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We study general conditions in which disordered, spin liquid, and valence-bond ordered phases occur in the
Kagome lattice quantum Ising antiferromagnets. Different quantum dynamical processes in the Ising model,
with and without total Ising spin conserved, are analytically shown to yield all three characteristic quantum
paramagnetic phases in the Kagome system. Special emphasis is given to the XXZ model that can be sensibly
compared to the Kagome lattice Heisenberg antiferromagnet. It is explicitly demonstrated that the total-spin-
conserving dynamics can yield a resonant valence bond liquid phase with very short-ranged correlations, but
also a valence-bond ordered phase compatible with the one proposed to explain the seemingly gapless singlet
states of the Heisenberg antiferromagnet on the Kagome lattice. Likely consequences for generic spin models
are discussed. The analysis combines compact U�1� gauge theory, duality transformations, lattice-field-
theoretical methods, and variational approach.
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I. INTRODUCTION

The quest for a quantum spin liquid has been a major
pursuit in condensed-matter physics ever since Anderson’s
proposal for its relevance to the cuprates.1 Since then, some
new materials with geometric frustration emerged as prom-
ising candidates for the spin liquid physics at low tempera-
tures. Among two-dimensional systems, the Mott insulators
Cs2CuCl4 �Ref. 2� and �− �BEDT-TTF�2Cu2�CN�3 �Ref. 3�,
based on the triangular lattice, experimentally exhibit uncon-
ventional magnetic behavior in certain circumstances, with-
out detectable symmetry breaking. Numerical studies also
reveal possible spin liquid in realistic systems, ranging from
a Wigner crystal near melting,4 to various antiferromagnets
with multiple-spin exchange.5,6 However, there is still no un-
ambiguous experimental evidence that a spin liquid is found
in any of these or similar cases. Even theoretically, much
more is known about general properties of the spin liquid7–11

than about fundamental and microscopic circumstances
needed for its realization. Gaining more insight from micro-
scopic models can only be useful for understanding the un-
conventional magnetic behavior found in various experi-
ments, and perhaps also for clarifying available options for
quantum computing.12,13

In this paper, we attempt to learn general lessons on the
role played by the lattice structure, symmetries, and type of
dynamics in shaping the phases of the frustrated quantum
magnets. The present analysis is focused on the prototype
Kagome lattice Ising antiferromagnets, but the range of ex-
plored models admits all characteristic quantum paramag-
netic phases: disordered, spin liquid, and valence-bond solid.
Through connecting these outcomes with both the fundamen-
tal and microscopic properties of the models, and with infor-
mation that emerges from calculations, we can deduce some
conclusions and speculations of broader significance for the
spin models on other lattices.

The Kagome lattice is an excellent choice for this pursuit
because it is one of the few simple spin systems �with only

nearest-neighbor interactions� where disordered and spin liq-
uid phases are believed to exist. On other frequently studied
lattices it usually takes further-neighbor and multiple-spin
exchange to destabilize the zero-temperature Neel order. The
situation is somewhat better when the frustrated Ising anti-
ferromagnets are concerned, but even then quantum dynam-
ics typically leads to a paramagnetic ground state that breaks
lattice symmetries �such as on the triangular and fully frus-
trated square lattices�.

The Kagome antiferromagnets are unique among
two-dimensional spin systems in that they not only exhi-
bit a promising spin-liquid-like behavior, but also some-
times hold additional surprises. Experimental research
on the Kagome-like layered materials SrCr9pGa12−9pO19
�SCGO�,14,15 Ba2Sn2ZnGa3Cr7O22 �QS ferrite�,16 and
Cu3V2O7�OH�2 ·2H2O �Volborthite�17 discovered quantum
paramagnetic behavior together with a heat capacity that is
not thermally activated, and largely not dependent on the
magnetic field at low temperatures. The numerical exact di-
agonalization studies of the S= 1

2 Heisenberg antiferromagnet
on small Kagome samples18,19 revealed a disordered ground
state, and a seemingly gapless band of numerous singlet ex-
citations that fill the spectrum below the finite spin-gap. In
comparison to the other quantum paramagnets,20,21 this one
appeared qualitatively different, and called for classification
as a new and exotic kind of spin liquid. This kind of spec-
trum, in which there seems to be no gap in a completely
disordered phase, is still not understood. Physical pictures
proposed by various theoretical efforts favored a spin
liquid,22–26 but some new ideas open up the possibility of a
valence-bond crystal with a very large unit cell that gives rise
to an extremely low-energy scale for the singlet degrees of
freedom.27,28

The transverse field Ising model on the Kagome lattice is
another example of how special this lattice is. The Monte-
Carlo simulations29,30 pointed out that unlike the other Ising
systems, Kagome prefers not to order even for small trans-
verse fields. One perspective in explaining the reason for this
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has been taken in Ref. 31. In this paper, a different perspec-
tive will be given. The present approach will also be ex-
tended to the XXZ model, which can be regarded as the
Heisenberg model with easy-axis anisotropy.

II. MODELS AND OVERVIEW

In this paper, we analyze the nearest-neighbor spin S= 1
2

quantum Ising antiferromagnets on the Kagome lattice �Fig.
1�. Two kinds of spin dynamics will be explored, represented
by the following simple models:

�i� Transverse field Ising model �TFIM�,

H = Jz�
�ij�

Si
zSj

z − ��
i

Si
x; �1�

�ii� Heisenberg model with easy-axis anisotropy �XXZ�,

H = Jz�
�ij�

Si
zSj

z + J��
�ij�

�Si
xSj

x + Si
ySj

y� . �2�

In contrast to the transverse field case, the XXZ dynamics
preserves total Ising magnetization, making the Hamiltonian
�2� symmetric under global spin-flip. Furthermore, the trans-
verse field gives rise to the most local kind of spin dynamics,
while the XXZ dynamics involves pairs of spins, and thus
introduces some correlation. It will become apparent that
these two fundamental differences yield very different low-
energy physics. The consequent analysis will also admit in-
troduction of other dynamical processes, spatially extended
to larger clusters of spins, but consistent with the symmetries
of these two basic models.

The calculations in this paper are restricted to weak dy-
namical perturbations of the pure Ising model: � , �J���Jz.

This limit is a combination of analytical convenience, and
essential physical interest in the context of frustrated magne-
tism. The main question being asked is how the quantum
fluctuations �created by weak dynamical perturbations� lift
degeneracy of the pure Ising model. Is the ground state or-
dered like in many other Ising systems?29,30 Under what gen-
eral circumstances is a completely disordered ground state
possible, with or without topological order? In an attempt to
answer these questions, we will formulate a lattice field
theory and apply to it a technique specialized for frustrated
systems, but otherwise analogous to the usual mean-field ap-
proach in the unfrustrated problems. Namely, instead of find-
ing the mean-field solutions that minimize energy in various
parameter regimes, we will seek solutions that maximize
“entropy” of quantum fluctuations.32 When needed, those so-
lutions will be subject to a verification of stability. This will
provide a reliable picture of certain phases that exist in our
models.

The physics of the TFIM is trivial when the transverse
field � is large, while in the limit ��Jz the quantum dynam-
ics, as a matter of principle, has a chance to yield interesting
valence-bond ordered or disordered ground states after lifting
the huge degeneracy of the pure Ising model. Even though
this issue has been already understood for the Kagome
TFIM,31 the following approach is going to bring some new
insight: it will allow us to propose certain variational wave
functions for ground and excited states. Of course, much
closer to the true challenge of the Kagome Heisenberg anti-
ferromagnet is the XXZ model, which can be regarded as its
anisotropic version when the proper sign for J� is taken in
Eq. �2�. That choice of sign, unfortunately, leads to the well
known “sign problem.” While calculations will be ultimately
performed in the case when there is no “sign problem” �J�

�0�, it will be argued that for questions of interest, namely
the character of lattice symmetry breaking, the choice of sign
for J� does not matter. In fact, even though the easy-axis
anisotropy is strong in the limit J��Jz, a sensible compari-
son with the isotropic Heisenberg model will become appar-
ent.

This paper is organized in two main sections. The TFIM
model is discussed in Sec. III, while the XXZ model is stud-
ied in Sec. IV. Initial discussion of the XXZ model relies
heavily on the definitions and ideas introduced in the TFIM
section �Secs. III A–III D�. These sections are mostly de-
voted to a series of field-theoretical calculations that ulti-
mately elucidate several phases in the Kagome quantum
Ising models and reliably verify their stability. However, the
readers who are not interested in technical details can skip all
calculations and find discussions on the physical nature of
the discovered phases, as well as the variational ground
states, in the concluding Secs. III F �TFIM� and IV F �XXZ�.
All conclusions are summarized and a bigger perspective is
taken in Sec. V.

III. TRANSVERSE FIELD ISING MODEL

We start from the Kagome lattice Ising model in a weak
transverse field ��Jz,

FIG. 1. Kagome lattice is a corner-sharing two-dimensional lat-
tice. The frustrated units are triangular plaquettes, and they are only
minimally connected into the lattice.
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H = Jz�
�ij�

Si
zSj

z − ��
i

Si
x. �3�

Let us first understand the ground states of the pure Ising
Hamiltonian ��=0�. They are the least frustrated states in
which the number of frustrated bonds �two aligned spins� is
minimized. If every frustrated bond is visualized by a dimer,
then every appropriate dimer covering determines a spin
configuration up to a global spin flip. Consider a loop on the
Kagome lattice �Fig. 2�. The unfrustrated bonds on the loop
mark locations where the two neighboring spins on the loop
have different orientation. When going one full circle around
the loop, one ends at the same spin from which one started,
so that the number of times the spin orientation is changed
must be even. Therefore, every loop contains an even num-
ber of unfrustrated bonds, and parity of the number of dimers
on the loop is determined by the loop size. The number of
dimers on the triangular �hexagonal� Kagome plaquettes
must be odd �even�. This is the only constraint for the
Kagome lattice dimer coverings that correspond to arbitrary
spin states.

It will be convenient to immediately switch to the dual
picture. Duality between the Kagome and dice lattices is de-
picted in Fig. 3. Since every Kagome bond corresponds to
one dice lattice bond, the frustrated bonds can be represented

by dimers on either lattice. An example is shown in Fig. 4.
There must be an odd �even� number of dimers emanating
from every threefold-coordinated �sixfold-coordinated� dice
lattice site. The number of dimers �and thus frustration� is
minimized if there is exactly one dimer emanating from ev-
ery threefold-coordinated dice lattice site. This condition
fixes the number of dimers in the least frustrated states, since
the dice lattice is bipartite. Degeneracy of the least frustrated
states is apparently huge.

Small dynamical perturbations will mix the least frus-
trated states and lift their immense degeneracy. In principle,
one can perturbatively derive an effective theory that de-
scribes dynamics at energy scales well below Jz. This effec-
tive theory lives in the Hilbert space spanned only by the
least frustrated states. Therefore, it takes the form of a soft-
core quantum dimer model on the dice lattice, where exactly
one dimer emanates from every threefold-coordinated dice
site, while an arbitrary even number of dimers emanates
from every sixfold-coordinated site. For our purposes, it will
be sufficient to concentrate just on the first order of degen-
erate perturbation theory,

�4�

The dimer dynamics consists of two different flips on the
dice plaquettes that are consistent with minimum frustration
�see Fig. 6�. Note that these two processes involve flipping of
only one spin on the Kagome lattice. For the purposes of
simplicity and staying close to the original spin dynamics,
we will not consider a more general dimer model with dif-
ferent energy scales for the two types of flips. Since the dice
lattice is bipartite, it is possible to apply standard techniques
and cast this dimer model as a compact U�1� gauge theory.33

From that point on, duality transformations and lattice-field-
theoretical methods are at our disposal to study possible
phases. In all circumstances we will find only gapped phases

FIG. 2. Every loop �thick gray lines� holds an even number of
unfrustrated bonds. Dimers �thin black lines� represent frustrated
bonds, or pairs of aligned spins.

FIG. 3. Duality between the Kagome �solid line� and dice
�dashed� lattices. Duality transforms a Kagome site into the dice
plaquette inside which it sits, and vice versa. The threefold-
coordinated dice sites and Kagome triangles transform into each
other, as well as the sixfold-coordinated dice sites and Kagome
hexagons. Every Kagome bond intersects one dual dice bond.

FIG. 4. Frustrated bonds represented by dimers on the dice
lattice.
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�gap���, which are then stable against sufficiently small
higher-order perturbations ���2 /Jz ,…�.

Some comments are in order before proceeding. First, the
dimer representation is insensitive to the global spin flip.
This is of no concern for the models studied here, since
magnetically ordered phases will not be found. Secondly, the
dice lattice dimer model in its own right has distinct topo-
logical sectors on a torus, just like any other quantum dimer
model. However, only one of its topological sectors corre-
sponds to physical spin states on the torus, because parity of
the number of dimers along a loop that goes around the torus
is fixed �see Fig. 2�. Consequently, topological order in dis-
ordered phases of the original spin model is not guaranteed,
but may emerge depending on the spin dynamics �which will
be shown to happen in the XXZ model�.

A. Compact U(1) gauge theory

Calculations in this paper rely heavily on the duality be-
tween the Kagome and dice lattices �see Fig. 3�. In order to
facilitate mathematical manipulations, we will treat both lat-
tices on the same footing, and regard the pairs of objects
related by duality as identical. The notation that we will use
from now on is summarized in Table I. Note that, according
to this principle, any quantity that lives on a Kagome bond
equivalently lives on the dual dice bond, and may be labeled
by either Kagome or dice bond labels. Also, we will apply
the following convention: if an equation shows a relationship
between expressions defined on different lattices, the dual
lattice objects are always implied �for example, Kagome site
⇔ dual dice plaquette, Kagome bond ⇔ dual dice bond,
etc.�.

Let us also introduce a vector notation. We will distin-
guish vectors Rpq from the corresponding bond scalars R�pq�

in that the vectors will change sign if the bond orientation is
reversed: Rpq=−Rqp, while the scalars will not: R�pq�=R�qp�.
In order to establish a formal connection between the bond
vectors and scalars, we assign orientation to the lattice
bonds. Let the vector �pq equal +1 if the bond �pq� is ori-
ented from p to q, and −1 otherwise. Then, the vectors and
corresponding bond scalars are related by Rpq=�pqR�pq�.
These relations are applicable to both the dice and Kagome
lattices. The bond orientation will transform by duality ac-
cording to the “right-hand rule.” Since the dice lattice is
bipartite, we will orient its bonds in a natural way, and

choose the orientation to be from the sixfold-coordinated to
the threefold-coordinated site on every bond. This fixes ori-
entation of the Kagome bonds as well, and we show both in
Fig. 5.

Now we can define the electric field Epq as a vector cor-
responding to the scalar bond energy E�pq�,

E�pq� = �0 , vacancy �unfrustrated bond�pq��
1 , dimer �frustrated bond�pq�� ,

	
Epq = �pqE�pq�. �5�

The Hilbert space of the least frustrated states has restrictions
that are easily expressed in the form of Gauss’ law. The
number of dimers Epq=�pq emanating from any threefold-
coordinated site is one, and from any sixfold-coordinated site
is an even number �2�p6

�. We use the convention that every
dice bond is oriented from the sixfold-coordinated to the
threefold-coordinated site, and write

�∀p3� �
q�p3

Ep3q = − 1,

�∀p6� �
q�p6

Ep6q = 2�p6
. �6�

The interpretation of this Gauss’ law is that there is a fixed
background charge −1 on every threefold-coordinated dice
site, and a number 0�np6

�3 of charge 2 bosons on every
sixfold-coordinated site. The charged bosons are independent
degrees of freedom living on the sixfold-coordinated dice
sites. Formally, they emerge because the dice lattice dimer
model is not hard core.

Dynamics of the fields and particles can be easily formu-
lated if the Hilbert space is expanded to allow arbitrary inte-
ger strength of the electric field, and arbitrary particle occu-
pation. Promoting Epq and np6

into free integers between −�

and +� makes it easy to write the creation and annihilation
operators: exp�±iApq� for the field lines and exp�±i�p6

� for
the particles. The vector potential Apq and the boson phase

TABLE I. Notation for the Kagome and dual dice lattices.

i , j , . . . Kagome lattice sites, or dual dice plaquettes

p ,q , . . . dual dice lattice sites, or Kagonme plaquettes

p3 threefold-coordinates dice sites, or Kagome
triangles

p6 sixfold-coordinates dice sites, or Kagome
hexagons

�ij� Kagome lattice bonds

�pq� dual dice lattice bonds
FIG. 5. The reference bond orientations of the Kagome and dice

lattices. The bipartite dice lattice bonds are oriented from the
sixfold-coordinated site to the threefold-coordinated site. Every
Kagome bond orientation is locked to the orientation of the dual
dice bond by the “right-hand rule.” Note that the Kagome orienta-
tions circulate around triangles and hexagons in the different
directions.
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�p6
are conjugate angle operators to the electric field Epq and

particle number np6
, respectively,


Apq,Epq� = 
�p6
,np6

� = i . �7�

After the Hilbert space has been expanded, we must at least
introduce a large energy cost to all “unphysical” states, so
that the low-energy physics will still correspond to the dimer
model �4�. This is achieved in the large-U limit through the
following new term in the Hamiltonian:

Hu = U�
�pq�

�E�pq� −
1

2
2

= U�
�pq�

Epq
2 + const. �8�

The term linear in electric field is a global constant, since it
expresses the fixed total number of dimers on the dice lattice
�in the least frustrated states�.

Now we formulate the dynamics of Eq. �4� in the U�1�
language. The two processes of interest are shown in Fig. 6.
Recall that every dimer means E�pq�=1, and every vacancy
E�pq�=0, and that np6

is the number of dimer pairs emanating
from a sixfold-coordinated site. Therefore, we can easily ex-
ploit the dice bond orientations, and arrange the creation and
annihilation operators to describe the allowed dimer flip pro-
cesses �a� and �b� shown in Fig. 6,

�9�

�10�

In the last lines of these expressions, the sums are taken
around a plaquette in the counterclockwise sense; this is the
lattice circulation, or the curl. The expression �9� is the usual
“magnetic” energy, while the expression �10� is the boson
hopping between the neighboring sixfold-coordinated sites.
In this paper, we will not use a more conventional form of
particle hopping that involves an “integral” of the vector
potential along only one path between the two sites. In Eq.
�10�, we have introduced two new symbols: 	�pq� and �p6q6

.
The former is needed to correct the signs of Apq that appear

FIG. 7. Special bond signs on the Kagome and dice lattices.
	�ij��	�pq� takes the value −1 on the emphasized bonds, and +1 on
all other bonds.

FIG. 8. Bond orientations �p6q6
of the triangular lattice formed

by the sixfold-coordinated dice sites, or equivalently the Kagome
hexagon centers. The dice and Kagome bonds with 	�pq��	�ij�
=−1 are emphasized. Notice in �b� that every triangular lattice bond
contains one Kagome site.

FIG. 6. Elementary processes on a dice plaquette that preserve
the minimum frustration. �a� The number of dimers emanating from
every site is preserved; �b� a pair of dimers is exchanged between
two sixfold-coordinated sites.
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in the circulation. Note that the signs have been altered with
respect to the ordinary circulation in Eq. �9� only on one of
the two paths that connect the two sixfold-coordinated sites.
This allows us to choose 	�pq� as shown in Fig. 7. The other
symbol, �p6q6

, is needed to ensure that the expression inside
the cosine of �10� transforms properly when the sites p6 and
q6 are exchanged. This is a new vector, defined on the trian-
gular lattice formed by the sixfold-coordinated dice sites, or
equivalently the centers of the Kagome hexagons. Since it
takes the values ±1, it defines the bond orientations shown in
Fig. 8. Notice that �p6q6

must be related to 	�pq�: if one takes
a closer look at the cosines in �10�, one can see that when the
boson hops from p6 to q6, the circulation starting from p6
must first go through 	�pq�=−1 bonds. When this is satisfied
for the counterclockwise circulation, �p6q6

should be +1, oth-
erwise it should be −1. This is achieved exactly by relating �
and 	 vectors as shown in Fig. 8.

Finally, we can summarize the compact U�1� gauge theory
on the dice lattice. The Hamiltonian is

�11�

and the Hilbert space is constrained by Gauss’ law,

�∀p3� �
q�p3

Ep3q = − 1,

�∀p6� �
q�p6

Ep6q = 2np6
+ 2. �12�

For convenience that will become apparent later, we have
shifted np6

by 1 in the bottom expression �this sets to zero the
total background charge on the lattice�. In the limit of U
→�, this Hamiltonian is an exact rewriting of the effective
theory �4�. For finite and large U, one perturbatively obtains
a theory as a � /U expansion that introduces dimer flip pro-
cesses on larger loops. This physically corresponds to
further-neighbor and multiple-spin exchange that would be
also generated by not so small � in the original spin model
�3�. Because of this qualitative correspondence between fi-
nite U and larger �, we might have the means to qualitatively
see some trends beyond very small � /Jz.

B. Lattice field theory

The path integral corresponding to Eq. �11� describes a
�2+1�D electrodynamics. All fluctuations are constrained by
Eq. �12�. The action will contain a usual Berry’s phase �we
will omit the time index�,

SB = − i�


��

�pq�
Apq�
Epq + �

p6

�p6
�
np6 , �13�

and a potential-energy part,

Spot = U�
�



�
�pq�

Epq
2 , �14�

where �
 is the imaginary time increment. The kinetic en-
ergy, which involves the cosines in Eq. �11�, can be brought
to a more tractable form by applying Villain’s approxima-
tion,

et cos  � �
j=−�

�

e−gj2−ij, t = 2e−g → 0. �15�

Two new fields will appear and play a significant role: the
magnetic field scalar Bi that lives on the Kagome sites dual
to the dice plaquettes, and the particle current jp6q6

that lives
as a vector on the triangular lattice bonds. Both will be
integer-valued, reflecting the compactness of the U�1� gauge
theory, and the fluctuations of both will be suppressed by the
scale g= �log���
 /2��. They take part in the action as fol-
lows:

�16�

After writing this, the angles Apq and �p6
can be formally

integrated out. Fluctuations of the boson phases �p6
will give

rise to the particle current conservation law,

�∀p6
��
np6

+ �
q6�p6

jp6q6
= 0. �17�

Fluctuations of the vector potential will give rise to Max-
well’s equation for the magnetic field curl: Apq is coupled to
the magnetic field Bi and current jp6q6

in Eq. �16�, as well as
the time derivative of the electric field Epq in Eq. �13�, which
is the “displacement” current. However, this equation will
take an unusual form, because the particle and displace-
ment currents formally live on different lattices. The easiest
way to derive it is to rewrite the terms in which Apq appears
using the Kagome lattice notation. For this purpose, let us
note that the particle current jp6q6

is related to the triangular
lattice bond variable j�p6q6� by jp6q6

=�p6q6
j�p6q6�, which in

turn can be regarded as actually living on the sites of the
Kagome lattice �see Fig. 8�. Therefore, we can label j�p6q6�

as ji, where i is the Kagome site that sits on the tri-
angular bond �p6q6�. From Eqs. �13� and �16�, we have
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�18�

The vector potential fluctuations set to zero the sum of ev-
erything coupled to Aij on every Kagome bond �ij�. This is
Maxwell’s equation,

�∀�ij���
Eij = Bi − Bj + 	�ij��ji − j j� . �19�

Once the phase and vector potential fluctuations have been
integrated out, the remaining action contains only integer-
valued fields,

S = g�


��

i

�Bi
2 + ji

2� + �
�ij�

Eij
2� , �20�

whose fluctuations are subject to the constraints �12�, �17�,
and �19�.

In the last expression, the imaginary time increment �

was chosen to give g= �log���
 /2��=U�
. This standard pro-
cedure is a matter of convenience which does not jeopardize
our goals. Setting a small finite �
 is physically equivalent to
imposing a high-energy cutoff �
−1. At low energies the
physics remains intact, so that the theory �20� is guaranteed
to belong to the same universality class as the theory �11�.
This is the only concern here, since we are not seeking quan-
titative results but only fundamental properties of the phase
diagram. All approximations made so far are controlled and
accurately link back to the original spin model �3� in the
large-g limit, which means large U and small �. The oppo-
site limit of small g is also interesting, since it corresponds to
stronger spin dynamics. Clearly, if � became larger in Eq.
�3�, one would have to go beyond the first-order degenerate
perturbation theory when constructing the effective dimer
model �4�, and this would introduce dimer moves on bigger
loops of the dice lattice. Similarly, if U became smaller in
Eq. �11�, it would fail to strictly project states to the physical
Hilbert space and a more general gauge theory would need to
be constructed as a perturbative expansion in � /U that intro-
duces gauge field curls on larger loops. In either case,
smaller g means stronger fluctuations on larger dice lattice
loops, which by duality translate to fluctuations of spin clus-
ters on the Kagome lattice. These are various further-
neighbor and multiple-spin exchange processes, whose mi-
croscopic form is beyond the scope of this paper.

Now we can proceed by solving the constraints. To this
end, we want to completely switch back to the Kagome lat-
tice. The duality transformation that follows had been
worked out in two typical cases. �a� If the compact U�1�
gauge theory contains no charged particles, then the dual
theory is an integer-valued height model. �b� If the particles
and the electric field live on the same lattice, then the dual
theory has a noncompact U�1� gauge structure, and a charged
matter field.33 The case �a� emerges from the hard-core dimer

models on bipartite lattices, while the case �b� has been pro-
posed as an approximate description of the hard-core dimer
models on nonbipartite lattices. Our case is somewhat in be-
tween. It turns out that the dual theory for our case resembles
the height model.

It is convenient to redefine the magnetic field and current
as time derivatives of two integer-valued “height” fields, �i
and �i,

Bi = �
�i, ji = �
�i. �21�

Now, by introducing the �p6q6
vector analogous to jp6q6

, we
can write solutions of the current conservation �17� and Max-
well’s equation �19�,

np6
+ �

q6�p6

�p6q6
= 0, �22�

Eij = �i − � j + 	�ij���i − � j� + �ij , �23�

where �ij is an integer that does not vary with time, and will
be determined by substituting this expression into Gauss’ law
�12�. For consistency, let us first rewrite Gauss’ law using the
Kagome lattice labels,

�24�

The electric field divergence on the threefold- and sixfold-
coordinated dice sites in Eq. �12� transforms by duality into
the lattice curl on the Kagome triangles and hexagons, re-
spectively. Taking curls of Eq. �23� will annihilate �i on all
Kagome plaquettes, as well as �i on the Kagome triangles,
since 	�ij� is fixed on every triangle �see Fig. 7�. However, �i

will not be annihilated by the curls on the Kagome hexagons.
One can easily show that

�25�

which in turn is equal to −2np6
according to Eq. �22�. Con-

sequently, the equations that �ij must satisfy are

�26�

There are many possible choices. In order to reveal them
more tractably, let us use the Kagome bond orientations in
Fig. 5, and switch to the appropriate bond scalars ��ij� �notice
that the counterclockwise circulations coincide with the bond
orientations on the triangles, but not on the hexagons�,
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�27�

If we decide to use only the values 0 and 1 for ��ij�, and
visualize the value 1 as a dimer, we see that every triangular
plaquette must hold one dimer, and every hexagonal
plaquette two dimers. One such configuration is depicted in
Fig. 9. The other possible configurations need not be periodic
on the lattice, but “breaking” of the translational symmetry is
unavoidable as long as ��ij� are integers.

This concludes the solution of all the constraints �12�,
�17�, and �19�. The final lattice field theory describes fluctua-
tions of the two integer-valued height fields on the �2+1�D
Kagome lattice. We obtain the action by substituting Eqs.
�21� and �23� into Eq. �20�,

S = g�


��

i

��
�i�2 + ��
�i�2�

+ �
�ij�


�i − � j + 	�ij���i − � j� + �ij�2� . �28�

C. Important properties

Before proceeding with an analysis of the fluctuations in
the lattice theory �28�, we have to reveal several of its im-
portant properties. We begin by finding all configurations of
integer-valued �i=�i

�0� and �i=�i
�0� that minimize the action.

Clearly, �i
�0� and �i

�0� should have no time dependence. How-
ever, in terms of spatial variations, there will be a large de-
generacy. Let us define

�ij = �i
�0� − � j

�0� + 	�ij���i
�0� − � j

�0�� + �ij . �29�

At a saddle point, the action reduces to the sum of �ij
2 on all

Kagome bonds. The constraints that �ij must obey can be
extracted by tracing back �ij to Eij. Recall that this lattice
field theory describes a particular soft-core dimer model in
which E�ij�=1 represents a dimer. Therefore, the action will

be minimized for all allowed dimer coverings of the Kagome
lattice, by taking ��ij�=1 for a dimer and 0 for a vacancy.
There will be one dimer on every Kagome triangle, and an
arbitrary even number of dimers on every Kagome hexagon.
Note that every action minimum corresponds to two least
frustrated spin configurations of the Kagome Ising model �3�,
which are related to each other by the global spin flip.

Shifting the height fields by �i
�0� and �i

�0� allows us to
study fluctuations about a particular saddle point. The action
takes a more general form,

S = g�


��

i


��
�i�2 + ��
�i�2�

+ �
�ij�


�i − � j + 	�ij���i − � j� + �ij�2� . �30�

After “summation by parts,” we can write it in a matrix form
�up to a constant�,

S

g
= �



�

i
�2�i�

j�i

�ij + 2�i�
j�i

	�ij��ij + �i�6�i − ��i,
+1

+ �i,
−1� − �
j�i

�� j + 	�ij�� j� + �i�6�i − ��i,
+1 + �i,
−1�

− �
j�i

�� j + 	�ij�� j��
= �TC� + ��T� + �T�� , �31�

where the vectors � and � are arranged as

� = 
¯��i���i,�i�i��i� ¯ �T,

� = �¯��i���
j�i

�ij,�
j�i

	�ij��ij
i

��i�¯�T
. �32�

It is crucially important to understand the properties of the
saddle-point vectors � and the coupling matrix C. They fol-
low in a straightforward manner from Eqs. �31� and �32�, but
due to tediousness of algebra, we defer derivation to Appen-
dix A. Here we will only summarize the results: �i� All
saddle-point vectors � have the same norm,

�T� = const. �33�

�ii� All saddle-point vectors � are degenerate eigenvectors of
the coupling matrix C,

C� = 6� . �34�

In fact, the coupling matrix C is completely dispersion-
less: its eigenvalues have only frequency dependence, and no
dependence on spatial wave vectors. Its eigenvectors are six
localized bare modes per Kagome lattice unit cell. Two of
them are “gapless” �zero eigenvalue at zero frequency� and
degenerate, while the other four are “gapped” and degener-
ate. The “gapless” bare modes are actually unphysical, and
merely a redundancy of the state representation in terms of
the height fields. Exciting them at arbitrary places and fre-
quencies does not affect at all the only physical quantity in
the problem, the bond energy Eij �see Fig. 10�. Their exis-
tence can also be confirmed by counting arguments: there are
six bond variables �Eij� and two constraints on the Kagome

FIG. 9. One characteristic and periodic configuration for ��ij�.
Every dimer represents ��ij�=1, and vacancy ��ij�=0.
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triangles �Gauss’ law� per unit cell, leaving only four inde-
pendent variables per unit cell. Also note that because of Eq.
�34�, the gapless bare modes do not couple to the saddle-
point vectors � in Eq. �31�. In other words, they behave much
like some “gauge” degrees of freedom.

D. Effect of fluctuations

The lattice theory �30� that we want to analyze is very
similar to the simple and well understood integer-valued
height model. In 2+1 dimensions, the height model is known
to order and gives a “smooth” phase. This means that fluc-
tuations of the height field �i are such that the average ���i

−� j�2� does not diverge as the sites i and j go far apart. The
question that we now ask is whether the Kagome double-
height theory �30� also lives in a “smooth” phase, and what
kind of lattice symmetry breaking �if any� is obtained. We
will try to find answers in a fashion inspired by Ref. 32. First
we investigate which microstates �among those that mini-
mize action� are entropically selected by quantum fluctua-
tions. Such microstates are most frequently visited by the
system as it fluctuates. Then, if we somehow found that the
preferred microstates possessed long-range order, we would
have to verify whether that order is truly stable against fluc-

tuations. Note that the formal lack of dispersion in the cou-
pling matrix C does not automatically signal localization,
and hence the “rough” phase: the bare modes are strongly
interacting in order to give only integer-valued height fields
on all sites.

Finding the microstates that are most frequently visited by
the system is an extension of the standard mean-field ap-
proach. If there were no frustration, the most frequently vis-
ited microstate would be the one that minimizes energy �ac-
tion�. However, in the presence of frustration and classical
ground-state degeneracy, entropic effects play a role, and the
appropriate quantity to minimize is “free energy.” We are
looking for a way to visualize the pattern of possible lattice
symmetry breaking that is selected by fluctuations. Since a
long-range order would unavoidably imply the existence of a
static order parameter, we can consider a quantity which re-
flects whether the system spends an extended amount of time
in a neighborhood of some trial microstate �,

e−F��� � �
��

��,���e−S����. �35�

The neighborhood of the trial microstate � is specified by the
positive function �� ,���: it should be largest when ��=�,
and monotonously decrease when the number of local differ-
ences between the microstates � and �� increases. Physi-
cally, F��� is the “free energy” associated with fluctuations
from the vicinity of the microstate �, and we seek the
“mean-field” state � that minimizes it. The more low-energy
states are found in the region of the phase space around �,
the more likely it is that the system will fluctuate in that
region, which is reflected in lower F���. There are a variety
of choices for the neighborhood function that would yield the
same �and correct� microstates at the minimum of free en-
ergy, especially in the systems with discrete degrees of free-
dom �although at present there is no exact criterion for mak-
ing a good selection�.

There are two ways to relate the procedure outlined above
to more conventional ways of thinking. First, the expression
�35� is a calculation of a complicated response function. The
system is probed by nonlocal probes that couple to entire
microstates and detect arbitrary-ranged spatial and temporal
correlations. If lattice symmetries are spontaneously broken,
the system will respond most noticeably to the probe that
matches the symmetry breaking pattern. Alternatively, one
can calculate some correlation function of local operators
and detect long-range order, but in our Kagome problem
such a standard approach turns out to be much more difficult
when discreteness of fields has to be taken into account.
Second, the relationship relates the “free energy” to probabil-
ity amplitudes of quantum states. In frustrated systems, we
analyze how the degeneracy of minimally frustrated states is
lifted by quantum fluctuations, that is, by off-diagonal per-
turbations which mix such states. The resulting ground-state
wave function may be a superposition of many minimally
frustrated states. If some of these states were entropically
selected by quantum fluctuations, their probability ampli-
tudes in the ground-state superposition would be larger �by
modulus�. Their corresponding microstates �in the lattice

FIG. 10. Unphysical fluctuations in the lattice field theory �28�.
The pairs of numbers in the figure indicate all nonzero values of
��i ,�i� that constitute a redundant integer-valued field configuration
�up to a multiplicative integer constant�. One can easily see from
Eq. �23� that arbitrary superposition of these configurations does not
affect the bond energy Eij on any bond. 	�ij� is −1 on the bonds of
the shaded triangles, and +1 on the other bonds.

DISORDERED, SPIN LIQUID, AND VALENCE-BOND… PHYSICAL REVIEW B 72, 064423 �2005�

064423-9



field theory formulation� would also have smaller “free en-
ergy.” Therefore, the “free energy” is a rough indicator of
probability amplitudes. This can be seen more formally if the
probability amplitude a� of a state � is calculated from the
imaginary-time �or finite-temperature� path integral,

�a��2 = tr�e−�d
H������� � �
����
��

�������
0���2e−S
����
���.

�36�

The overlap ��� ����
0���2 in the path integral plays the role
of a very sharp neighborhood function �and has its essential
properties�, so that this expression has a very similar struc-
ture to that of Eq. �35�. The only crucial difference is that
here the overlap is calculated for only one instant of time 
0
�for which the operator ������ is specified in the Heisenberg
picture�.

We now turn to our specific problem given by the action
�30�. Recall that the saddle-point vectors � correspond to
static spin states. Since the action is expanded about the
saddle point � in the expression �30�, any nonzero values of
the height fields mean moving away from that saddle point.
This allows us to define the neighborhood function  in a soft
but controlled way,

�



��,��� = exp�− gm2�T�� , �37�

where m2 is a tunable parameter controlling the neighbor-
hood size. Then, the free energy of a state is

e−F��� = �
�

e−S���;�� = �
�

e−g
�TC�+��T�+�T��+m2�T��. �38�

Without the “mass” term m2, the free energy would not de-
pend on the saddle points, because mere shifts of variables in
the path integral that leave the action invariant would switch
between them. This addition to the theory does not alter its
fundamental properties. The physical bare modes are
“gapped” to begin with, and the mass only changes the gap
in the coupling matrix. On the other hand, the “gapless”
unphysical bare modes do not couple to the physical degrees
of freedom, and giving them mass is only a convenient way
to handle them �integrate them out�. Also note that the neigh-
borhood function does not alter symmetries and the nature of
dispersion in the action, and thus cannot introduce unwanted
effects at the neighborhood boundary.

We can make progress in two limits: very small and very
large coupling constant g. For g�1, the summation over
integer fields � in Eq. �38� can be approximated by an inte-
gration,

e−F��� � �
−�

�

D�e−S���;�� � exp
g�T�C + m2�−1�� . �39�

However, since all saddle-point vectors are degenerate eigen-
vectors of the coupling matrix �34� and have the same nor-
malization �33�, the free energy will have no dependence on
the saddle points.

It is instructive to compare this calculation with the ap-
propriate sine-Gordon theory �which was used for a similar
problem in Ref. 32�. An alternative procedure to the one
shown here is to soften the integer-valued height fields �i and
�i by adding sine-Gordon terms −� cos�2��i� and
−� cos�2��i� to the action �30�. This formulation is useful
for renormalization-group arguments that establish stability
of ordered phases. However, the only tractable approach for
finding entropically selected states is to Taylor-expand the
sine-Gordon terms. If expansion is terminated at quadratic
order �as was done in Ref. 32�, one obtains precisely the free
energy in the small-g limit �39�, with gm2=2�2�. Unfortu-
nately, as we have seen, this does not yield any entropic
selection of states in the Kagome problem. Therefore, one
must explore what happens when quartic and higher-order
corrections are included in expansion of the sine-Gordon
terms. In fact, we will be able to include all such corrections
at once in the following calculation in a large-g limit.

For gm2�1, it is convenient to perform the Poisson re-
summation in Eq. �38�. Let us introduce a vector � with
integer components �i

�k��k=1,2�, and write

e−F��� = �
�
�

−�

�

D� exp
− S���;�� − i���T� + �T���

� �
�

exp�g�� +
i�

g
�T

�C + m2�−1�� +
i�

g
�� .

This expression simplifies considerably due to Eqs. �33� and
�34�,

e−F��� � �
�

exp�−
�2

g
�T�C + m2�−1� +

i�

6 + m2 ��T� + �T��� .

�40�

Note that we could also add an explicit “vortex core” term
u�T� to the free energy. It would soften the integer-valued
constraints for the height fields, and yield a sine-Gordon
theory in the large-u limit. Doing this would be useful if we
needed to discuss the stability of phases, but for the purposes
of the present problem, this will prove to be unnecessary.
The smallest eigenvalue of the matrix C+m2 in the last equa-
tion is m2. Therefore, in the limit of gm2�1 �and u�1�, the
only rapidly varying part of the exponent on the right-hand
side is the purely imaginary part. We can easily understand
the oscillatory effect that it induces as long as m2�1. First,
note that components of the saddle-point vectors � always
have integer values: all possibilities are shown in Table II.
Then, we can decompose the integer-valued components of
the vector � into two parts,

�i
�k� = 6Mi

�k� + ��i
�k�, ��i

�k� � �0,…,5� . �41�

Since the quadratic part of the exponent in Eq. �40� varies
only very slowly, we can neglect fluctuations of �� in it.
Similarly, since m2�1, we can neglect fluctuations of M in
the oscillatory part �they approximately contribute a 2��
integer phase�. We approximately have
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e−F��� � �
�

exp�−
�6��2

g
MT�C + m2�−1M

+
i�

6 + m2 ���T� + �T���� . �42�

Clearly, the oscillatory part will give rise to a destructive
interference for every nonzero component of the saddle-point
vector � 
yielding factors of the order of m2, or �gm2�−1 in
the path-integral weight�. In order to minimize the free en-
ergy F���, the saddle-point vector � should have as many
zero components as possible. The appropriate quantity to
consider is

np = 2nc + na, �43�

where na ,nb, and nc are, respectively, the total numbers of
the A, B, and C type sites from Table II in a saddle-point
vector. Configurations that maximize np are preferred, and
entropically selected by fluctuations.

Simple algebra can be worked out to find np. The total
number of Kagome lattice sites is

na + nb + nc = N , �44�

while the total number of dimers in a least frustrated state is

1

2
�2na + nb� =

2N

3
, �45�

since one dimer sits on every Kagome triangle, and the tri-
angles share corners instead of bonds. Combining these two
equations, we find

na =
N

3
+ nc, nb =

2N

3
− 2nc. �46�

In order for all na ,nb, and nc to be positive and smaller than
N ,nc must be bounded between 0 and N /3. We see that np is
maximized simply when the number of C sites is maximized,
which mean na=2N /3 ,nb=0,nc=N /3. Note that the pre-
ferred configurations also have the maximum number of flip-
pable spins, whose flipping costs no energy. Every A site is a
flippable spin, because the numbers of frustrated and unfrus-
trated bonds emanating from it are equal �flipping a spin
toggles bond energy on every emanating bond�. Some un-
typical preferred configurations are shown in Fig. 11.

The total number of preferred configurations is macro-
scopically large. This can be demonstrated by observing that
they map to the hard-core dimer coverings of the honeycomb
lattice. The preferred configurations have only A and C type
sites. Two C sites cannot be neighbors, but their number
should be maximized, so that every C site can be represented
by a dimer on the corresponding honeycomb lattice bond, as
depicted in Fig. 12. A transition graph can be found by over-
lapping any two honeycomb lattice dimer coverings, and it
consists of isolated loops, the smallest having six honeycomb
bonds. Therefore, the preferred configurations on the
Kagome lattice are only locally different from one another,
and may be transformed into one another by flipping six or
more flippable spins �one at a time�.

E. “Disorder-by-disorder”

The conclusion so far is that the maximally flippable
states may be entropically selected by fluctuations, to a
smaller or greater extent depending on the value of g. As we
have seen in Sec. III B, smaller g describes various stronger
further-neighbor and multiple-spin exchange processes.

In principle, the maximally flippable states will be mixed
together in the ground state, since it takes only local fluctua-
tions to change between them. Our findings so far have in-

TABLE II. All possible local confifgurations of dimers �frus-
trated bonds� at the saddle points, and the corresponding values of
the saddle-point vector components. The site i sits at the center of
the bowtie, and may be of type A �two variations�, B, or C. The
description of the saddle points in terms of dimers is given in IIIC.

FIG. 11. Two periodic �not typical� preferred dimer configura-
tions �with maximum flippability�. Every site with two dimers ema-
nating from it holds a flippable spin, and only every third site holds
an unflippable spin.
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cluded only the effects of “small” fluctuations about various
saddle points. Even though a smaller value of m2 can always
be chosen to expand the scope of included fluctuations, too
small m2 may invalidate the approximations that made the
calculations possible. Hence, certain “large” fluctuations are
beyond the reach of this formalism. Precisely these fluctua-
tions decide whether the maximally flippable states are
evenly mixed with all other states or not. If they are, the
ground state is chaotic and disordered. The only chance for a
valence-bond order is if something suppressed the fluctua-
tions into all but the maximally flippable states. Then, the
effective degrees of freedom would be only the honeycomb
lattice dimer coverings, and their local dynamics would yield
a plaquette dimer long-range order typical of dimer models
on bipartite lattices. It is our goal here to determine whether
such long-range order might be stable.

There are several arguments that can be made in favor of
the disordered phase. The first thing to observe is that the
minimum of the free energy is extremely widely and evenly
distributed over a large number of disordered states �map-
pable to the honeycomb lattice dimer coverings�. This means
that the system does not spend much time fluctuating near
any particular one of them, likely ruling out a static order
parameter, and thus lattice symmetry breaking. Secondly,
due to the degeneracy in the action, it is possible to make
local field changes that correspond to flipping a single spin
without paying energy on the spatial links. Since such small
fluctuations of the flippable spins are energetically controlled
only along one dimension �imaginary time�, there is nothing
to stop them from proliferating. This would be true even if
the “smooth” phase were obtained in the “height” action: the
macroscopic degeneracy due to geometric frustration allows
many spatially different patterns that break the “height” sym-
metry. If fact, every least frustrated state has a macroscopic
number of flippable spins 
see from Eq. �46� that na�N /3�.
Therefore, there is no mechanism to suppress fluctuations

into any possible least frustrated state. Note that for all but
the maximally flippable states to be suppressed, the only fa-
vorable flipping processes would have to simultaneously in-
volve at least six spins �dimer flip on a honeycomb lattice
hexagon�.

Another consequence of abundant single-spin fluctuations
is the absence of magnetic order in the ground state. In our
problem, this also contradicts the possibility of the valence-
bond order, since it would be accompanied by a net Ising
moment. All maximally flippable states have macroscopic
magnetization M = ±N /3. To see this, note in Fig. 11 that all
flippable spins �A-type sites� must be aligned, since they are
connected to each other either through one frustrated bond
�dimer� or through two unfrustrated bonds.

It is apparent by now that all minimally frustrated spin
configurations are mixed into the disordered and featureless
ground state. The correlations are short-ranged since there is
a macroscopic number of flippable spins in every least frus-
trated state, making the spins virtually independent. A prop-
erty that distinguishes the Kagome from the other lattices is
the formal lack of dispersion in the lattice field theory. We
interpret this as a signal that the excitations are very heavy or
perhaps even localized �exactly true in the small-g limit�.
Indeed, strictly short-ranged spin-spin correlations, consis-
tent with very undispersive modes, have been observed in
the Monte Carlo simulations.29,30

F. Quantum-mechanical interpretation

The analysis of the lattice field theory has yielded two
essential results that can help us sketch the ground and ex-
cited states of the Hamiltonian �4�. They are �a� no symmetry
is spontaneously broken, �b� excitations have localized char-
acter �very large effective mass�. We use the free energy F���
from the previous section as a rough indication of the prob-
ability amplitudes that different dimer configurations have in
the ground state. The ground state is a smooth superposition
of all possible configurations ��� of frustrated bonds,

�0� = �
�

a���� . �47�

The amplitudes of the similar states are roughly equal
in magnitude. This is required in order for two states differ-
ent by a single spin flip to give a large matrix element
��1��−�Sx���2� and yield a significant energy gain. However,
the amplitudes depend on flippability of the states ���. The
state with a larger number of flippable spins will have a
larger probability �a��2.

Due to a very localized nature of excitations, we can say
that the physics of this model is very similar to the physics of
completely disconnected quantum spins in a transverse field,
for which all eigenstates are known. Although the actual flip-
pable spins interact, their interaction seems to be largely in-
consequential. This suggests that many good variational
wave functions �for ground and excited states at ��Jz� can
be obtained by a simple Gutzwiller’s projection: take the
states of the noninteracting Kagome spins in a transverse
field and project them to the manifold of least frustrated
states. All excitations are gapped, and the gap is ��.

FIG. 12. The maximally flippable states map to the honeycomb
lattice hard-core dimer coverings. The Kagome triangle centers
form a honeycomb lattice whose bonds go through the Kagome
sites. For every Kagome bowtie with a C element from Table II, put
a dimer on the honeycomb lattice.

P. NIKOLIĆ PHYSICAL REVIEW B 72, 064423 �2005�

064423-12



Finally, we recall that this disordered quantum phase does
not have topological order in the original spin model.
Clearly, it is stable against small higher-order perturbations
in � /Jz. In fact, it is obtained for all values of the transverse
field �, without any intermediate phase transitions.29–31

IV. HEISENBERG MODEL WITH EASY AXIS

In this section we analyze the XXZ model on the Kagome
lattice and its extensions,

H = Jz�
�ij�

Si
zSj

z + J��
�ij�

�Si
xSj

x + Si
ySj

y� , �48�

with Jz�0 and �J���Jz. The analysis will closely follow
that of the transverse field Ising model in Sec. III, and rely
on the notation and conventions defined there. Many simi-
larities will be encountered, except that the formalism will be
of greater complexity. One apparent difference, however, is
that the total magnetization in the z direction is a good quan-
tum number in this model.

In order to make a connection to the isotropic Heisenberg
model, which is our primary motivation, we will attempt to
calculate with J��0. This will give rise to a Berry’s phase
in the path-integral formulation, which in turn creates a well
known “sign problem.” Our calculations ultimately rely on
the absence of the “sign problem,” so that they can be rigor-
ously performed only for J��0 �which is an interesting
problem in its own right, describing repulsive hard-core
bosons�. However, we will provide strong arguments that the
actual sign of J� does not matter when it comes to how the
lattice symmetries are spontaneously broken. The argument
will be partially based on the form that Berry’s phase takes in
the path integral.

As before, we begin by considering an effective theory
that describes the physics at the energy scales well below Jz,

Heff =
J�

2 �
�ij�

P0�Si
+Sj

− + Si
−Sj

+�P0 + O� J�
2

Jz
 . �49�

This theory lives in the Hilbert space spanned by the least
frustrated states of the pure Ising model, and P0 is the pro-
jection operator to this space. It describes the dynamics of
the flippable spin pairs on the Kagome lattice bonds. In order
for a pair of spins to be flippable, the spin configuration must
be minimally frustrated before and after the pair is flipped.
Note that this automatically requires that the two spins be
antialigned �Fig. 13�. The effective theory can again be ex-
pressed as a soft-core dimer model in the same Hilbert space

as the one that described the TFIM model, but with more
complicated dynamics. We will reformulate it as a U�1�
gauge theory, derive a dual lattice field theory for it, and
study the phases of the obtained model. This time we will
find a valence-bond crystal and a spin liquid.

A. U(1) gauge theory

The only difference between the XXZ effective dimer
model and that of the TFIM model �4� is that now the el-
ementary loops on which the dimers can be flipped enclose
two dice lattice plaquettes instead of one �since two spins are
flipped at a time�. There are four such processes and they are
shown in Fig. 14.

The U�1� gauge theory is built the same way as in Sec.
III A. The electric field and the charge-2 bosons, whose fluc-
tuations are controlled by Gauss’ law �12� and the potential
energy �8�, represent the low-energy degrees of freedom. The
new form of the kinetic energy can be easily obtained by
comparing the two-plaquette processes in Fig. 14 with the
single-plaquette processes in Fig. 6. The two single-plaquette
processes consistent with the low-energy physics can be
combined in four different ways to give the allowed two-
plaquette processes. In combining them, the middle bond
�q6q3� is flipped twice, so that there is no net change on it.
This gives us the operators in Table III. The argument of
each cosine is the sum of two corresponding single-plaquette
circulations and boson hopping�s� from expressions �9� and
�10�, but multiplied by the factors of ��pq� and 	�pq� in such a
way that the contribution of the central bond �q6q3� is prop-

FIG. 13. Flipping a pair of aligned spins creates extra frustration
on the triangle that contains them. Dimers denote the frustrated
bonds.

FIG. 14. Four possible low-energy processes that keep frustra-
tion at the minimum. Recall that the minimum of frustration is
achieved if there is one dimer emanating from every threefold-
coordinated dice site, and an even number of dimers emanating
from every sixfold-coordinated site. The dashed arrows show be-
tween which two 6-coordinated sites a pair of dimers is exchanged

charge-2 boson hopping in the U�1� gauge theory�. These pro-
cesses preserve the global Ising magnetization: the bond between
the two plaquettes is always unfrustrated.
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erly canceled out. Then, if we label the four processes by
�=a ,b ,c ,d, the U�1� effective Hamiltonian is

H = U�
�pq�

Epq
2 + �

�

Hkin
���. �50�

The U→� limit is an exact rewriting of the effective dimer
model, while a finite U introduces various new dynamical
processes, defined on larger dimer loops �spin clusters�, but
consistent with the global spin-flip symmetry of the XXZ
model.

B. Lattice field theory

We proceed by writing the path integral for the U�1�
Hamiltonian, respecting the constraints given by Gauss’ law
�12�. The action will contain Berry’s phase �13� and the po-
tential energy term �14� as before. However, this time Vil-
lain’s approximation will give rise to four integer-valued
massive fields K�pq�

��� ��=a ,b ,c ,d� that live on the dice lattice

bonds, and couple to the arguments of cosines h�pq�
��� from

Table III,

Skin = �



�
�pq�

�
�


g�K�pq�
��� �2 + iK�pa�

��� �h�pq�
��� + ��� .

An additional Berry’s phase �i�K�pq�
��� appears because the

coupling J� is positive. It is again possible to define the
magnetic field Bi and the particle current jp6q6

. The magnetic
field couples to the plain plaquette curl of the vector poten-
tial, while the current couples to the boson hopping,

�51�

In terms of the fields K�pq�
��� , the magnetic field and the

particle current �labeled by the Kagome sites� are

�52�

We sketch the derivation of these equations in Fig. 15 and its
caption. The magnetic field and the particle current are
integer-valued fields, and the action is seemingly reduced to
the form that pertains to the TFIM model. When the vector
potential Apq and the particle phase �p6

are integrated out,
the same current conservation �17� and Maxwell’s �19� equa-
tions are recovered.

We can again introduce the height fields �i and �i as in
Eq. �21�. For this purpose, it would be convenient to express
the K�pq�

��� fields as time derivatives. Since the path integral

has a closed boundary condition in imaginary time, and
�rK�pq�,


��� need not be zero, we can generally write

K�pq�,

��� = �
��pq�,


��� + �
,�K̃�pq�,
��� , �53�

where the time dependencies have been explicitly shown
��→� is the “last” moment of time�. Ignoring for a moment
the magnetic field and current terms from Eq. �51�, the ki-
netic part of the action becomes

Skin � �
�pq�,�

��

=0

�−1

g��
��pq�
��� �2 + g���pq�,0

��� − ��pq�,�
���

+ K̃�pq�
��� �2

+ i�K̃�pq�
��� �

→ �
�pq�,�

��

=0

�−1

g��
��pq�
��� �2

− i����pq�,0
��� − ��pq�,�

��� �� . �54�

TABLE III. Kinetic energy operators corresponding to the processes in Fig. 14. Notation for the sites is defined in the figure: �q6q3� is
the bond shared between the two dice plaquettes, while p6L and p6R are the bottom sixfold-coordinated sites on the left and right plaquette,
respectively. Only the bonds with arrows are included in the sums.
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The field K̃�pq�
��� was integrated out in the last line, and an

emerging additive constant was discarded. The boundary
conditions in imaginary time now appear open, and the extra
Berry’s phase, due to the positive J�, appears only at the
boundary. In fact, Berry’s phase is sensitive only to the parity
of the integer-valued fields at the boundary. Whenever the
fluctuations render this parity short-range correlated along
time, one may expect that Berry’s phase will not affect the
macroscopic properties of the theory. This will certainly hap-
pen in any disordered phase. However, it can also happen in
a “smooth” phase that describes a plaquette valence-bond
order: the macroscopic degeneracy created by geometric
frustration allows many locally different “smooth” states,
and the small fluctuations between them are extremely abun-
dant, especially on the corner-sharing lattices such as the
Kagome.

Therefore, we will assume in the following that Berry’s
phase shapes only certain local properties of fluctuations, and
neglect it for the purposes of discussing the possible phases
of the theory. The affected local properties can be revealed
from a microscopic point of view. The positive value of the
coupling J� in the XXZ model �48� prefers the spin singlet
formation on the Kagome bonds: �↑ ↓ �+ �↓ ↑ �. If J� were
negative, the symmetric triplets would be favored instead:
�↑ ↓ �+ �↓ ↑ �. Note that at least due to the strong Ising anti-
ferromagnetic interaction, the “true ferromagnetic” nature of
the negative J� would be suppressed. The macroscopic phys-
ics of such triplet bonds must be very similar to that of the
singlet bonds, because in both cases every spin can be paired
with only one of its neighbors. Even the same higher-order
processes, such as the valence-bond movements on the
closed loops, would be preferred by either sign of J�.

Passing completely to the Kagome lattice notation, and
neglecting Berry’s phase, the action of the final field theory
becomes

S = g�



�
�ij�

��
�

��
��ij�
����2 + 
�i − � j + 	�ij���i − � j� + �ij�2� ,

�55�

where the fluctuations of the height fields are constrained by
Eq. �52� in the dual form

�i = �
j�i

	�ij����ij�
�a� +

1 − �ij

2
��ij�

�b� +
1 + �ij

2
��ij�

�c�  ,

�i = �
j�i

���ij�
�d� +

1 − �ij

2
��ij�

�c� +
1 + �ij

2
��ij�

�b�  . �56�

C. Important properties

The action �55� resembles very much that of the TFIM
model �28�. However, it could give rise to a very different
physics. Certain fluctuations are forbidden by the action �55�,
and the remaining ones might be able to entropically select
some ordered state. The forbidden fluctuations are those that
change the total magnetization of the Kagome Ising antifer-
romagnet. A mechanism for this is provided by the con-

FIG. 15. Explanation for the derivation of Eq. �52�: The goal is
to associate Bi to the curl of Apq, and ji to the curl of 	�pq�Apq. For
each of the four plaquette pairs in �a� through �d�, a counterclock-
wise circulation �of Apq or 	�pq�Apq � is taken on the central

plaquette, labeled by its dual Kagome site i. The fields K�pq�
��� on the

emphasized bonds will be coupled to this circulation, and we sim-
ply collect those coupled to the curl of Apq into Bi, and those
coupled to the curl of 	�pq�Apq into ji. However, there is a small
complication. Let us call a plaquette “left” or “right” according to
its position when the plaquette pair is rotated to point “upward” like
in Fig. 14. Then, for the pairs �a� and �c�, the plaquette i is “left,”
while for the pairs �b� and �d�, i is the “right” plaquette. The fields
K�pq�

�b� and K�pq�
�c� couple to circulations of the different quantities on

the “left” and “right” plaquettes �see Table III�. Therefore, the “left”
and “right” must be distinguished. Notice that the oriented empha-
sized bond in �a� and �c� points from the threefold-coordinated site
toward the sixfold-coordinated site ��pq=−1�, and the opposite in
�b� and �d� ��pq= +1�. This can be used to determine when the
circulation is made on the “left” or on the “right” plaquette, and this
is the origin of the �pq terms in Eq. �52�.
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straints on the spatial configurations of �i and �i, which
emerge from Eqs. �56�. Natural degrees of freedom in this
field theory are ��ij�

���, and they live on the Kagome bonds,

reflecting the nature of XXZ perturbation.
Therefore, we will adapt the analysis of the TFIM model

to these new degrees of freedom, and write the action �55� in
the matrix form. First, we note that the action is minimized
by the same height field configurations �i and �i as before.
By shifting variables and expanding about a particular saddle
point, the potential part of the action becomes

Spot = g�



�
�ij�


�i − � j + 	�ij���i − � j� + �ij�2, �57�

where �ij has been defined in Sec. III C. Then, we apply the
resummation formula

�
i

ai�
j�i

b�ij� = �
�ij�

�b�ij�ai + b�ji�aj� �58�

to the expressions �56�, and substitute the result in Eq. �31�.
This gives us the matrix form of the action �55�,

S

g
= �TC� + ��T� + �T�� . �59�

Components of the vector � are the ��ij�
��� fields. The structure

of the coupling matrix in terms of the natural degrees of
freedom and the saddle-point vectors are given in Table IV.

Now, we repeat the analysis from Secs. III C and III D in
order to find the effect of fluctuations. Crucial pieces of in-
formation are how the saddle-point vectors are normalized,
and how the coupling matrix acts on them: �i� All saddle-
point vectors � have the same norm,

�T� = const. �60�

�ii� All saddle-point vectors � are degenerate eigenvectors of
the coupling matrix C,

C� = 36� . �61�

In full analogy to the TFIM case, the coupling matrix C is
completely dispersionless. There are 24 bare modes per unit
cell of the Kagome lattice �the unit cell has six bonds�, and
all of them are localized. Only four of them have a nonzero
eigenvalue at zero frequency �equal to 36�, while the other
20 are “gapless” and unphysical fluctuations �due to the re-
dundancy of the representation�.

D. Effect of fluctuations

In the quest for potential order by disorder, we proceed in
exactly the same fashion as before. The XXZ model only
brings a new complication: total Ising magnetization is con-
served. Every value of total magnetization defines a separate
sector of states, and fluctuations in the lattice field theory
�55� cannot mix the states from different sectors. In prin-
ciple, entropical effects of fluctuations should be investigated
for every sector separately. However, we only need to focus

TABLE IV. Action of the spatial �potential� part of the coupling matrix on the field vectors �left�, and the
components of the saddle-point vectors �right�. For the components of type �b� and �c�, the sites i and j must
be chosen in such a way that the bond orientation is from i toward j.

�Cpot���ij�
�a� = 	�ij�
4�i − �

k�i
��k + 	�ik��k��

+ 	�ij�
4� j − �
k�j

��k + 	�jk��k��
��ij�

�a� = 	�ij� �
k�i

�ik + 	�ij� �
k�j

� jk

�Cpot���ij�
�b� = �
4�i − �

k�i
��k + 	�ik��k��

+ 	�ij�
4� j − �
k�j

��k + 	�jk��k���i→j

��ij�
�b� = 
 �

k�i
	�ik��ik + 	�ij� �

k�j
� jk�i→j

�Cpot���ij�
�c� = �	�ij�
4�i − �

k�i
��k + 	�ik��k��

+ 
4� j − �
k�j

��k + 	�jk��k���i→j

��ij�
�c� = 
	�ij� �

k�i
�ik + �

k�j
	�jk�� jk�i→j

�Cpot���ij�
�d� = 
4�i − �

k�i
��k + 	�ik��k��

+ 
4� j − �
k�j

��k + 	�jk��k��
��ij�

�d� = �
k�i

	�ik��ik+ �
k�j

	�jk�� jk
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on the sector of zero Ising magnetization, since the XXZ
coupling clearly favors it.

We introduce the free energy F��� of fluctuations about a
saddle point �, and search for the saddle points that minimize
it. For small g, the same situation occurs as in the TFIM case

see Eq. �39��: there is no entropic selection of the saddle
points. Thus, a disordered ground state is obtained, which in
the XXZ case in fact has topological order, as will be argued
at the end of Sec. IV F. New interesting things happen for
large g. The free energy F��� in the large-g limit, after the
Poisson resummation, is given by the approximate expres-
sion analogous to Eq. �42�,

e−F��� � �
�

exp�−
�36��2

g
MT�C + m2�−1M

+
i�

36 + m2 ���T� + �T���� , �62�

where the integer Poisson fields ��ij�
�����=a ,… ,d�, forming

the vector �, have been decomposed as

��ij�
��� = 36M�ij�

��� + ���ij�
���, ���ij�

��� � �0,…,35� . �63�

The free energy is minimized when the saddle-point vector
�, given in Table IV, has the maximum number of zero com-
ponents. All other possible values of the components � are
integers and factors of 36, so that only the zero components
avoid destructive interference in Eq. �62�.

In order to discover which saddle-point dimer coverings
are preferred and minimize the free energy, we need to char-
acterize them in terms of the local dimer configurations at
the Kagome sites, bonds, and triangles. The Kagome sites
have already been characterized by the number of dimers
emanating from them in Table II. All nonequivalent dimer
arrangements in the neighborhood of a Kagome bond are
systematically shown in Table V, together with the corre-
sponding numbers of the zero components of the saddle-
point vector. Finally, the triangles can be characterized by the
types of sites at their corners, and all possibilities are given
in Table VI. For every allowed type of triangle, one can find
three situations in Table V, corresponding to the three bonds
on the triangle �one of which is frustrated�, and collect the
total number of the saddle-point zero components that such a

triangle would contribute. Adding contributions of all tri-
angles, that is, all bonds, we obtain the following “scoring”
number that should be maximized:

np� = 8nbbb + 2nabb + 2naab + 6naac + 2nabc + 4nbbc. �64�

The quantities nbbb ,… ,nbbc denote the total numbers of vari-
ous kinds of triangles in a given saddle-point dimer configu-
ration. At this stage, we have to investigate possible relation-
ships between these numbers. The first thing to note is that
the total number of Kagome triangles is

nbbb + nabb + naab + naac + nabc + nbbc =
2N

3
. �65�

Then, using Table VI, we can count the total numbers of A,
B, and C sites,

na =
1

2
�2naab + 2naac + nabb + nabc� ,

nb =
1

2
�3nbbb + 2nabb + 2nbbc + naab + nabc� ,

nc =
1

2
�naac + nabc + nbbc� . �66�

By combining these equations with Eq. �46�, one finds that
na ,nb ,nc ,nabb, and nabc can be expressed in terms of inde-
pendent variables nbbb ,naac ,nbbc, and naab. The “scoring”
number np� can now be simplified using the identity �65�. The
quantity that has to be maximized is

np = 3nbbb + 2naac + nbbc, �67�

and the variables appearing in it are independent, although
subject to inequalities 0�na�N ,… ,0�nbbc�2N /3.

Finding the absolute maximum of np is a well posed prob-
lem of linear programming. The absolute maximum is ob-
tained when the number of C-type sites is maximized, which
gives rise to the very same states preferred by the fluctua-
tions of the TFIM model �see Fig. 11�. However, these are
not the saddle points that we are looking for: they have a
macroscopic magnetization. Besides, instead of being maxi-
mally flippable, as in the case of the TFIM model, they
are now minimally flippable; in fact, they have no flippable
spin pairs at all. If we want to find the configurations

TABLE V. All possible nonequivalent configurations of frus-
trated bonds in the neighborhood of a Kagome bond. The types of
sites are labeled according to the scheme from Table II �for the
bottom site on the central triangle, there are always two options�.
This table shows the number of zero-valued components ��ij�

��� ,�

=a ,… ,d of the saddle-point vector, for the horizontal bond �ij� on
the central triangle.

TABLE VI. Characterization of all possible kinds of Kagome
triangles. The site types A, B, and C are defined in Table II. Note
that two C sites can never be neighbors, and that three A sites
cannot sit on the same triangle. The dimers emphasize which bond
must be frustrated in a given situation �there are multiple choices
only for the case BBB�.
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with zero magnetization that maximize np, we must explore
a path different from having a large number of C sites. This
is, in principle, a difficult problem, and an exact analy-
tical solution is not available at this time. Instead, we guess
that nbbb should be made as large as possible. This yields
the configurations without any C sites, and with a large
number of B sites 
see Eq. �46��. The best choice is na
=N /3 ,nb=2N /3 ,nbbb=naab=N /3. It is possible, though rela-
tively complicated, to demonstrate that the configurations
with these parameters break the lattice symmetries in a
unique stripelike fashion shown in Fig. 16. It turns out that
such states are not magnetized at all, and that they have a
large number of flippable spin pairs. Their scoring number
�np=N� is significantly larger than that of a typical unmag-
netized state �a fraction of N�. Therefore, they are excellent
candidates for the preferred configurations. No better con-
figurations were found when every least frustrated state with
zero magnetization was explicitly examined using a com-
puter �the sample had 24 sites and closed boundary condi-
tions�.

In conclusion, for large g the preferred configurations of
frustrated bonds that minimize the free energy break the lat-
tice symmetries in a stripelike way, as shown in Fig. 16. This
indicates that a valence-bond ordered phase could be realized
in the XXZ model when dynamics is dominated by the short-
ranged spin-pair flips �the larger g, the weaker further-
neighbor and multiple-spin exchange—see Sec. III B�. It is
now necessary to verify stability of such an ordered phase.

E. Stability of the valence-bond order

A usual way to determine whether fluctuations ultimately
destroy long-range order involves the renormalization group
�RG�. The lattice field theory �55� of the XXZ model re-
sembles an integer-valued height model, and one might na-
ively hope that the RG arguments could be applicable to it.

In a standard and simple integer-valued height model �on the
square lattice, for example� one first softens the integer con-
straints for the height fields by writing a sine-Gordon theory.
Then, one checks how the sine-Gordon coupling flows under
RG, starting from various parameter values in the theory. If it
flows toward zero, then the integer constraints are irrelevant
at the macroscopic scales, and the height model may be
found in the “rough” disordered phase. Alternatively, the
flow can be toward infinity, in which case the “smooth” long-
range ordered phase is realized. In the context of frustrated
magnetism, the appropriate height model typically comes
with a static background field �� in our case�, so that the
“smooth” phase also breaks lattice symmetries.32

Therefore, let us write a sine-Gordon theory for the XXZ
model, based on the action �59�,

Ssg = g�TC� + g��T� + �T�� − � �

,�ij�,�

cos�2���ij�
���� .

The ��ij�
��� fields are now real-valued, and their deviation from

integers is penalized by the sine-Gordon term, especially in
the large-� limit. It is convenient to shift the variables � by
C−1�=� /36, and remove the linear terms,

Ssg = g�TC� − � �

,�ij�,�

cos�2����ij�
��� −

1

36
��ij�

���� .

Unfortunately, it is not possible to directly apply the RG
treatment to this theory. The bare modes �modes of the cou-
pling matrix C� are not only dispersionless, but some of them
appear gapless as well. The “gapless” bare modes are redun-
dancy of representation, but they still pose a technical diffi-
culty. It is through the sine-Gordon coupling that they at least
acquire dispersion. The sine-Gordon term mixes the bare
modes when they describe noninteger fluctuations of the
height fields. Let us relabel the fields ��ij�

��� as �n,r, where r is

a vector specifying a Kagome lattice unit cell, and n
� �1,2 ,… ,24� is an index specifying the bond �ij� �one of
six� and the flavor � �one of four� within the unit cell. Then,
we can express the fields as linear combinations of the 24
local bare modes �n,r,

�n,r = �
m=1

24

�
�r

Wnm,�r�m,r+�r. �68�

One can formally integrate out the four physical �massive�
modes, �21,r ,�22,r ,�23,r ,�24,r, and obtain an effective
theory as perturbative expansion in �. The effective theory is
a complicated expression involving cosine terms whose ar-
guments are linear combinations of the remaining 20 modes,

Seff = g�
n=1

20

�
r

��
�n,r�2

− ��
n,r

Cncos�2��
m=1

20

�
�r

Wnm,�r�m,r+�r − 2�
1

36
�n,r

+ O��2� . �69�

The redundancy of representation survives in the effective

FIG. 16. The preferred saddle-point configuration with zero
magnetization, selected by the XXZ fluctuations. The lattice sym-
metries are “broken” in the stripelike fashion. There are only type A
and B sites in this state, and the number of BBB triangles is large
�they sit between the straight chains of dimers�. The total magneti-
zation is zero: every two spins connected by a vacant bond are
antialigned, so that the straight chains alternate in magnetization, as
well as the dimers in the middle along the chains.
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theory through periodicity of the cosines. However, the re-
dundancy is easily removed by treating the mode amplitudes
in the effective theory as angles: the physical degrees of
freedom �which have been integrated out� enter the effective
theory precisely trough the residual 
0,2�� amplitudes of the
remaining modes.

Let us for a moment expand the cosine terms to the qua-
dratic order, and obtain a Gaussian theory for the 20 modes.
In absence of the saddle-point background �=0, such a
theory would be trivial,

�n,r = 0 ⇒ SGauss = �
n,r


��
�n,r�2 + m2�n,r
2 � .

This means that the effective theory �69� retains the nature of
the original sine-Gordon model: small fluctuations of the
bare modes are gapped. However, we are concerned only
with the vicinity of the candidate valence-bond ordered state
�Fig. 16�. For the saddle-point vector � that describes this
stripe pattern, the effective band structure in the Gaussian
approximation is shown in Fig. 17. Apart from having fre-
quency dependence, the lowest-lying mode is dispersive in
the direction along the stripes, but not in the perpendicular
direction. Nevertheless, full spatial dispersion can be ex-
pected if one goes beyond the Gaussian approximation, be-

cause the lowest-lying mode is actually coupled to some
higher modes that are dispersive in the perpendicular direc-
tion. The results of this approximation are only good for
arguing that dispersion emerges. There is no simple way of
telling what changes beyond the quadratic approximation.
Therefore, the correct way in which lattice symmetries are
eventually broken may not be possible to guess from this
information.

We can now write the effective theory in a form that
manifestly separates the dispersive and sine-Gordon parts. If
we partially expand the cosines from Eq. �69� in the follow-
ing way �supressing the n and r indices of �n,r and xn,r
=�m,�rWnm,�r�m,r+�r�:

�
n,r

Cncos�2�x −
2��

36


= �
n,r

Cn�2�x sin�2��

36
 + a cos�2�x�

+ �cos�2��

36
 − a��1 −

�2�x�2

2
	 + O�x3� ,

then for a proper choice of the constant a the effective theory
becomes

Seff � g�TCeff���� − �
hT���� + �Th����

− a��
n,r

Cn cos�2��
m=1

20

�
�r

Wnm,�r�m,r+�r , �70�

where the coupling matrix Ceff��� collects all space-time dis-
persion �brought up by the nontrivial ��0�, and has no gap
at q=0. The remaining cosines open up a gap for small fluc-
tuations, thereby justifying the quadratic expansion that took
place. This is an effective sine-Gordon theory. As a matter of
principle, the RG treatment is now applicable. Even if the
dispersion were ultimately created only in one spatial dimen-
sion �along the stripes� combined with the dispersion in time,
it would give a “smooth” phase for sufficiently large g and �.
If the full �2+1�D dispersion were obtained, then only the
“smooth” phase would exist, since the sine-Gordon coupling
would always flow toward infinity. In any event, the exis-
tence of the “smooth” phase means that the valence-bond
long-range order for large g is stable. For small g, however,
the “smooth” phase is disordered since the fluctuations can-
not select an ordered state from the degenerate manifold.

At the end, we also note that the ordered phase is stable
against higher-order perturbations in small J� /Jz, which
have been ignored in the effective theory �49�. Since J� was
the only energy scale in the effective theory, the energy gap
associated with the valence-bond order must be proportional
to J�. Hence, no matter how small the fraction of J� ends up
being due to frustration, it is much larger than the higher-
order perturbations in the J��Jz limit.

This concludes our discussion of the lattice field theory. In
the following, we take a completely different point of view,
and provide a more physical picture of the discovered XXZ
phases.

FIG. 17. Effective band structure of the sine-Gordon theory �69�
for the candidate valence-bond order in Fig. 16 �zero frequency,
quadratic approximation�. The wave vector q is taken �a� along the
stripes, �b� perpendicular to the stripes. The vertical scale is given in
arbitrary units, but proportional to �. The Kagome lattice unit cell
had to be doubled, so that 40 modes are shown; only the disper-
sionless branches are degenerate. Note that the lowest-lying mode is
dispersive in only one spatial direction, but also that some higher
modes have dispersion in the other direction.
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F. Nature of the XXZ phases

In this section, we use some simple physical arguments
and show that the short-range valence-bond picture applies
extremely naturally to the XXZ model on the Kagome lattice.
This will allow us to identify a physical “order parameter”
for the valence-bond ordered phase of the Kagome XXZ
model, and construct qualitatively good variational wave
functions. Also, we will argue that the disordered phase of
the Kagome �and any other� XXZ model has topological or-
der.

Let us seek variational ground states of the Hamiltonian
�2� with J��0 that are described in terms of the singlet
bonds �symmetric triplet bonds for J��0�. The energy mini-
mum requirements shaped by the Jz and J� terms can be met
by following these criteria: �i� the number of frustrated bonds
is minimized, �ii� the total Ising magnetization is zero, and
�iii� the number of flippable spin pairs is maximized.

First, we explore circumstances in which a pair of spins
on a Kagome bond is flippable. The XXZ perturbation �J�

in Eq. �2� can flip a pair of antialigned spins, but one must
make sure that both the initial and final states are minimally
frustrated. Figure 18 shows a flippable pair of spins. Regard-
less of whether the two antialigned spins on the central hori-
zontal bond are in one or the other �flipped� state, every
triangle has exactly one frustrated bond, which is a condition
for minimum frustration. This requires that the two opposite
bonds on the neighboring triangles hold a pair of antialigned
spins each. Clearly, energy will be gained by allowing the
flippable pair of spins to resonate between the two possible
states and form a singlet bond. If the other two pairs of
antialigned spins were also flippable, more energy could be
gained by turning them into the singlet bonds too. The at-
tempt to create as many flippable pairs as possible naively
leads to the hard-core dimer coverings of the Kagome lattice,
where every dimer represents a singlet bond �in contrast to
the earlier representation, when a dimer was a frustrated
bond�. Corner-sharing structure of the Kagome lattice and
easy-axis anisotropy make this short-range valence-bond pic-
ture extremely natural: singlet pairs can be close-packed
without �almost� any extra frustration.

However, the hard-core dimer coverings of the Kagome
lattice are not quite acceptable. It is known that they un-
avoidably have a fixed macroscopic number of so-called de-
fect triangles that hold no dimers on their bonds.27,34 This
means that there would be macroscopically many triangles

with all three bonds occasionally frustrated, and the first cri-
terion would be violated. An example of a defect triangle is
shown shaded in Fig. 19�a�. In order to make sure that two of
its bonds are always unfrustrated, two of its spins must al-
ways be anticorrelated. One variational mechanism that
achieves this is the following. Let us choose two spins on the
defect triangle and force them to be always antialigned.
Then, we can denote those two spins by a dimer, like in Fig.
19�b�. This allows at least the dimer on the top triangle to
resonate as a singlet bond, but there are now four spins con-
nected by dimers, thus antiferromagnetically correlated. Cer-
tainly, those four spins could also resonate as a rigid object,
but the energy gain would be much smaller than that brought
by a singlet bond �this is a higher-order process�. Generally,
two singlet bonds are lost for every defect triangle. The
dimers no longer represent only the singlet bonds, but any
pair of anticorrelated spins.

This situation can be improved. It is possible to arrange
the defect triangles close to each other in such a way that
they share the singlet bonds that are going to be lost. Con-
sider a so-called perfect hexagon in Fig. 20�a�. It holds three
dimers on its bonds, and therefore has three defect triangles
around it in a hard-core dimer covering. By putting three
extra dimers on the hexagon, the defect triangles are re-
moved, and the six spins on the hexagon are forced to be

FIG. 18. A flippable pair of spins sits on the horizontal bond of
the central triangle. The pairs of anticorrelated spins are
emphasized.

FIG. 19. �a� A defect triangle �shaded� holds no dimers on its
bonds. As the neighboring singlet bonds fluctuate independently, all
three spins on it are occasionally aligned, making all three bonds
frustrated. �b� A dimer is placed on the defect triangle, relaxing its
frustration at all times, but simultaneously correlating antiferromag-
netically a group of four spins.
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antiferromagnetically correlated. Only one singlet bond is
lost per defect triangle. This is clearly energetically favor-
able, and consequently the singlet bonds will arrange in a
way that maximizes the number of perfect hexagons. Every
perfect hexagon can then gain additional energy by corre-
lated fluctuations of its six spins. Furthermore, the groups of
singlet bonds may be able to collectively resonate on the
closed resonant loops. There are many variational states that
maximize the number of perfect hexagons, and we show
some characteristic examples in Fig. 21.

This variational picture seems to apply very well when-
ever the physics of the Kagome spin models is describable
by short-range valence bonds. We now apply it to the ordered
phase of the XXZ model. The lattice field theory in the pre-
ceding sections was able to establish stability of a valence-
bond order without full precision in determining how the
lattice symmetries should be ultimately broken. It only pro-
duced information on which particular microstate is most
frequently visited by the system �pattern of frustrated bonds

FIG. 20. �a� A perfect hexagon holds three dimers, and has three
defect triangles �shaded� around it in a hard-core dimer covering.
�b� Covering all bonds of the perfect hexagon by dimers removes
the defect triangles, and correlates antiferromagnetically all spins
on the hexagon. Only three singlet bonds are lost per three defect
triangles.

FIG. 21. Characteristic variational ground states: �a� stripe pat-
tern, �b� honeycomb pattern. The number of emphasized perfect
hexagons is maximized �1/6 of all hexagons�. In the honeycomb
pattern there are star-shaped resonant loops of singlet bonds, one
sitting inside every honeycomb supercell. There are two possible
singlet bond arrangements on every loop, and more energy can be
gained by resonant fluctuations between them.
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in Fig. 16�; the other nearby microstates are not energetically
suppressed, so that they are visited extremely often as well.
We can now combine this information with the variational
states and try to find out how the frustrated-bond and singlet-
bond pictures can be compatible. The assumption is that the

correct ordering pattern must be “synchronized” with the
state most frequently visited by the system.

Figure 22 compares the entropically preferred stripelike
configuration of frustrated bonds with the only two compat-
ible variational states. Unfortunately, at this stage we can

FIG. 22. Overlap between the preferred configuration of frustrated bonds and the variational states. Dimers represent the frustrated bonds,
and the emphasized hexagons are perfect. �a� and �b� demonstrate two possible ways of overlapping the stripe variational states, and �c�
demonstrates the overlap with the honeycomb variational state. The repeating unit cell of the overlap has 18 sites in �a� and 36 sites in �b�
and �c�.
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only speculate which match is the best, using intuitive crite-
ria such as the size of the unit cell and symmetries. Scenarios
�a� and �b� involve the stripe pattern of perfect hexagons. In
the case �a� the two stripe orientations of the compared pat-
terns are different, and one would expect that this does not
make much sense to consider. The two compared patterns
should describe the same physics in different languages, and
if fluctuations entropically select only one direction in space,
then both stripe patterns should reflect it and match, like in
the case �b�. However, in the case �b� the overlap period in
the direction perpendicular to the stripes is relatively large,
and the overlap unit cell has at least 36 sites �depending on
how the rows of perfect hexagons are horizontally slided
with respect to one another�. The scenario �c� involves the
honeycomb pattern of perfect hexagons, and the overlap unit
cell has 36 sites. The honeycomb pattern is the most sym-
metric among all variational states, and consequently the
most rigid crystalline structure of perfect hexagons �fewer
symmetries means more ways to move perfect hexagons
without disturbing symmetries�. Usually the more rigid states
have lower free energy, and therefore we speculate that the
honeycomb pattern is the best candidate for the ground state.

Let us also emphasize that precisely the honeycomb pat-
tern in Fig. 21�b� emerged from the analysis of the isotropic
Heisenberg model28 as a likely ground state. This reflects the
fundamental similarity between the XXZ and Heisenberg
models on the Kagome lattice and suggests that the honey-
comb valence-bond order may be realized in both models, as
a result of singlet bond fluctuations.

Let us now turn to the disordered phase. Our goal is to
show that conservation of total Ising spin has profound con-
sequences for topological properties of disordered phases.
Consider an arbitrary Hamiltonian that is invariant under
global spin flip. It can always be expressed as a sum of local
Hermitian operators that flip an equal number of “up” and
“down” pointing spins and leave the other spins unchanged.
Eigenstates of all such operators either have any particular
spin on the lattice fixed, or are involved in a group of an
even number of coherently fluctuating spins �for example,
such a group of two neighboring spins is a singlet or an
antiferromagnetic triplet valence bond, appropriate for the
pure XXZ dynamics�. These eigenstates are somehow even-
tually superposed to give the ground state of the Hamil-
tonian. If all spins fluctuate in the ground state so that there
is no average Ising magnetization on any site, then the
ground state is a superposition of only the “valence-group”
states in which every spin belongs to a finite even-sized
group of coherently fluctuating spins. This is a generalization
of the valence-bond states.

It is now possible to define topological sectors of these
“valence-group” states. Choose an arbitrary pairing of spins

within every group: every spin must be paired with one other
spin �it need not be a neighbor�. Visualize the pairings by
strings on the lattice that connect the paired spins �overlaps
and shapes of the strings do not matter�. A transition graph
between any two string configurations can be constructed by
overlapping them, in analogy to the hard-core dimer cover-
ings. Then, any two “valence group” states from the super-
position that forms the ground state will have their transition
graph composed of finite closed loops �as long as the Hamil-
tonian has only local dynamics�. If now the lattice is placed
on a torus, there will be two topologically nonequivalent
closed paths that go around the torus and intersect the bonds
of the lattice. The topological sector of a string configuration
is determined by parities of the number of strings that each
of these paths intersects. Two string configurations will be-
long to different topological sectors only if at least one of the
paths intersects their transition graph an odd number of
times. Clearly, this can never happen if the transition graphs
always consist of finite closed loops: the ground state has
topological order.

Therefore, any disordered state of the XXZ model is au-
tomatically a spin liquid, with four degenerate ground states
on a torus. A characteristic feature of the Kagome lattice �and
other corner-sharing lattices� is a manifestly weak dispersion
in the far limit for which the spin liquid is obtained. This
indicates that correlations in the spin liquid �away from the
critical point� must be strictly short-ranged, virtually vanish-
ing beyond a few lattice constants.

V. DISCUSSION

We have explored two kinds of the Kagome lattice quan-
tum Ising antiferromagnets. The first kind was endowed by
spin dynamics that did not conserve total Ising spin, and was
represented by the transverse field Ising model �TFIM�. The
second kind conserved total spin, and its simplest form was
given by the XXZ model. Both TFIM and XXZ models con-
tain only the shortest-range dynamical processes consistent
with the required symmetries, acting as small perturbations
to the pure Ising model. The considered extensions include
further-neighbor and multiple-spin exchange dynamics, and
thus they may reflect physics of the TFIM and XXZ models
with stronger dynamical energy scale in comparison to the
Ising interaction. The quantum phases that have been eluci-
dated in these models are summarized in Table VII.

The disordered phase of the TFIM and related models was
found to have no topological order. Consistently, the table
indirectly suggests that the same phase should be realized for
all values of the transverse field. Our approach allowed us to

TABLE VII. Quantum phases of the Kagome lattice Ising antiferromagnets with different kinds of spin
dynamics.

Dominant dynamical processes Simple short-ranged Multiple-spin and ring exchange

do not conserve �
i

Si
z disordered disordered

conserve �
i

Si
z valence-bond spin liquid

crystal
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gain some information about probability amplitudes that
various spin configurations have in the ground-state superpo-
sition. Together with this information, the finding that exci-
tations appear heavy or localized even for weak transverse
fields suggested the following variational wave functions for
many states: the eigenstates of decoupled Kagome lattice
spins in a transverse field should be projected to the manifold
of minimized Ising frustration. It is evident that the corner-
sharing structure of the Kagome lattice is responsible for the
very weak dispersion or perhaps even the localized nature of
the fluctuations.

Much richer physics is found when total Ising spin is
conserved. The XXZ and related models give rise to at least
two nontrivial phases. The calculations indicated that the
valence-bond order was most likely to be found for short-
ranged and small dynamical perturbations, such as the one in
the Heisenberg model with strong easy-axis anisotropy
�simple XXZ model�. Furthermore, a combination of argu-
ments led to essentially the two most probable ordered states,
namely the striple and honeycomb shaped patterns �Fig. 21�.
While no good arguments to rule one of them were provided,
we suspect that the more symmetric honeycomb pattern is
realized in most typical situations �no specially favored dy-
namical processes�. This result is of potentially great impor-
tance, because the same type of lattice symmetry breaking
has been proposed to occur in the ideal isotropic Heisenberg
model,28 and accounted for the seemingly gapless band of
singlet excitations observed in numerics. The physics of the
ideal Heisenberg model is still largely mysterious: its ground
state could be a spin liquid. Indeed, our calculations indicate
that as the complexity of dynamical processes increases,
which is similar to what happens when the amount of easy-
axis anisotropy is reduced in the XXZ model, a phase transi-
tion into the spin liquid must occur. If our calculations could
indeed qualitatively describe the anisotropy reduction, a
question would arise whether the phase transition happens
before or after the full isotropy is reached. In any case, both
the valence-bond crystal and spin liquid phases found here
are gapped �gap energy scale may be very small�, and the
same is expected to be true for the isotropic Heisenberg
model, regardless of what phase it actually lives in �unless it
sits at the critical point�.

The Kagome lattice is a representative frustrated magnet,
perhaps suitable for learning more general lessons on the
two-dimensional systems. One important question, driven by
efforts to discover unconventional Mott insulators, is under
what circumstances can disordered and spin liquid phases be
found in the frustrated spin models. One mechanism that
clearly emerges is adding sufficiently strong further-neighbor
and multiple-spin exchange interactions. This has been al-
ready indicated in various other cases.5,6,8,35 However, the
corner-sharing lattices have been in focus due to a belief that
even with the shortest-range dynamical processes, one can
still obtain the spin liquid physics. At least for the transverse
field Ising model, a disordered ground state is found in the
Kagome system, making a sharp contrast to other usually
studied systems31 �triangular and fully frustrated square lat-
tice Ising models, for example�. This disordered phase is
conventional �not topologically ordered�. Also, the system
behaves almost as completely decoupled. Apparently, the

completely local transverse field dynamics is unable to bring
up correlations in a poorly connected lattice. However, as
soon as the transverse field is replaced by the next least cor-
related kind of dynamics �XXZ�, a valence-bond ordered
phase seems to emerge instead of a spin liquid. It turns out
that singlet bonds can be largely static because the poorly
connected Kagome lattice structure introduces very little
frustration to their dynamics. Since this happens in one of the
most prominent systems for the short-range spin liquid, it is
reasonable to speculate that the spin liquid in similar weakly
perturbed quantum antiferromagnets quite generally requires
further-neighbor, multiple-spin, or ring exchange dynamics
�in order to frustrate singlet bonds�. Having a less connected
lattice makes it easier for a trivial disordered phase to appear
as a result of short-range dynamics, but perhaps not so much
easier for the topologically ordered spin liquid phase.

Also, the arguments from the end of Sec. IV F indicate
that conservation of total Ising spin is a sufficient condition
for topological order to appear in disordered phases that have
no net magnetic moment on any site. The SU�2� symmetric
models, such as the Heisenberg model, are included as a
special case, in agreement with the extension of the Lieb-
Schultz-Mattis theorem to higher dimensions.36 Clearly, the
spin liquid can exist beyond this condition: as a gapped
phase, it can resist sufficiently weak spin nonconserving per-
turbations.

On the technical side, this paper demonstrated an alterna-
tive U�1� gauge theory to that of Ref. 31. Even though the
present theory is more complicated, it provides different in-
sight, and avoids some difficulties that otherwise would have
been encountered in the XXZ problem. One of its advantages
is its ability to give information on the character of the
ground- �and excited-� state wave functions, and a visual
template for the kind of valence-bond orders that are possible
in the Kagome XXZ models. We demonstrated a powerful
analytical approach that successfully handles macroscopic
degeneracy in the frustrated systems and extends the mean-
field theories of the unfrustrated systems.
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APPENDIX A: PROPERTIES OF THE TFIM LATTICE
THEORY

Here we derive two important properties of the lattice
field theory �28� with regard to its saddle points. The saddle-
point vectors � are given by Eqs. �32�, where the bond vari-
ables ��ij� describe dimer coverings of the Kagome lattice
with one dimer on every triangle, and an arbitrary even num-
ber of dimers on every hexagon. The value ��ij�=1 represents
a dimer, while ��ij�=0 represents a vacancy. First, let us cal-
culate normalization of the saddle-point vectors � �the ��ij�
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variables have no time dependence, and we will drop the
summation over time�,

�T� � �
i
���

j�i

�ij2
+ ��

j�i

	�ij��ij2�
= �

i
�2�

j�i

�ij
2 + �

j1,j2�i

j1�j2

�1 + 	�ij1�	�ij2���ij1
�ij2�

= const + 4�
i

��i1�i2 + �i3�i4� . �A1�

In the last line, we have used the notation from Fig. 23.
Switching to the bond variables, we have

�T� � const − 4�
i

���i1���i2� + ��i3���i4��

= const − 2�
�
��

�ij�

�

��ij�2

+ 2�
�ij�

��ij�
2

= const. �A2�

We have used the facts that the sum of ��ij� on every triangle
is 1, since every triangle holds one dimer �N is the number of

Kagome sites�, and that the total number of dimers on the
lattice is fixed �equal to the number of triangles�. We see that
all saddle-point vectors � have the same normalization.

Now let us calculate how the coupling matrix C from the
action acts on the saddle-point vectors �. The quadratic parts
of the expression �31� reveal how the matrix C acts on the
height field vectors � whose components are �i and �i. Sub-
stituting there � j�i�ij for every �i and � j�i	�ij��ij for every �i

reveals the action of C on the saddle-point vectors �,

�C���i
= �

j�i

��ij�,

�C���i
= �

j�i

	�ij���ij�, �A3�

where ��ij� is neither a vector nor a bond scalar,

��ij� = 4�ij − ��
k�j

� jk + 	�ij��
k�j

	�jk�� jk . �A4�

Since we need to find the sums of ��ij� around a particular
site, let us take a closer look at the neighborhood of a site i,
and refer to Fig. 23,

��ij� = 4�ij − �
k�j

� jk�1 + 	�ij��
k�j

	�jk�
= 4�ij − 2� j,1�� ji + �12� − 2� j,2�� ji + �21� − 2� j,3�� ji + �34�

− 2� j,4�� ji + �43� = 6�ij − 2�� j,1�12 + � j,2�21

+ � j,3�34 + � j,4�43� . �A5�

Then

�
j�i

��ij� = 6�
j�i

�ij − 2��12 + �21 + �34 + �43� = 6�
j�i

�ij ,

�
j�i

	�ij���ij� = 6�
j�i

	�ij��ij − 2�	�i1��12 + 	�i2��21

+ 	�i3��34 + 	�i4��43� = 6�
j�i

	�ij��ij . �A6�

We see that the action of C on a vector whose components
are � j�i�ij and � j�i	�ij��ij simply reproduces those compo-
nents, with an additional factor of 6. Therefore, all saddle-
point vectors � are degenerate eigenvectors of the coupling
matrix C, with an eigenvalue 6.
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