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A Brillouin light scattering study and theoretical interpretation of spin-wave modes in arrays of in-plane
magnetized micron-size rectangular NigyFe,, elements are reported. It is shown that two-dimensional spin-
wave eigenmodes of these elements can be approximately described as products of one-dimensional spin-wave
eigenmodes of longitudinally and transversely magnetized long finite-width permalloy stripes. The lowest
eigenmodes of rectangular elements are of dipole-exchange nature and are localized near the element edges,
while the higher eigenmodes are of a mostly dipolar nature and are weakly localized near the element center.
The frequency spectra and spatial profiles of these eigenmodes are calculated both analytically and numeri-
cally, and are compared with the results of the Brillouin light scattering experiment.
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I. INTRODUCTION

Recent developments in the field of magnetic storage and
magnetic sensors created a lot of interest in the dynamic
properties of small magnetic elements made by patterning
magnetic films and multilayers."> Growing demand for
higher lateral density in magnetic recording and for higher
speed of memory operation focused the attention of many
researchers on the spin dynamics of thin-film (several tens of
nanometers) magnetic elements with lateral dimensions of
0.1-1 um operating in the microwave frequency range
(3-30 GHz). It turns out that the frequencies and wave-
lengths of dipole-exchange spin waves (that happen to be the
dynamic eigenexcitations of nanosized magnetic elements)
lie in these frequency and spatial intervals. Thus, the under-
standing of spin-wave eigenexcitations of small magnetic el-
ements is of critical importance both for fundamental reasons
and for the modern applications in magnetic recording and
sensor technology. The problem is not trivial: for the mag-
netic elements in question both dipole-dipole and exchange
interactions should be taken into account simultaneously
when dynamic properties of the elements are analyzed. An
additional difficulty is created by the fact that in most cases
these small magnetic elements (e.g., thin rectangular prisms)
have a nonellipsoidal shape and, therefore, the magnetic field
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inside such elements is strongly inhomogeneous when a ho-
mogeneous external magnetic bias field is applied.

These particular circumstances result in several character-
istic properties of magnetic excitations in these elements that
have been recently observed in experiments: quantization of
spin-wave frequencies in longitudinally magnetized mag-
netic stripes and tangentially magnetized magnetic discs,>®
and localization of spin-wave modes in the regions of inho-
mogeneous internal magnetic field (spin-wave wells) in
transversely magnetized magnetic stripes and rectangular
elements.”!!

The study of quantized and localized spin-wave modes of
small magnetic elements is very important from yet another
point of view. Each finite-size magnetic element can be con-
sidered as a magnetic resonator having eigenfrequencies in
the microwave frequency range and, therefore, having
maxima in the thermal noise spectrum near these eigenfre-
quencies (or resonance frequencies). If this element is used
as a part of a magnetic reading head, or as a memory element
at microwave frequencies (and a typical speed of a modern
computer processor is around 3—4 GHz) it is the thermal
magnetic noise that limits the figures of merit of those
devices.!>”'* Recently, the pronounced maxima in the ther-
mal noise spectrum of small magnetic elements has been
observed experimentally in the microwave frequency range
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as well as addressed theoretically.'”"'* Thus, to understand

this effect and to be able to control the high-frequency prop-
erties of small magnetic elements it is necessary to study the
properties of thermally excited spin-wave modes in laterally
confined magnetic elements.

If the shape of a small magnetic element is ellipsoidal the
spin-wave spectrum of the element can be calculated
analytically,’>'® and for many decades the experimentally
studied magnetic elements relevant for applications were ap-
proximated by ellipsoidal elements with corresponding de-
magnetizing factors.!” In reality, the magnetic elements used
in applications have, for the most part, nonellipsoidal shape
which leads to the substantial inhomogeneity of their internal
magnetic field. It has been found recently that the nonellip-
soidal shape of these elements drastically affects their dy-
namic properties.

In the experimental part of this paper we show that in thin
rectangular magnetic elements both the quantization of spin-
wave modes due to the finite in-plane sizes of the element
and the localization of these modes due to the inhomogeneity
of the internal bias magnetic field manifest themselves si-
multaneously. In the theoretical part, we introduce a simple
approximate analytical approach which allows us to describe
both the quantization and localization effects observed in
thin in-plane magnetized rectangular magnetic elements. In
the numerical part of the paper the approximate results of our
analytical approach are verified by direct micromagnetic
simulations and are compared to the results of the Brillouin
light scattering (BLS) experiment.

Our analytical approach is based on the approximate rep-
resentation of the two-dimensional dynamic magnetization
distributions as a product of two one-dimensional magneti-
zation distributions corresponding to the eigenmodes of infi-
nitely long longitudinally and transversely magnetized mag-
netic stripes having finite widths. In the case of a
longitudinally magnetized long stripe the one-dimensional
eigenmodes along the stripe width are calculated using the
approximate dipolar boundary conditions obtained in Ref.
18.

In the case of a transversely magnetized stripe (or stripe
magnetized along its width) the main qualitative effects are
caused by a strongly inhomogeneous static internal magnetic
field. This inhomogeneity causes the creation of a so-called
“spin-wave well” (SWW).>~!! The one-dimensional eigen-
modes along the stripe width in this case are calculated using
the Mathieu function formalism,'” or using the approximate
theory presented in Ref. 20 or by numerical solution of a
one-dimensional integral equation describing the dipole-
exchange spin-wave modes in an inhomogeneous bias mag-
netic field.

To check the results of the above described approximate
analytical methods for thin rectangular magnetic elements
we performed numerical simulations of two types: thermo-
dynamic simulations based on Langevin dynamics, and field
pulse simulations at zero temperature based on the object-
oriented micromagnetic framework?! (OOMMF).

It should be also mentioned, that recently performed nu-
merical calculations?>* of the frequencies of normal modes
in rectangular permalloy prisms made by a different method
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FIG. 1. SEM image of an array of magnetic rectangular ele-
ments with used coordinate system.

gave results that quantitatively coincide with the results of
our approximate analytic formalism (see Fig. 8 in Ref. 22).

II. SAMPLES AND EXPERIMENTAL SETUP

The investigated samples were prepared from permalloy
(NigyFe,,) films, thermally evaporated on Si(111) substrates
in UHV. Patterning was performed by means of electron
beam lithography and ion beam etching. The rectangular
elements were prepared with lateral dimensions of
1 X 1.75 um?, a thickness of 35 nm, and an element spacing
of 0.1 um. The elements were arranged in arrays of dimen-
sions of 500X 500 wm?. The high quality of the patterning
process has been confirmed by atomic force microscopy
(AFM) and scanning electron microscopy (SEM), as illus-
trated in Fig. 1. As it is seen from Fig. 1, the used technique
guaranties a high quality patterning process, which provides
a very good flatness of the stripe boundaries and reproduc-
ibility of the stripe widths.

The spin-wave spectrum of a confined system can be in-
vestigated by various techniques: ferromagnetic resonance,”
time resolved Kerr magnetometry,''2°-28 and Brillouin light
scattering spectroscopy (BLS).? The BLS experimental
technique has a number of advantages for the investigation
of patterned magnetic structures. It combines the possibility
to study the dynamics of patterned systems in the frequency
range of up to 100 GHz (corresponding time resolution is
10 ps) with a high lateral resolution of 20-30 um defined by
the size of the laser beam focus. Moreover, BLS can be used
in the so-called “Fourier microscope” mode with an effective
resolution below 200 nm.® Another important advantage of
BLS is its very high sensitivity which allows us to register
thermally excited spin-wave modes, so the coherent excita-
tion of the element by an external signal is not necessary.
This property of BLS is especially useful for the experimen-
tal investigations of complicated, strongly confined spin-
wave modes in patterned magnetic elements having nonellip-
soidal shape as the coherent excitation of such modes is not
easy.

The BLS process in bulk magnetic samples and magnetic
films is discussed in detail in Refs. 6,29: monoenergetic pho-
tons (visible light, usually green line of an Ar* laser,
514.5 nm) with the wave vector q; and frequency w;=cq;
interact with the elementary quanta of spin waves (mag-
nons), characterized by the magnon wave number q and fre-
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quency w. Because of the conservation laws resulting from
the time- and space-translation invariance of the system the
scattered photon gains an increase or decrease in energy and
momentum if a magnon is annihilated or created:

hog=h(w; + w), (1)

hqs=Hh(q;=q). 2)

Measuring the frequency shift of the scattered light one ob-
tains the frequency of the spin wave participating in the BLS
process. From Eq. (2) it is evident, that the wave vector
qs—q;, transferred in the scattering process, is equal to the
wave vector q of the spin wave. Varying the scattering ge-
ometry one can sweep the value of ¢ and measure the corre-
sponding frequency w. Thus, the spin wave dispersion w(g)
can be studied. At room temperature (7> fiw/kg= 1K) the
annihilation and creation of a magnon have about the same
probability.

It was shown in Ref. 6 that the intensity of the scattered
light as a function of the transferred wave vector q is con-
nected with the profile of the dynamic magnetization m(p) of
a spin-wave mode confined in the element:

2

I(q) = f m(p) - exp(= iqp)dp| . (3)

Thus, the light scattering intensity is proportional to the
squared Fourier transform of the dynamic magnetization
m(p), where p=ye,+ze,. If BLS is used in the “Fourier mi-
croscope” mode, the light scattering intensity is measured as
a function of . On the basis of this information the mode
profile m(p) in the elements is reconstructed. In the “Fourier
microscope” mode the spatial resolution & is determined by
the accessible transferred wave vector interval 7/Ag. For
BLS experiments in the backscattering geometry it follows
that Ag=2¢; and 6=120-130 nm for the green Ar* laser
line.

III. EXPERIMENTAL RESULTS

In our previous experiments the spectrum of spin-wave
modes standing along the finite width of a long magnetic
stripe was investigated. For these long stripes two different
geometries can be considered and they give a possibility to
investigate two different effects separately.

In the first geometry the applied magnetic field is along
the stripe length and, therefore, the internal magnetic field is
homogeneous and equal to the applied external magnetic
field. In this case the wave vectors of the standing spin-wave
modes of the stripe are directed along the stripe width and
are perpendicular to the bias magnetic field, thus creating the
conditions for the quantization of the Damon-Eshbach-like
spin waves. The quantization is caused by the the physical
boundaries of the stripe, i.e., spatial confinement of the
standing spin-wave modes exists due to a finite width of the
stripe.>”” Therefore, in the following this orientation of
the bias magnetic field will be called the Damon-Eshbach
geometry.

The second geometry corresponds to the case when the
applied magnetic field and the static magnetization My are
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FIG. 2. Plot of the z component of the effective magnetic field
of a rectangular element with the width w=1 um, length [
=1.75 pm, and thickness of L=35 nm calculated using OOMMF
(Ref. 21). The external bias magnetic field of 600 Oe was oriented
along the length [ of the rectangular magnetic element. Note, that
the effective field calculated with OOMMEF is negative near the
edges z==+1/2 of the element, due to the definition of the exchange
field (Ref. 31). Here for clarity we show only the positive values of
the internal bias field. The corresponding distribution of static mag-
netization is shown in Fig. 10.

directed along the width of a thin stripe. Since in a continu-
ous magnetic film waves with qllMg are called magnetostatic
backward volume waves (MSBVW), we refer to this experi-
mental geometry as the MSBVW geometry.

In this geometry, both the static and dynamic internal
magnetic fields are strongly inhomogeneous along the stripe
width. Nevertheless, for a large enough magnitude of the
applied field the static magnetization is parallel to the bias
field within almost the entire stripe. The strong demagneti-
zation effect present in this geometry leads to the decrease of
the static internal magnetic field near the stripe edges. A
detailed analysis shows that the internal static field H; has a
broad maximum in the center of the stripe while it is vanish-
ing completely near the edges of the stripe,’’ so the internal
bias magnetic field is positive on the effective width [* that is
slightly smaller than the physical width / of the stripe. This
inhomogeneity of the static internal field qualitatively
changes the spatial profile of the lowest spin-wave modes in
the stripe, and creates so-called “spin-wave wells” (SWW’s)
near the edges of the stripe, where the lowest spin wave
eigenmodes of the stripe are localized.”!!!0

The rectangular magnetic elements with two finite in-
plane sizes considered here are substantially nonellipsoidal.
Thus, there is no orientation of the external bias field which
provides a homogeneous static internal magnetic field inside
a rectangular element. Figure 2 shows the distribution of the
internal static magnetic field inside a rectangular magnetic
element magnetized by the applied bias field of 600 Oe di-
rected along the long side of the element. This distribution
was obtained using micromagnetic simulations as discussed
below.?! It is calculated for rectangular permalloy elements
with the width w=1 um, length [=1.75 um, and the thick-
ness of d=35 nm used in our experiments. It can be seen,
that the inhomogeneity of the internal bias field occurs
mainly along the direction of the applied field (z direction).
The inhomogeneity perpendicular to the applied field (y di-
rection) is not so pronounced.

This property of the internal field profile suggests that
two-dimensional distributions of the variable magnetization
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FIG. 3. Frequencies of spin-wave modes of an array of rectan-
gular 1X1.75 um? elements in an applied bias field of 600 Oe
directed along the long side of the elements measured by BLS as a
function of the transferred wave vector (which was also oriented
along the length of the elements).

in the spin wave eigenmodes of a rectangular magnetic ele-
ment can be treated as a product of the one-dimensional
eigenmodes of a longitudinally and a transversely magne-
tized long stripe discussed above. This approach will be de-
scribed in detail in the theoretical part of the paper.

Figure 3 shows the experimentally measured frequencies
of the spin-wave eigenmodes of such an element. Here both
the applied field and the transferred wave vector are directed
along the long side (length) of the element. It must be noted,
that although the wave vector of light in the BLS experiment
shown in Fig. 3 was directed along the length of the rect-
angle (and, therefore, along the bias magnetic field) due to
the finite aperture of the objective lens of our BLS setup we
were able to probe the total resulting magnitude of the wave
vector of the spin-wave modes of the element. This total
mode wave vector has components both along and perpen-
dicular to the bias magnetic field due to fact that our rectan-
gular magnetic elements have two finite in-plane sizes. This
property of our BLS setup is of much smaller importance in
the case of experiments in magnetic stripes where the length
of the stripe is much larger than its width. When the direction
of the wave vector of light in our experiments was chosen
parallel to the short side (width) of the magnetic element the
observed frequencies of the spin-wave modes were the same
as in Fig. 3, but the observed relative mode intensities were
different. By recording the BLS intensity of a given mode as
a function of the transferred wave vector when this wave
vector is first directed along the length and then along the
width of the rectangular element, it is possible to perform a
two-dimensional “Fourier mapping” of the spin-wave modes
in the element. This two-dimensional mapping helps to de-
termine the structure and the spatial distribution of different
modes.

As an example, Fig. 4 shows the BLS intensity of two
spin-wave modes as a function of the absolute value of the
transferred wave vector that is either parallel (circles) or per-
pendicular (squares) to the applied field and the static mag-
netization. It is evident, that the intensity distributions are
completely different in these two cases. For the lowest spin-
wave mode and a transferred wave vector parallel to the
applied magnetic field (circles) an almost constant BLS in-
tensity of the mode over a wide interval of wave vectors
indicates a strong localization of this mode in real space
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FIG. 4. BLS intensity of spin-wave modes in rectangular ele-
ments magnetized along their width. The points marked by circles
show the intensity of the lowest spin-wave mode in the case when
the transferred wave vector was directed along the applied magnetic
field. The points marked by squares show the intensity of the third
spin-wave mode in the case when the transferred wave vector was
directed perpendicular to the bias magnetic field. Note, that the
applied field in this special case was directed along the short side
(width) of the element.

along the direction of the bias magnetic field.

Contrary to that, for the third spin-wave mode and a trans-
ferred wave vector perpendicular to the bias field the mode
intensity has a maximum around k=37// and, therefore, the
third mode, probably, occupies the whole length of the rect-
angle and has two nodes along the rectangle length. Thus, the
spatial mode structure can be approximately determined
from the above described two-dimensional “Fourier-
mapping” of the mode intensities done using BLS.

IV. APPROXIMATE THEORY OF SPIN-WAVE MODES IN
A RECTANGULAR MAGNETIC ELEMENT

Let us consider a rectangular magnetic element schemati-
cally shown in Fig. 5. Note, that in all the considered geom-
etries the x direction is perpendicular to the film plane, while
the z axis is parallel to the applied magnetic field.

We assume that the element is magnetized to saturation by
the external field H,=H, e, that is parallel to one of the in-
plane sides of the rectangular element as shown in Fig. 5, so
that the static magnetization in the elements is constant
M,,,.=M e, =const everywhere, except in the narrow regions
situated near the element edges that are perpendicular to the

% MS He.
w /)

N

FIG. 5. Coordinate system for a considered rectangular mag-
netic element. The direction of static magnetization My and external
field H, is also indicated.
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applied field (edge domains). Both crystalline and surface
anisotropy of the material are neglected, which is a good
approximation for permalloy.

Since we are interested in the linear oscillations of the
magnetization, we assume that the component of the variable
magnetization m, directed along the field H, (and the static
magnetization Mg,) is much smaller than the transverse
components m,<m,,m, so the magnetization vector has the
form

M(r) =m,(r)e, +m(r)e, + Mge, (4)
where
r=Xxe,+p=xe +ye, +ze,. (5)

Further, we assume that the element is thin and we will be
interested in the lowest spin-wave modes having the uniform
distribution of the variable magnetization along the e, axis,
i.e., M(r) —M(p), where p=ye, +ze..

To calculate the spectrum of spin waves in the element we
can use the formalism of tensorial Green’s functions devel-
oped for infinite in-plane magnetized films in Refs. 32. In the
framework of this formalism the linearized Landau-Lifshitz
equation of motion for the magnetization and the Maxwell
equations in the magnetostatic limit are reduced to an
integral-differential equation for the vector amplitude m(p)
=mp)e,+myp)e, of the dynamic variable magnetization

m(p.1)=m(p)exp(iwr),

[~ awy ¥} + oy (p))T - m(p) +iwT - m(p)

- oy f dp'G,.,(p.p")m(p') =0, (6)
where
. |1 o0 < |0 1| . G, G,
I: 9 T= ’ny: . 9
01 10 LGy Gy,
=)
m

y

and wy=v4TM;, a=A/ 27TM§ is the exchange constant mea-
sured in cm?, Vi:r?z/r?y2+ P1az*:

wy(p) = yHi(p), (8)
where
Hi(P)=He—sz(P) -47TMy, 9)

and the coordinate-dependent demagnetizing factor for a
rectangular prism

sz(p):—f dP,Gzz(P,P') (10)

was first calculated by Joseph and Schlomann in Ref. 17.
The components of the tensorial dipolar Green’s function
for a rectangular element have the following form:
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1 & -p'
_ _—,R(M), (1 1)
2 dadB L
where R(&)=sinh™'(1/&)+£-1+& and a,B=y,z:

Gaﬁ(p’p’) =

N 1 1
Gu(p.p') ZWL[ NEPEp |p_p,|}. (12)

In Eq. (6) the first term describes inhomogeneous ex-
change interaction. The second term wH’_(p) describes the
coordinate-dependent static demagnetization field inside the
nonellipsoidal rectangular magnetic element. The term con-
taining w comes from the time derivative term in the
Landau-Lifshitz equation, while the last integral term de-
scribes the dynamic demagnetizing field in the element.

The two-dimensional integral-differential equation (6) for
the magnetization amplitude m(p) could be, in principal,
solved numerically, but this solution is rather complicated. In
fact, this solution is not substantially simpler than a direct
numerical calculation of spin-wave modes using a micro-
magnetic approach that will be described below in Sec. V.
Thus, for practical calculations we shall use a much simpler
approximate analytical approach that uses the fact that the
thickness of our rectangular magnetic element is much
smaller than its in-plane sizes.

We would like to stress, that all our calculations of the
spin-wave modes were made under the assumption that ev-
erywhere in the stripe the magnetic material is magnetized to
saturation and the direction of the static magnetization is
parallel to the direction of the applied field. This assumption,
strictly speaking, is correct only for a very strong external
field comparable in magnitude to the static magnetization of
the material. In a small applied field, comparable to the de-
magnetizing field in the center of the stripe, the magnetiza-
tion will rotate across the whole width of the stripe.’* For
moderate external fields below the demagnetizing field at the
edges of the stripe there will be “edge domains,” or regions
where the effective internal field vanishes and the static mag-
netization rotates. The spin-wave modes in a transversely
magnetized stripe in the case of the inhomogeneous magne-
tization were discussed in Refs. 33-36. Furthermore, we do
not consider interelement magnetostatic coupling in our cal-
culation as it has an influence on the spin-wave spectrum
which is smaller than the accuracy of the approximate ana-
lytical approach.?’

A. Approximate analytical approach

As was mentioned above, we only deal with the case
when the rectangular magnetic element shown in Fig. 5 is
thin, so that both aspect ratios of this element are small
L/1<<1, L/w<1. It is known that the matrix elements of the
dipole-dipole interaction, that determine the dipolar part of
the spin-wave dispersion in the element, are proportional to
these aspect ratios (L/1 or L/w) and are also small (see, e.g.,
Ref. 18,19,20). Thus, for the approximate calculation of the
spin-wave mode frequencies the exact form of the dipole-
dipole matrix element is not important, and we can use for
that purpose the dipole-exchange dispersion equation of a
continuous magnetic film [see Eq. (45) in Ref. 32], where the
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components of the spin-wave wave vector «,,, and «,, have
discrete values due to the finite in-plane sizes of the rectan-
gular magnetic element.

Another qualitative feature that distinguishes a rectangu-
lar element from an infinite film is the inhomogeneity of the
internal field inside the element. This inhomogeneity leads to
the different effective values of the internal field for the dif-
ferent spin-wave modes. These effective values of the field
can be easily calculated using Eqgs. (9) and (10) if the spatial
distributions of the variable magnetization in a particular
spin-wave mode m?, (p) are known.

The approximate equations defining discrete frequencies
of the spin-wave eigenmodes of a rectangular magnetic ele-
ment in this case can be written as*

2 _ mn 2
w,,, = (0" + avyk

2
Lo+ awyi,, + Oy F (KL ],

(13)

where the quantity w};" (proportional to the effective value of
the internal field for a particular spin-wave mode H,,,) is
defined as

“)Zn =Wy — wMNmm (14)

where

4
Nmn=ﬁ J dpm,(p)N_.(p). (15)

The quantity F,,,(k,,,L) plays the role of a quantized ma-
trix element of the dipole-dipole interaction

an(Kan):1+P(Kan)[1—P(Kan)](—mn M )

Wy + awyK,,,

K2 ) K2

X| =52 | = Pkl | 2 (16)
mn mn

with P(k,,,L) defined by

1 —exp(qL)

oL (17)

P(gL)=1-

2 _ 2 2
and k= Ky Kz

B. Spin-wave mode profiles and quantization conditions

To determine spatial distributions of the variable magne-
tization and quantized values of the wave vector projections
Ky and k. in the spin-wave eigenmodes of a rectangular
magnetic element we shall make a strong assumption, that a
two-dimensional distribution of magnetization m,,,(p)
=m,,,(y,z) can be approximately factorized as follows:

mmn(y’z) = ‘Pm(Kmyy)lu’n(anZ) s (18)

where functions ¢,, are similar to the eigenfunctions of a
longitudinally magnetized infinitely long stripe discussed in
detail in Ref. 18, while the functions u, are similar to the
eigenfunctions of a transversely magnetized infinitely long
stripe considered in Refs. 19,20,38. Here «,,, and «,, are the
quantized values of the corresponding components of the
spin-wave wave vector, and m,n=1,2,3,.... The approxi-
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mate factorization (18) is justified by the fact that the inho-
mogeneity of the internal magnetic field in the rectangular
element occurs mainly along the direction of this field (z
direction), while the internal field is nearly constant along
the y direction, as is shown in Fig. 2.

The spatial profiles of the functions ¢,,(«,,y) and the
quantized values of the wave vector projection «,,, perpen-
dicular to the applied field are given by Egs. (10) and (11) in
Ref. 18. The situation with the functions w,(k,.z) and the
discrete components of the wave vector «,,, along the applied
field (i.e., z direction) is more complicated. As was discussed
in our previous papers, the spin-wave modes of a trans-
versely magnetized magnetic element of a finite width can be
of two distinct types: exchange-dominated modes localized
near the stripe edges (see Refs. 9,10,19) and dipole-
dominated modes localized near the stripe center (see Ref.
20). The one-dimensional spatial profiles along the z direc-
tion for both exchange-dominated and dipole-dominated
spin-wave modes can be approximately evaluated using Eq.
(12) in Ref. 19 and Eq. (12) in Ref. 20 correspondingly.

The spatial profiles of these modes can be also calculated
numerically from Eq. (6) taken in the limit when the size w
becomes infinitely large (w1 or w— ), while the size [
(along the z direction) remains finite. In this particular case
Eq. (6) becomes one dimensional

a . .
[— ade—Z2 + coHl]I -m(z) +ioT -m(z)

n
—wa dz'G, (2,2 )m(z') =0, (19)
-2

where the quantity w (z)=yH;(z), proportional to the inter-
nal magnetic field H,(z), is dependent on the coordinate z
along the stripe width / due to the static demagnetization. In
fact, the static demagnetization problem in this case has been

solved analytically by Joseph and Schlémann,'” and the so-
lution has the following form [analogous to Eq. (8)]:

H(z)=H,—- N_(z)47Ms, (20)

— arctan .21
+1 2z-1

1
N_.(z)=— arctan(
T 2z
The components of the tensorial Green’s function (A}X’y in the
considered case are given by the expressions

where

N (z-2)°
Gxx(zaz )_ 2L 11’1|: (Z_Zr)2+L2:| ’ (22)
G,,=0. (23)

The nondiagonal components of the Green’s function tensor
vanish as one considers the averaged field across the stripe
thickness.

The integral-differential equation (19) with a coordinate-
dependent coefficient (internal field) (20) can be solved nu-
merically to find the spin-wave eigenmodes u,(z). We solved
this equation assuming unpinned surface spins at the top and
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FIG. 6. Mode profiles and corresponding frequencies of a
1-pum-wide and 33-nm-thick stripe in an transversely applied mag-
netic field of 2000 Oe. The mode profiles m,(z) were obtained by
solving Eq. (19) numerically. The index n denotes the exchange
dominated modes while n’ denotes the purely dipolar modes as
explained in the text. Note, that two exchange-dominated modes
corresponding to the same mode number n are nearly degenerate in
frequency.
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bottom surfaces of the stripe x==+L/2 due to the absence of
the surface anisotropy. We also assumed that due to negli-
gible exchange surface anisotropy at the lateral edges of the
stripe the boundary conditions for the variable magnetization
are completely determined by the dipolar interaction. It turns
out that these boundary conditions are very similar to the
effective dipolar boundary conditions [see Eq. (8) in Ref.
18]. Also, since the stripe thickness L is much smaller than
the stripe width [ (L<<I), for the lowest spin-wave modes
these conditions are very close to the boundary conditions of
total pinning of the variable magnetization at the edges
m|,—.;»=0. The boundary conditions for dynamic magneti-
zation in thin magnetic elements that take into account inho-
mogeneous demagnetizing fields near element edges were
recently calculated in Ref. 39

The eigenfunctions u,(z) of the variable magnetization m,
obtained from the numerical solution of Eq. (19) for the
value of the external field equal to H,=2000 Oe are pre-
sented in Fig. 6. The spatial distributions of the component
m, are not shown as they are similar in shape, but one order
of magnitude smaller due to the ellipticity of the precession.
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FIG. 7. Numerically calculated eigenfunctions m,(z) of the dy-
namic magnetization for the two lowest doublets of modes and for
different applied fields (a) H,=300 Oe, (b) H,=450 Oe, (c) H,
=950 Oe. The mode profiles are calculated in that region where the
internal field is nonzero. The stripe was 1-um wide and 33-nm
thick.

It is evident from Fig. 6, that in the case of a strong
external bias magnetic field numerical solution gives two
distinct types of spin-wave modes in the spectrum: the
exchange-dominated “edge” modes numbered with the index
n and localized in the narrow spatial regions near the stripe
edges, and quasi-cosinusoidal dipole-dominated modes num-
bered with the index n’ and localized near the center of the
stripe. Thus, the direct numerical solution of the dipole-
exchange integral-differential equation (19) supports the con-
clusions of the earlier analytical theory presented in Refs.
9,10,19,20.

It should be mentioned, that a clear separation of the
“exchange-dominated” modes (n=1,2,3,4) and “dipolar-
dominated” modes (n'=1,2,3,4,...) exists only in large
bias fields H,>1000 Oe. At a smaller value of the applied
bias field the modes have a mixed character which is illus-
trated by Fig. 7 where the profiles of the lowest modes of a
stripe (/=1 wm) are calculated from Eq. (19) for different
values of the field H, (H,=300, 450, and 950 Oe). As it is
seen, for a field H,=300 Oe these modes have no pro-
nounced “exchange” character and are not localized near the
edges of the stripe. Therefore n is not a good quantum num-
ber in the low field range.

The quantization condition for the modes localized along
the axis z has the integral form [see Eq. (3) in Ref. 9] and the
evaluation of the discrete values of the wave vector compo-
nent «,, for a particular mode is nontrivial. However, using
Eq. (3) in Ref. 9 and the theorem estimating the mean value
of an integral, we can approximately evaluate the character-
istic wave vector of a localized mode as
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-1 24
v (24)

K,

where Az, is the localization length for a particular mode.

The characteristic localization lengths for both exchange-
dominated (Az®) and dipole-dominated (Az%P) spin-wave
modes can be evaluated if the profile of the internal mag-
netic field along the axis z is known (see Fig. 3 in Ref. 9 for
the evaluation of Az and Fig. 2 in Ref. 20 for the evaluation
of Az%P),

As it was shown both theoretically and experimentally,
the localization length of an exchange-dominated spin-wave
mode can be less than 11—0 of a stripe width Azf"<l/ 10, so
that the characteristic wave vector component of the mode
along the direction of magnetization can be rather high, e.g.,
for I=1 um

9-11

ke

(25)

K= >
Az
it can easily exceed the maximum value of the wave vector
reachable by the BLS experiment (usually 2.5X 10° cm™).
Analogously, we can calculate the quantized wave vector
component for dipole-dominated localized modes

T

T 26
AZ§P (26)

Kyr=17;=

where Azj‘,p is the localization length for a dipolar localized
mode. This dipolar localization length for the lowest dipolar
mode Az%P is, usually, between [ and /2.

For the modes in small external bias fields, when the in-
fluence of dipolar and exchange interactions are comparable,
this approximation, of course, cannot be applied (see, e.g.,
Fig. 7 for H,=300 Oe). Using the approximate eigenfunc-
tions (18) and quantized values of the wave vector compo-
nents K, and «, calculated from Eq. (11) in Ref. 18 and Eq.
(24), correspondingly and the approximate equation for the
mode frequency Eq. (13) we can calculate the eigenfrequen-
cies of the spin-wave modes of a rectangular magnetic ele-
ment.

We calculated these eigenfrequencies for a rectangular
permalloy element investigated in our experiment (Fig. 3).
We used the following parameters of the element in our
calculation: thickness L=33 nm, lateral sizes [Xw
=1.75X%X1 ,u,mz, 4mM¢=10.2 kOe, exchange constant «
=2.5X 1071 cm?, or A=1X10° erg/cm?®, H,=600 Oe, gy-
romagnetic ratio for the electron y/2m7=2.97 MHz/Oe. The
magnetic parameters were determined independently from
experiments on unsaturated films.

The lowest n=1, m=1 mode having the frequency of
4.9 GHz was identified as an exchange-dominated mode, lo-
calized near the element edges that are perpendicular to the
external bias magnetic field. The localization length of this
mode along the direction of the magnetic field (z direction)
was evaluated as Az{*=0.3 um. For simplicity the spatial
distribution of this exchange-dominated localized mode
within the region of its localization was assumed to be cosi-
nusoidal
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TABLE I. Comparison of frequencies (in GHz) of eigenmodes
in a rectangle obtained from experiment and different theoretical
techniques.

mode analytic Langevin
experiment index theory dynamics OOMMF
5.2-5.6 (m=1,n=1) 49 4.94 4.3
7.1-8.2 (m=1,n"=1) 8.6 7.98-8.11 8.2
10.0-104  (m=2,n"=1) 10.6 10.52-10.65
12.0-12.7 (m=3,n'=1) 12.1 12.55-12.67 11.7
13.2-13.9  (m=4,n"=1) 13.1 not observed
14.5-14.8  (m=5,n"=1) 14.0 13.94 13.6
(m=6,n"=1) 14.7 14.57-14.70
T
e (1652) = cos( ~(z- l*/z)) (27)
Az

in the intervals ["/2—Az{*<|z|<["/2 and zero elsewhere
(i.e., in the interval |z|<[I'/2-Az{"). Here the effective
length of the magnetic element /“</ is the length of the
region where the internal bias magnetic field is positive.

For all the other experimentally observed modes we as-
sumed that the distribution along the z direction is similar to
the lowest dipole-dominated localized mode (mode n’'=1 in
Fig. 6). For the experimental conditions (H,=600 Oe) the
localization length of this distribution was evaluated as
AzP=0.85 um. The spatial distribution of this lowest
dipole-dominated mode along the z direction was also as-
sumed to be cosinusoidal

. ar
ﬂ<>(A—) 28)
-1

in the interval |z|<Az{"/2 and zero elsewhere (i.e., in the
interval AzIP/2<|z|<1/2).

The magnetization distributions of both exchange-
dominated and dipole-dominated modes along the y direction
were assumed to be described by Eq. (10) in Ref. 18. The
two-dimensional spatial distribution of the variable magneti-
zation in these analytically calculated modes are shown in
the right panel of Fig. 10 while their calculated frequencies
are given in the third column of the Table I.

V. MICROMAGNETIC SIMULATIONS AND DISCUSSION

To check the validity of the above described results
obtained in the framework of the approximate analytical
approach, we performed micromagnetic simulations of
the dynamic properties of rectangular magnetic elements.
The commercially available micromagnetic packages
MICROMAGUS (Ref. 40) and OOMMF (Ref. 21) have been
employed to produce “raw” simulation data, i.e., spin preces-
sions at the different points of the sample. To calculate the
excitation spectra further processing of the data was per-
formed, as described below.

The first set of numerical simulations was performed us-
ing the MICROMAGUS package.*’ In the MICROMAGUS pack-
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age a system magnetization dynamics is simulated using the
standard extension of the Landau-Lifshitz-Gilbert (LLG)
equation of motion for magnetic moments which includes
finite-temperature random fluctuations

dM,
=M% (H* +H)]

RV X M, X (HE S HD], (29)
My

where the precession constant vy (>0) is equal to the gyro-
magnetic ratio of the spins for small dissipation A <1, and
the deterministic field HY acting on each magnetic moment
M, includes all standard micro-magnetic interactions: exter-
nal, anisotropy, exchange, and dipolar fields.

The fluctuation (or Langevin) field H is introduced to
take into account random thermal noise responsible for spon-
taneous fluctuations of the system magnetization for finite
temperatures. The question concerning the statistical proper-
ties of this random field is crucially important for obtaining
correct physical results from numerical simulations. Hence
we will briefly address this question here leaving a detailed
methodological explanation to a separate publication.

To the best of our knowledge, in virtually all micromag-
netic simulations the simplest statistical properties of its Car-
tesian components of the fluctuation field

(HE (1) =0, (30)

(HE(0)H), (1) =2D8(1) 8,0, (31)

were used [here indices i, refer to discretization cells, &, i
=x,y,z and the noise power D=\/(1+\?) (kT/yM) is pro-
portional to the system temperature 77. The relation (31) was
rigorously derived from the fluctuation-dissipation theorem
in Ref. 41 for a system of noninteracting single-domain par-
ticles (actually for point dipoles with a uniaxial on-site an-
isotropy), so that the usage of the same simple correlation
properties for a much more complicated micromagnetic sys-
tem requires careful justification.

First of all, we point out that the sole presence of the
interactions between elementary system moments (represent-
ing the magnetization vectors in finite element discretization
cells) does nor require the introduction of non-trivial corre-
lations between the random field components, because these
interactions are taken into account via the deterministic part
of the effective field H™ in Eq. (29). The corresponding
generalization of the fluctuation-dissipation theorem for a
system of interacting magnetic moments can be found in
Ref. 44.

However, in micromagnetic simulations there exist, in
principle, at least three reasons to use more complicated ran-
dom field correlations than those given by Eq. (31). The first
reason—the physical one—is the presence of correlations of
thermal bath phonon fluctuations (supposed to cause the
magnetization fluctuations). Their exact correlation proper-
ties are not known. However, since the system is considered
to be at a room temperature, i.e., at a temperature comparable
to the Debye temperature of the lattice, it is reasonable to

PHYSICAL REVIEW B 72, 064427 (2005)

suggest that these correlations are short range (in space and
time) and have an exponentially decaying correlation func-
tion. Hence, the S-functional expression (31) can be used as
a good first approximation for these correlations, providing
that we are interested in processes whose characteristic time
and space scales are much larger than the corresponding de-
cay time (picoseconds, i.e., 27/ wp, where wp, is the Debye
frequency) and the correlation length (several interatomic
distances) of the heat bath fluctuations.

The other two reasons are due to the finite-difference ap-
proximation of the continuous micromagnetic problem. First
of all, such an approximation does not allow one to take into
account magnetic excitations with a wavelength smaller than
the grid cell size Ax. However, due to magnon-magnon in-
teractions such magnons can excite a precession of the cell
magnetic moment. Since they can have a mean free path
which is much larger than Ax, they can cause substantial
correlations of the effective fields acting on the magnetic
moments of the neighboring cells (see Ref. 42 for details).
Whether these correlations are important for the particular
magnetization dynamics under study can be determined com-
paring simulation results for grids with various cell sizes. We
have checked that in our case these correlations do not play
any significant role as soon as the grid cell is smaller than the
exchange correlation length Ax<lex=\,A/27rM§ (where A
denotes the exchange constant and M the material saturation
magnetization).

The qualitative change in the density of magnon states
(m-DOS) due to the transition from the formally continuous
(discrete on the atomic scale) to a finite element micromag-
netic system is the third reason why more complicated cor-
relations of the random field than those given by Eq. (31)
should, in principle, be used. However, we show elsewhere®3
that for frequencies much less than the frequency of the van
Hove singularity in the m-DOS for the discretized (not ini-
tial) system this effect can also be neglected. This is the case
for the current study. Based on the discussion above, we used
in our micromagnetic simulations the -correlated noise HY.

The spectrum of magnetic eigenmodes in Permalloy ele-
ments was simulated in the following way. The rectangular
Permalloy element with lateral sizes [Xw=1.75X1 um?
and the thickness L=33 nm (as used in our BLS experi-
ments) was discretized using a grid with N, XN XN,
=4 X 180X 100 cells; it was checked on a smaller system
that further grid refinement did not lead to any noticeable
changes in the magnon spectrum for the frequency range
studied here (except for the lowest mode—see below). Peri-
odic boundary conditions were applied with the distance be-
tween the Permalloy elements equal to the experimental
spacing A=100 nm.

In our simulations we used the same material parameters
for Permalloy as in the above described analytical calcula-
tion. The cubic crystallographic anisotropy of Permalloy
(Kub=5%10% erg/cm?) was proven to be too low to have
any influence on the simulation results and hence was ne-
glected. The dissipation constant was set to A=0.01.

Minimizing the micromagnetic energy of the permalloy
element starting from the state with the corresponding sym-
metry, we found that in the external field H,=600 Oe used in
the experiment three types of the magnetization configura-
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FIG. 8. Power spectra of the m, oscillations for a sequence of
in-plane wave vectors ¢ ; perpendicular to the field direction (and to
the long side of the Py element) obtained using Langevin dynamics
simulations (Ref. 40).

tion for T=0 are possible: the so called S, C, and flower
states. Among them we have used the S-type magnetization
state as the initial state, because the flower state was found to
be unstable with respect to thermal fluctuations. By the
equilibration of the system at room temperature 7=300 K
this state switched to either S or C states. Magnon spectra for
the C state were identical to the S-state spectra up to the
accuracy of small frequency shifts of the lowest mode near
the domain walls between the closure and central domains.
After the initial magnetization configuration was ob-
tained, dynamical simulations using Eq. (29) were per-
formed. The system temperature was set to be equal to room
temperature 7=300 K. To obtain the magnon spectrum in the
thermodynamical equilibrium, the system was first equili-
brated by integrating Eq. (29) until the system energy has
stopped to increase in frames of statistical errors (the “heat-
ing” phase). Afterwards time dependences of all the grid cell
moments were recorded with the sampling interval Af;,
=1 ps which provided a sufficiently good statistics to deter-
mine spectra up to the maximum frequency v,
~0.1/At,;,=100 GHz. To achieve the required lowest fre-
quency g;,/27~5 GHz simulations were performed for
the total time At,;,=5 X 27/ wyi,=1 ns. The resulting spec-
tra (see Fig. 8) were obtained using Fourier analysis of the
recording time dependences by averaging over at least N,
=8 independent simulation runs. The calculated magnon
spectra are shown in Fig. 8. The eigenmodes manifest them-
selves as sequences of peaks having the same frequency for
several subsequent wave vectors. The numerical values of
the magnon eigenfrequencies calculated in this Langevin dy-
namics simulation are presented in column 4 of Table I.
For the computation of the spatial distribution of the os-
cillation power of a magnetization component m,.,, . for the

given frequency w/2m we first performed the time Fourier
transforms of m, , -time dependences for all discretization
cells, thus obtaining the spectral power as a function of the
frequency for all cells. Then we used the spectral power
values for the required frequency wy/27r (extracted from all
these spectra) to build up the corresponding spatial maps (see
Fig. 9).

The spatial distributions of static magnetization in the
rectangular magnetic element and the spatial distribution of
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FIG. 9. Upper panel: Distribution of static magnetization used
for Langevin dynamics. Lower panel: Spatial distribution of the
lowest exchange-localized mode having a frequency of 4.94 GHz.

the dynamic magnetization in the lowest oscillation mode
obtained using the method of Langevin dynamics are shown
in the lower and upper panels of Fig. 9, correspondingly. As
it is evident from the right panel of Fig. 9 the lowest magnon
mode with the smallest frequency of 4.94 GHz corresponds
to the oscillations in the region of inhomogeneous internal
field near the domain walls of the closure domains in our S
structure, which supports the conclusions obtained using the
approximate analytical approach.

Also, for all the oscillation modes the regions where the
oscillation power is concentrated are extended along the
short side of the magnetic element (perpendicular to the ap-
plied field direction). This feature explains the experimental
observation Fig. 4 that the corresponding spectra of the mag-
non excitations in the wave vector space show a pronounced
peak along the direction perpendicular to the internal field (y
direction), but is extended over the whole measured wave
vector range for the direction parallel to the internal mag-
netic field (z direction).

The second set of micromagnetic simulations was per-
formed using the object-oriented micromagnetic frame-
work?! (OOMMPF). In this simulation the stripe was dis-
cretized along the y and z directions with a cell size of 5 nm.
The initial condition for the dynamic simulation was ob-
tained by relaxing from a state of homogeneous magnetiza-
tion M e, with a large Gilbert damping parameter A=0.5. In
contrast to the results obtained using MICROMAGUS, the
flower state is stable in OOMMEF and, therefore, it was used
as an initial condition. The reasons for that might be that (i)
the simulations performed using OOMMEF do not take into
account thermal fluctuations (which corresponds to 7=0),
(ii) the element was not discretized into sublayers, and (iii) in
the simulations with MICROMAGUS periodic boundary condi-
tions were employed what might favor the S state.

The dynamical calculation was undertaken with a smal
damping parameter of A=0.01 so that the magnetization os-
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FIG. 10. Comparison of OOMMF with analytic theory for sev-
eral modes. The upper graphs show the static equilibrium magneti-
zation used in the two models. The corresponding effective field is
shown in Fig. 2.

cillations could be observed over several periods. The eigen-
frequencies did not depend significantly on the damping. A
uniform Gaussian field pulse with a full-width at half maxi-
mum (FWHM) of 150 ps and an amplitude of 10 Oe was
applied in the x direction, and the response over the next
10 ns was calculated using 10 ps time steps during the pulse
and 20 ps steps after the pulse.

A local Fourier transform was performed with these time
domain data and power spectral images as a function of the
frequency were computed. All images are normalized by the
total spectral weight at each position. A more detailed dis-
cussion of this procedure can be found in Refs. 11,33. Add-
ing all the local Fourier transform data one obtains a so-
called integrated Fourier transform. In this integrated Fourier
transform several distinct peaks corresponding to the spin-
wave modes can be observed.

The left panel in Fig. 10 shows the power spectral images
(or spatial power distributions) for several frequencies corre-
sponding to the maxima in the integrated Fourier transform
that were calculated using OOMME. The spatial distributions
of the spin wave modes calculated using the approximate
analytical approach are shown in the right panel of Fig. 10.

Note, that the OOMMEF approach accounts only for the
modes whose mean value of the dynamical magnetization is
non zero, i.e., modes with an even number of nodes (m
=1,3,5,...), since the precession in our numerical simula-
tion was excited by a spatially uniform field pulse. The
small-wavelength noise is due to the fact that the cell size
is in the order of the exchange correlation length but not
substantially smaller. The mode (m=1,n"=1) in Fig. 10
corresponds rather to a band of non-resolved modes with a
broad frequency peak, while the modes with higher m > 1 are
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well defined in frequency. The values of the mode frequen-
cies calculated using OOMMEF are presented in column 5 of
Table 1.

Table I contains the values of the frequencies of the spin-
wave eigenmodes of a rectangular magnetic element mea-
sured in our BLS experiment (see Fig. 3) and calculated by
two different numerical and one approximate analytical
method. It is evident that all the used theoretical methods
give a reasonably good quantitative description of the experi-
mental data and, also, are in a surprisingly good agreement
among themselves. The only exception is the lowest eigen-
mode. We believe that the difference between the simulated
and experimentally measured frequencies for this mode can
be attributed to the fact that the discretization into the N
=4 layers performed in the Langevin dynamics numerical
approach in the direction perpendicular to the layer plane is
insufficient to resolve the structure of the domain wall fine
enough to reproduce correctly its exact oscillation behavior
of magnetization in this mode. We would like also to note
that there were no adjustable parameters for both sets of our
numerical simulations.

It is also worth noting, that the spatial distributions of the
spin-wave eigenmodes obtained using different theoretical
methods are qualitatively similar (compare Figs. 10 and 9)
which demonstrates once again that the ideas of the spin-
wave mode structure in a thin rectangular magnetic element
obtained using our simple approximate analytical approach
were qualitatively correct.

VI. CONCLUSION

In summary we studied both experimentally and theoreti-
cally the discrete spin-wave eigenmodes of thin rectangular
magnetic elements having two finite in-plane dimensions and
magnetized parallel to one of the element sides. We demon-
strated that the effects of lateral confinement drastically af-
fect the properties of the magnetic eigenmodes in those ele-
ments. The spin-wave eigenmodes of a rectangular element
turn out to be not only quantized due to the finite in-plane
dimensions, but also localized due to the inhomogeneity of
the internal bias magnetic field. We also demonstrated that
the approximate analytic theory of the spectrum of these
eigenmodes based on the dispersion equation for spin waves
in an infinite magnetic film gives the results that are in good
quantitative agreement with both the results of micromag-
netic numerical simulations and the results of the BLS ex-
periments.
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