, Z. Phys. B: Condens. Matter 93, 5
�1993�.

13 R. J. Christianson, R. L. Leheny, R. J. Birgeneau, and R. W.
Erwin, Phys. Rev. B 63, 140401�R� �2001�.

14 U. Ammerahl, B. Büchner, C. Kerpen, R. Gross, and A. Rev-
colevschi, Phys. Rev. B 62, R3592 �2000�; R. Klingeler, Ph.D.
thesis, RWTH Aachen, 2003.

15 T. Nattermann and J. Villain, Phase Transitions 11, 5 �1988�.
16 J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 �1973�.
17 K. Binder, Z. Phys. B: Condens. Matter 43, 119 �1981�.
18 M. S. S. Challa, D. P. Landau, and K. Binder, Phys. Rev. B 34,

1841 �1986�.
19 P. Peczak and D. P. Landau, Phys. Rev. B 43, 1048 �1991�.
20 M. Pleimling and W. Selke, Eur. Phys. J. B 1, 385 �1998�.
21 B. Berche, J. Phys. A 36, 585 �2003�; R. Gupta and C. F. Baillie,

Phys. Rev. B 45, 2883 �1992�.
22 G. Kamieniarz and H. W. J. Blöte, J. Phys. A 26, 201 �1993�; D.

Nicolaides and A. D. Bruce, ibid. 21, 233 �1988�.
23 D. P. Landau and K. Binder, Phys. Rev. B 17, 2328 �1978�.
24 A. Cuccoli, T. Roscilde, R. Vaia, and P. Verrucchi, Phys. Rev. B

68, 060402�R� �2003�; see also M. E. Zhitomirsky and A. L.
Chernyshev, Phys. Rev. Lett. 82, 4536 �1999�.

25 T. Barnes, K. J. Cappon, E. Dagotto, D. Kotchan, and E. S. Swan-
son, Phys. Rev. B 40, 8945 �1989�.

TWO-DIMENSIONAL ANISOTROPIC HEISENBERG… PHYSICAL REVIEW B 72, 064443 �2005�

064443-7


