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Motivated by a need to understand spin-momentum transport in CPP �current perpendicular to the plane�
structures, a quantum field theoretical treatment of spin-spin interactions in ferromagnets is presented. The
s-d interaction of the conduction electrons and the magnetic medium is treated nonperturbatively from first
principles in real space. The localized magnetic moments also interact with each other through a Heisenberg
exchange potential. To take into account correlation effects, a second quantized formulation is used. The
semiclassical limit is taken by using a coherent-state path-integral technique which also allows us to go beyond
a linear-response approach. We derive a set of coupled equations of motion for the nonuniform magnetization,
the spin current, and the two-point correlation functions of the magnetization. The rate of change of the
magnetization is shown to obey a generalized Landau-Lifshitz equation that takes into account interaction with
the conduction electrons. Within the relaxation time approximation it is shown that the polarization of the
conduction electrons obeys a generalized diffusion equation. The diffusion tensor, which has off-diagonal terms
due to the s-d exchange interaction, is now explicitly dependent on the magnetization of the medium. We also
show that the magnetization fluctuations satisfy a diffusion-type equation. The derived equations are used in
two illustrative examples.
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I. INTRODUCTION

Spin-spin interactions in ferromagnetic metals are of para-
mount importance in today’s giant magnetoresistance �GMR�
recording heads. There is also currently great interest in the
magnetic recording industry in using spin currents, instead of
magnetic fields, to switch the magnetization in a writer de-
vice. In this case a polarized electronic current is needed,
such that the net spin of the polarization becomes effectively
another magnetic source which induces an interaction with
the magnetic moments of the medium. One widely used ap-
proximation is to separate the degrees of freedom of the cur-
rent from those of the local magnetic moment. This latter
separation is not justified in conducting metals but it never-
theless produces reasonable results in some cases.1 This pa-
per explores in some detail the consequences for the spin
accumulation problem in ferromagnets of assuming that the
interaction between the conduction electrons and the local
moments is of the s-d exchange type. This interaction can
give rise to what is now known as spin-momentum transfer
�SMT� in magnetic multilayers. This latter mechanism has
been predicted by Berger1 and Slonczewski2 and later veri-
fied experimentally by various groups.3,4 Other interaction
mechanisms between the conduction electrons and the mag-
netization vector have been proposed since the Berger-
Slonczewski work.5–9 In previous work, the interaction of the
polarized current with the magnetization has not been treated
self-consistently. In fact the equations of motion were based
on those of a similar system, that of a current interacting
with magnetic impurities.10 We believe that this approach is
not suitable for transition metals.

In this work, we start from a microscopic description of
the conduction electrons and the ferromagnetic medium and

then take the semiclassical limit to derive equations for mac-
roscopic quantities of physical significance to experiment
and to other phenomenological approaches. Although the
derivations are somewhat complex, one can go to the main
results �e.g., Eqs. �10� and �28� which are generalized
Boltzmann-type equations� and see that the correct physics is
contained in them.

Our results extend those of Ref. 8 and are in general rel-
evant to problems of spin momentum transfer, domain walls,
and spin-wave excitations.11 We use many-body field theo-
retical methods to describe the system of magnetic moments
plus conduction electrons. Even though only a single particle
picture is needed, the methods we use permit us to treat the
magnetic part of the problem and the conduction electrons on
the same formal level. This allows us to derive transport
equations for the conduction electrons and the local magnetic
moments and include relaxation effects without recourse to
more phenomenological modeling. Exchange effects, which
are important in transition metals, are also included self-
consistently. Finite-temperature properties are naturally in-
cluded through the use of a path-integral formulation of the
problem.12 Including spin-dependent interactions in a trans-
port problem means that we have to deal with many indexes.
Path integrals are helpful with bookkeeping and hence sim-
plify the discussion considerably as compared to the alterna-
tive approach of Ref. 10. Finally a path-integral representa-
tion helps in making consistent approximations to the
derived transport equations.

Our treatment is nonperturbative and applies to systems
far from equilibrium. One of the important results is that we
are able to give an equation for the correlation functions of
the magnetization from which a nonequilibrium fluctuation-
dissipation result follows.

PHYSICAL REVIEW B 72, 064408 �2005�

1098-0121/2005/72�6�/064408�12�/$23.00 ©2005 The American Physical Society064408-1

http://dx.doi.org/10.1103/PhysRevB.72.064408


The paper is organized as follows. In Sec. II, we introduce
the Hamiltonian of the interacting electron-magnetization
system in second quantized form. Then we write the corre-
sponding effective action of the Hamiltonian of the system.
The details of this derivation are given in two appendixes.
For the local magnetic moments we adopt a coherent state
representation which is most suitable for a semiclassical
treatment of the ferromagnet. From the effective action, we
derive equations of motion for the magnetization �a modified
Landau-Lifshitz equation� and the spin accumulation. These
latter equations are then used to derive equations for the
correlation functions of the magnetization. We also show that
nonuniform magnetization of the medium gives rise to a spin
accumulation effect similar to that due to interfaces. This is
one of the main results of this work. Finally, we derive a
diffusion-type equation for the magnetization fluctuations
where the diffusion coefficient is dependent on the exchange
integral.

In Sec. III, we apply the derived spin accumulation equa-
tions in two simple cases where the magnetization is nonuni-
form in the direction of flow of the current. In the last sec-
tion, we summarize our results and discuss other related
recent works on this subject that have appeared after this
work was completed. In the Appendixes, we give details of
the derivation of the effective action and the equations of
motion.

II. THE s-d MODEL FOR INHOMOGENEOUS
FERROMAGNETS

We start from a quantum field picture of the electronic
current and the magnetic moments of the localized electrons
in a thin slab of thickness comparable to the mean free path.
In the following we do not include explicitly an electric field,
but we assume that it is part of the spin-independent part of
the Hamiltonian. Its inclusion has been done in Ref. 13. For
the magnetic medium, a Heisenberg Hamiltonian is assumed.
We explicitly take into account only exchange effects among
the Heisenberg spins. Other important effects such as the
demagnetization field term can be added phenomenologi-
cally. The conduction electrons will be assumed to be in
thermal equilibrium with the magnetization.14 Our work is a
natural generalization of the model used by Langreth and
Wilkins10 to study spin resonance in dilute magnetic alloys.
This latter model was used in Ref. 5 and 6 to study spin
momentum transfer in magnetic multilayers. We will show
that this magnetic impurity model is incomplete when it is
applied to a conducting magnetic system.

The conduction electron field �s satisfies the usual anti-
commutation relations,

��s�r�,�s��r��� = ��s
†�r�,�s�

† �r��� = 0,

�1�
��s�r�,�s�

† �r��� = �ss���r − r�� ,

where s is a spin index �s= ± 1
2

�. The number density operator
of the electrons is given by �ss�r�=�s

†�r��s�r�. In this sys-
tem, the electrons are treated as noninteracting, i.e., there is
no Coulomb interaction, and hence the electron field can be

expanded in terms of single particle wave functions:

�s�r� = �
i

�i�r�as,i, �s
†�r� = �

i

�i
*�r�as,i

† , �2�

where as�as
†� is the annihilation �creation� operator for a par-

ticle of spin s. The total Hamiltonian of the system is com-
posed of a conduction electron part, Hs, a magnetic part, Hd,
and an interaction part, Hsd,

H = Hs + Hd + Hsd. �3�

The conduction electron part in a ferromagnet, such as Fe, is
due to 4s-type electrons. The magnetic part is, however, due
to 3d-type electrons. The magnetic medium is microscopi-
cally a lattice with a spin vector Si at each lattice point i.
Since we are interested in the continuum limit of this model,
we can define a macroscopic spin vector for the medium

S�r� = �
i=1

N

Si��r − ri� . �4�

The magnetization vector is then simply given by the volume
average of the global spin, M�x�=g�BS�x� /V, where g is the
spectroscopic splitting factor and �B is the Bohr magneton of
the electron. The spin vector has an SU�2� representation and
consequently so does the magnetization vector, e.g.,

�Mx�x�,My�x��� = 2ig�BMz�x���x − x�� . �5�

We employ units such that g�B=�=1. Hence the magnetiza-
tion will have an opposite sign to that usually defined in the
literature. The Hamiltonian of the spins is taken to be of the
Heisenberg type,

Hd = −
1

2�
ij

J�ri − r j�Si · S j − B · �
i

Si. �6�

We take account of exchange only and assume the spins to
be in an external field B. The interaction between the elec-
trons and the localized spins is taken to be of the s-d type, of
the form

Hsd = −
�

2
� dx��†�x�	� ��x�� · S�x� , �7�

where � is a coupling constant of the order of 0.1–1.0 eV
and 	� is a vector whose components are the Pauli matrices
obeying,

�	i,	 j� = 2i
ijk	k. �8�


ijk is the antisymmetric unit tensor.
In Appendix A, we use functional methods to derive the

effective action for the system studied here. We find that it is
a functional of the average magnetization M, the electron
propagators G, and the magnon propagators M,
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��M,G,M� = A0�M� +
i

2
ln det M−1 − i ln det G−1

+
1

2
� dxdy	 �2A0

�M� i�x�M j�y�
M�

ji �y,x�

+� dxdy	 �2A0

��� s
† �x��� s��y�

G�
ss��y,x�


+
�2

2
g�����g��

	s4s1

i

2

	s2s3

j

2

�� dxdy�G�
s1s2�x,y�M���

ij �y,x�G���
s3s4 �y,x��

+ O��4� . �9�

This is the central result of the paper from which we derive
approximate Boltzmann equations for the magnetization and
the spin accumulation valid in the ballistic and the diffusive
regimes.

The functional A0 is the functional A, Eq. �A11�, with all
the source terms set to zero. The tensor gijk is equal to 1 if
i= j=k=1 and equal to −1 if i= j=k=2 and zero, otherwise.
The last term in the above equation has a simple interpreta-
tion in terms of Feynman diagrams, Fig. 1. It describes elec-
tron scattering off the magnons with and without spin flip-
ping. This term is important at high temperatures and for
magnetizations out of equilibrium. A similar term to this one
has been recently introduced by Levy and Zhang to represent
scattering at the normal-ferromagnetic interface. They dis-
cussed the need for it on physical grounds.15–17 We will show
below that our formalism provides us with a self-consistent
way to calculate the physical effects of this scattering term.
In Appendix B, we derive the following equation for the spin
distribution function M:

	�T +
p

m
· �X
Mk�T,X,p� + 
klp�Bl + �Ml�T,X��Mp�T,X,p�

= −
Mk�T,X,p� − Meq

k

�k
−

Mk�T,X,p� − M0
k

�p
. �10�

It is worthwhile to pause here and consider the content of
this equation. The first term on the left-hand side is the total
time derivative, with independent variables �T ,X ,p� and
dp /dt=0 �we consider a nonzero electric field elsewhere13�.
The other term on the left-hand side is the contribution of

torque due to the local moments and the right-hand side is an
approximate expression for the collision operator. In the ab-
sence of gradients, the polarization of the conduction elec-
trons is along the local effective field and there will be no
spin currents. This will not be the case if there is an electric
field present. The spin accumulation effects studied here are
solely due to inhomogeneous magnetization of the medium.
It is important to observe that this effect is present even in
the absence of a current as is the case for the spin accumu-
lation effects due to interfaces.1 The fluid equations we de-
rive from Eq. �10� are valid provided the averaging we per-
form is valid, which is an average over translational
momentum. This is expected to be the case in a collisional
limit, but is by no means restricted to this limit. There is a
good analogy to the �magnetohydrodynamic �MHD�� fluid
equations which are derived to describe a plasma confined by
a magnetic field. The MHD equations are most commonly
used to describe plasmas in which the collision frequency is
much less than the gyrofrequency. As we shall see, the form
of the fluid equations we derive has much in common with
the MHD equations. Next we multiply Eq. �10� by the ve-
locity and then average over it. To obtain the usual Fick’s
law for spin diffusion, we assume that the momentum relax-
ation time is small and hence the right-hand side of Eq. �10�
is larger than the effects due to the local magnetization M. In
this case we have

Jkl�T,X� = − Dk�Xl
Mc

k�T,X� , �11�

where the “diffusion” constants are given in terms of an av-
erage Fermi velocity vF by

Dk =
1

3
vF

2�k
ef f , �12�

where 1/�k
ef f =1/�k+1/�p. To get this result we made use of

the following approximation for the velocities of the conduc-
tion electrons:

�Xl� dp̂

4�
vlv jMk�T,X,p� �

1

3
vF

2�XjMc
k�T,X� . �13�

Finally using Eqs. �10� and �11�, we find that the classical
magnetization of the conduction electrons obeys a diffusion
equation for each one of its components,

��T − Dk�2�Mc
k�T,X� = −

1

�k
�Mc

k�T,X� − Meq
k �X��

− ��B + �M� � Mc�k. �14�

This equation is, however, rotationally invariant and does not
show the reduced symmetry of the ferromagnetic state. To
get a more realistic equation we improve on Fick’s law by
keeping all terms in Eq. �10� and treat exchange effects be-
tween the conduction electrons and the magnetization more
carefully. This amounts to taking into account the
s-d-exchange term in the electron propagators.

FIG. 1. �Color online� Interaction terms between the conduction
electrons and the localized magnetic moments. The smooth curve
represents the conduction electron propagator. The curved line rep-
resents the spin-spin correlation functions.
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For slow variations in time, we obtain a modified Fick’s
law for the spin accumulation Mc, Eq. �B4�, that takes into
account the variation of the local magnetization in space and
in orientation, the flux in the jth direction of the
k-component of the spin being

Jkj�T,X� = − Dkp�Xj
Mc

p�T,X� , �15�

where now the diffusion constant becomes a tensor. It is
defined in terms of a matrix A

Dkp�X� = Dp�A−1�kp�X� . �16�

Although there is a summation over p in Eq. �15�, there is no
summation over p in Eq. �16�. The matrix A depends locally
on the effective magnetization field H,

A�X� = � 1 − �xHz �xHy

�yHz 1 − �yHx

− �zHy �zHx 1
 . �17�

In our approximation, the effective local field is simply

H = B + �M�x� . �18�

Now in the steady state, the equation satisfied by the average
magnetic moment Mc becomes a generalized diffusion equa-
tion

�
p,l

�Xl
�Dkp�X��Xl

Mc
p�X�� =

1

�k
�Mc

k − Meq
k � + ��M � Mc�k.

�19�

The tensor character of the diffusion term in Eq. �19� is not
due to anisotropic transport—the flux in the j direction in Eq.
�15� is due to a gradient with respect to Xj. Rather, the
p-component of Mc is rotated into the kth direction by the
effective field H, while transport takes place in the direction
of the gradient. The diffusion tensor, Eq. �16�, has striking
similarities to the diffusion tensor of charged species in a
magnetized plasma.18 If we restrict ourselves to the case
where the local effective field is constant and along the
z-axis only, then the transverse diffusion coefficients are
similar to those found by Hirst19 and Kaplan20 using very
different methods from the one presented here but their so-
lution is, however, not completely self-consistent as dis-
cussed in Ref. 11. Their work showed that in the direction
perpendicular to the effective field, diffusion of polarization
of the electron gas is much slower than along the field. The
off-diagonal terms have their origin in the indirect exchange
interaction among the conduction electrons and must be
taken into account in a transition metal.

To solve the above equations of motion, we retain a subset
of the terms arising in the full spin propagator, using an
approximation similar to the random phase approximation in
the calculation of the ground state energy of an interacting
electron gas.21 The zero order propagator is taken to be that
of the electrons in the external B field and the localized spins
interacting through the exchange interaction in the presence
of the B field. Since the magnetic moments constitute a
many-body problem, a full solution is not possible in gen-
eral. Hence an explicit solution to the problem requires first a

calculation of the background magnetization. The magneti-
zation satisfies a generalized Landau-Lifshitz equation which
follows from Eq. �B1�. First we observe that when the exter-
nal sources are turned off, we have

M1�x� = M2�x� = M�x� , �20�

where M is the average, i.e., classical, magnetization. Equa-
tion �B1� is a system of two equations for M1 and M2, the
magnetization vector along the paths C1 and C2, respectively,
Fig. 2. It is the averaging of these two equations that gives
the equation of motion for the average magnetization,

�tM�x� = M�x� � �1

2
J�2M�x� + B +

�

2
	� s�s

1

2
�G11

ss��x,x+�

+ G22
ss��x,x−��� , �21�

where

G11
ss��x,x+� = G11

ss���x,y��y→x+. �22�

The last term is simply the spin of the current. Recalling that
at equal times and equal positions, all different Green’s func-
tions are related, the equation of motion for M simply be-
comes

�tM�x� = M�x� � �1

2
J�2M�x� + B + �M�x�� . �23�

The last term gives rise to dissipation and a contribution to
the precession for magnetic multilayers.8 As we will see be-
low, this term becomes J-dependent in the nonuniform case.
This latter equation, Eq. �23�, is the equivalent of the
Landau-Lifshitz equation �LL� for the magnetization in the
presence of a current. This form is still valid even in the
presence of an electric field.

The solution of Eq. �B2�, the equation for the electron
propagators, can be represented in terms of Feynman dia-
grams, Fig. 3. First, we define the propagator of a noninter-
acting electron in an external magnetic field B and zero elec-
tric field,

FIG. 2. �Color online� Closed time path: branch 1 corresponds
to forward propagation in time while branch 2 is that for backward
propagation.

FIG. 3. �Color online� Series expansion of the conduction elec-
tron propagator in powers of �.

REBEI, HITCHON, AND PARKER PHYSICAL REVIEW B 72, 064408 �2005�

064408-4



Gss�
�0���x,y� = ��i�ty

− ��� +
1

2
	ss�

i Bi�−1

�ss�
��x,y� , �24�

and expand G in powers of � using Eq. �B2�. Keeping only
terms up to order �2, we have

	G = 	G�0� − �	G�0�M · 	G�0� +
1

2
�2	G�0�M · 	G�0�M · 	G�0�

+ �2G�0�	 · M · 	G�0�	G�0�
¯ . �25�

This is a matrix equation and hence integrations over time,
space, and spin degrees of freedom are implicit in the above
notation. Recently Mills calculated the damping contribution
to order �.22,14 One of his conclusions is that this contribu-
tion is dependent on the symmetry of the system in this case.
This follows from the fact that the spin propagator of the
conduction electrons in a ferromagnet is not O�3�-invariant,
to first order in � and higher since it depends explicitly on
M. Equation �B3� gives the dependence of correlations on
the exchange interaction and on the s-d interaction between
the current and the medium. Our assumption is that exchange
interactions are much stronger than the s-d interaction.
Hence to lowest order, we neglect the latter in the equation
for the fluctuations. To understand the meaning of such an
equation, we study the case with strong exchange interac-
tions, i.e., we take the average magnetization to be a constant
and assume the external B field to be small. In this case Eq.
�B3� becomes

�ty
M�

�k�y,z� − �M · �ty
M�

�k�y,z��M

= i
��n � M� +� dx�J�x − y�M�
�k�x,z� � M� ,

�26�

where for each k, the unit vector n has components ni=�ik.
The notation M�k is for a vector with components Mik, i
=1,2 ,3. Now if we average over the variable z, we get an
equation that gives the time variation of the fluctuations of
the magnetization around M. These fluctuations will in turn
cause fluctuations in the current through the last term in Eq.
�26�.

Next we show how this latter equation gives rise to a
Boltzmann-type equation for the magnetization fluctuations
Mil. First we expand M�k�x ,z� around the position y� ,

M�k�x,z� = M�k�y,z� + �xM�k��x,z��x=y�x

+
1

2
�x�xM�k��x,z��x=y�x�x + ¯ , �27�

where �x� =x� −y� . If we put this back in Eq. �27�, we get a
diffusion-type equation for all components of the magnetiza-
tion fluctuations

�ty
M�

�k�y,z� − �M · �ty
M�

�k�y,z��M

= −
1

2
J2�y�M � �y

2M�
�k�y,z� + i
�nM

− J0�y�M � M�
�k�y,z� , �28�

where J0�y� and J2�y� are the zeroth and second moments of
the exchange coupling,

J0�y� =� dxJ�x − y� , �29�

J2�y� =
1

3
� dxJ�x − y��x2. �30�

These integrals converge since the exchange coupling is
short ranged. The first moment vanishes since we are assum-
ing isotropic exchange coupling. Treatment of the coupling
of the conduction electrons to the ambient magnetization at
low temperatures or temperatures close to Tc must include
Eq. �28� to account for the fluctuations of the magnetization.

III. APPLICATIONS

In this section, we mainly show how this formalism can
be applied to multilayers. We will not solve for the correla-
tions of the magnetization in this paper, i.e., we will not work
with Eq. �27� which is one of the main results in this paper
and the main reason for introducing the machinery used in
this work. Nevertheless, we still have new equations for the
spin accumulation in nonuniform magnetization. We will
study their solutions in the usual linear normal-ferromagnet-
normal structure and in rings. The question of correlations is
treated elsewhere.14

In Ref. 13, we showed how our results extend those of
Zhang, Levy, and Fert8 by taking into account the indirect
exchange effect of the magnetization on the conduction elec-
trons. This is an important effect in transition magnetic met-
als and cannot be ignored.6 In the following we study two
types of structures with inhomogeneous magnetization. First
we examine CPP-type structures with very thin paramagnetic
spacers and no interfacial scattering. Second we consider
structures which are topologically equivalent to a torus.
These examples clearly show the origin of spin accumulation
to be directly related to inhomogeneities in the magnetiza-
tion. It is also obvious from these examples that domain
walls are another physical example where the results pre-
sented here can be applied.11 The interface will not be rep-
resented by a step function in the examples below and will
instead take the shape shown in Fig. 4 which plots the mean
field a�x�=��M�x� due to the magnetization.

For a local magnetization which is a function only of
distance x in the direction of the current, M=M�x�z, the spin
accumulation obeys the simplified equations

Dxx
d2mx�x�

dx2 + Dxy
d2my�x�

dx2 − 2
Dxy

2

Da�x�
da�x�

dx

dmx�x�
dx

+ �Dxx − 2
Dxy

2

D
�da�x�

dx

dmy�x�
dx

=
mx�x�

�sf
−

a�x�my�x�
�sf

, �31�
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− Dxy
d2mx�x�

dx2 + Dyy
d2my�x�

dx2 − �Dyy − 2
Dxy

2

D
�da�x�

dx

dmx�x�
dx

− 2
Dxy

2

Da�x�
da�x�

dx

dmy�x�
dx

=
my�x�

�sf
+

a�x�mx�x�
�sf

, �32�

D
d2mz�x�

dx2 =
mz

�sf
, �33�

where

a�x� = ��M�x� . �34�

The coefficients Dxx, Dyy, Dxy, and Dyx are functions of the
local magnetization, the scattering rates, and the exchange
constant

Dp = Dxx = Dyy =
D

1 + ���M�x��2 , �35�

Dyx = − Dxy = D
��M�x�

1 + ���M�x��2 . �36�

Even in this simple approximation of the equations of mo-
tions, these equations are different than those in Refs. 19 and
20 which did not treat the torque on the conduction electrons
self-consistently.11 Moreover, the renormalization of the dif-
fusion coefficients and the off-diagonal parts do not appear
in the magnetic impurity problem of Ref. 10. The above
system of equations will be solved for different configura-
tions of the magnetization M. We adopt the following param-
eters for our calculations: The spin diffusion length lsdl

=�D�sf =100 nm, D=10−3 m2/s, D=100Dxx, and �=0.1 eV.
It should be noted that in these equations, the torque term has
the opposite sign to that which appears in, e.g., Zhang et al.8

since we have taken the electron charge to be positive in our

definitions of the magnetic moments. An important feature of
the solutions of these equations not present in Refs. 5 and 8
is the oscillation of the spin components around the local
magnetization.

First we consider a configuration with in-plane magneti-
zation. The magnetization is assumed to vary with position
along the direction of the current. The spacer has practically
zero thickness, which is a reasonable approximation for most
GMR devices. Figure 4 shows a�x� for a typical interface.
We do not explicitly include a nonmagnetic spacer but we set
the magnetization to zero at the center. At the ends it is
parallel to the local z axis, the local direction of the equilib-
rium magnetization. The transverse components of the spin
accumulation are set to zero at the outer ends. The respective
z axes make a nonzero angle in order for the spin accumula-
tion to be nonzero. First we demonstrate the effect of inho-
mogeneities on the spin accumulation; we keep the relative
angle between the magnetizations the same but we vary the
size of the “domain wall,” i.e., the transition region of the
local mean field. It is seen from Figs. 5 and 6 that the larger
the inhomogeneities the larger is the spin accumulation. This
effect is independent of the relative orientations and was not
predicted before since the z component of the spin accumu-
lation is no longer independent of the transverse components
in general, i.e., all three equations for the spin accumulations
are coupled. Therefore spin accumulation can be enhanced
by having a layer with constant direction magnetization but
with spatial inhomogeneities. Such a structure can be
achieved by, e.g., controlled doping that changes the mag-
netic saturation along the direction of the current. The solu-
tion of Eq. �32� shows that the spin accumulation is largest
for the case where the two magnetizations are orthogonal to
each other and the size of the sample is smallest. In all these
results, the equilibrium spin accumulation is normalized to
−1 on the left-hand side and normalized to +1 on the right-

FIG. 4. Profile of the interface �or molecular field a�x�
=��M�x�� used in the text. The current flows perpendicular to the
interface. The nonmagnetic spacer is taken to have zero thickness.

FIG. 5. The x-component of the spin accumulation as a function
of the interface inhomogeneities. On the left, M =−M0z and on the
right M =M0z. The continous curve corresponds to the sharper in-
terface of size 1.0 nm. The other dashed curve corresponds to an
interface of 4.0 nm. The relative angle between the two magnetiza-
tions is � /3 and the size of each side is 20 nm.
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hand side. The components of the spin accumulation are
taken with respect to a global frame, that of the layer on the
left.

As our second example, we choose a “ring” structure.
This can be part of a long solenoid with a square cross sec-
tion. Therefore we now solve our equations with periodic
boundary conditions. In each side of the square cross section,
the profile of the magnetization within a period is shown in
Fig. 7. The relative angle of the magnetization between
neighboring sides is 90°. We study the spin accumulation as
a function of the length of the sides. In Fig. 8 we plot the
three components of the total spin accumulation. The equi-
librium spin accumulation is taken to be normalized to one.
The solutions show the expected behavior. The spin accumu-
lation tries to reach its equilibrium value near the middle of

each side. We find that the spin accumulation is largest when
the length of each side is smallest, as expected. This geom-
etry shows how spin accumulation can be transported over
large distances and also modulated by controlling the size of
the cross section, similar to what happens in a regular trans-
former except here we are working with spin charge. There-
fore a magnetic ring is able to support a spin current locally
in addition to the charge current.23,13

IV. CONCLUSION

We have introduced a many-body formalism based on
path-integral techniques capable of handling a system of
both local magnetic moments and conduction electrons in a
self-consistent manner. Transport properties can be obtained
through the calculation of the two-point functions of the cur-
rent and the magnetization, respectively. One of the impor-
tant outcomes of this treatment is that we were able to derive
a set of new equations that are needed when the magnetiza-
tion of the medium is no longer homogeneous. First we
showed that the polarization of the current is no longer ho-
mogeneous and satisfies a generalized diffusion equation
where the diffusion tensor is dependent on the direction of
the magnetization. We have hence shown that exchange ef-
fects are important in a ferromagnet and need to be taken
into account properly. The fluctuations of the magnetization
were also shown to obey a diffusion-type equation which
depends on the direction of the local magnetization. This
latter important result is made possible through the use of a
path integral technique. In addition we recover a Boltzmann
equation for the current which follows from Eq. �B8� and a

FIG. 6. The y and z components of the spin accumulation as a
function of the interface inhomogeneities for the same configuration
of M as in Fig. 5.

FIG. 7. Profile of the local magnetization along the different
sides of the square ring �or torus� in one period. The magnetization
is in the y-z plane whereas the current is in the x direction. The
relative angle of the magnetization between neighboring sides is
90°.

FIG. 8. Spin accumulation in a square strucure. The length of
each side is L=10 nm. The magnetization is in-plane in each side.
The x-component of the spin accumulation is perpendicular to the
interface and it oscillates as it decays away from each interface. The
z-component of the spin accumulation in side 1, 0�d�10 nm, is
along the magnetization in side 1. In side 2, the magnetization is
along the y axis. Dotted curve: z-component, dashed curve:
y-component.
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Landau-Lifshitz equation for the average of the magnetiza-
tion, Eq. �23�. We have also shown how the nonuniform
magnetization affects both the conduction electrons and the
spin-momentum transfer term. We gave a simple physical
picture for our main results. We finally showed how our re-
sults can be applied in various configurations. Our results
show that spin accumulation can be enhanced by inhomoge-
neities at the interface.

In the examples we focused on spin accumulation and we
did not deal with its effect on the dynamics of the local
magnetization. We showed how to recover the Landau-
Lifshitz equation but we discussed the effect of the collisions
on the classical magnetization only in qualitative terms. The
use of the relaxation time approximation is another short-
coming of this work. Its improvement will complicate the
treatment further but we believe these issues should be ad-
dressed in the future.
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APPENDIX A: THE s-d GENERATING FUNCTIONAL,
VARIATIONAL PRINCIPLE, AND EFFECTIVE ACTION

In this appendix, we introduce the s-d generating func-
tional from which we derive equations of motion for the
magnetization and the spin current. This s-d functional is
defined in terms of the density matrix � of the system.10,12

One of the advantages of this method is that it allows equal
treatment of thermal effects and nonthermal effects. We will
give a general outline of the method as we apply it to the
particular s-d exchange system since the steps used in the
derivation of the equations of motion are different from the
Green’s function method in Ref. 24.

To motivate the structure of the functional we are about to
introduce, we recall the structure of the density matrix ele-
ments. One way to calculate density matrix elements is
through a path-integral representation.25–28 We have recently
used such a formalism to treat the problem of fluctuations
and dissipation in coherent magnetization.29,30 In a transport
problem, we instead introduce a functional of the density
matrix. This functional is then made to depend on new vir-
tual sources �1, �1

*, �2, �2
*, J1, and J2. These sources are

coupled to the conduction electrons’ field and the magnetic
moments of the medium which will enable us to generate all
kinds of correlation functions and their time evolution. The
functional is given in terms of a trace formula,

Z��1,�1
*,�2,�2

*,J1,J2,�� = Tr���t0��T−1 exp	− i� dx��2
*�x� · ��x� + �+�x� · �2�x� + J2�x� · S�x��
�

��T exp	i� dx��1
*�x� · ��x� + �+�x� · �1�x� + J1�x� · S�x��
�� , �A1�

where T is the time-ordering operator. It orders operators
with the earliest time argument to the right. T−1 is the inverse
of T. The external sources �1 and �2 are two-component
classical �i.e., Grassmann� sources where �1 ��2� and �1

* ��2
*�

are treated as independent. The operators are all written in
the Heisenberg representation. The coefficients of the expan-
sion of the functional Z in terms of its arguments give all
possible correlation functions of the system. The Hilbert
space for the conduction electrons and the local magnetic
moments of the medium is the product of the corresponding
Hilbert spaces, �� ,������ � ���, where ��� is a many-
body fermionic state representing the conduction electrons
and ��� is a magnetic moment state. The magnetic moment
states will be represented in terms of spin-coherent states
�SCS�31 �and references therein�. Since the operators are ini-
tially taken to be in the Heisenberg picture, then in the pres-
ence of the additional external sources, �1, �2, and J, the

states are no longer time independent. Now we write the
functional formula in terms of a path integral. Since we are
not interested in the transient behavior of the interaction be-
tween the current and the magnetic moments, we assume that
the external electric field was turned on a long time ago and
we will eventually set t0=−�. Reference 14 treats the case
where t0 is kept finite in a finite size thin film. Moreover,
we assume that the density matrix is separable initially,
��t=−��=�s�t=−�� � �d�t=−��, where �s is the density
matrix of the conduction s-electrons and �d is that of the
local magnetic moments.

Now let ��i ,�i� be an initial overcomplete set of states
for the operators ��r , t0� � 1 and 1 � S�r , t0�. Similarly, we
let ��c ,�c� be an overcomplete set of states for the operators
��r , tc� � 1 and 1 � S�r , tc� at the time tc. At each interme-
diate time, we define similar states. Then the functional Z
can be written as follows:
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Z��1,�1
*,�2,�2

*,J1,J2,�� =� D�i
*
D�iD�i� D�c

*
D�cD�c� D�i�

*D�i�D�i���i�,�i�����i,�i�

���i,�i�T−1 exp	− i� dx��2
*�x� · ��x� + �+�x� · �2�x� + J2�x� · S�x��
��c,�c�

� ��c,�c�T exp	i� dx��1
*�x� · ��x� + �+�x� · �1�x� + J1�x� · S�x��
��i�,�i�� . �A2�

Hence we can now formally write the functional Z as a time-
ordered path integral around a closed path in time starting at
t= t0, passing through t= tc and then going back to t= t0 �see
Fig. 2�. This functional then has a path-integral representa-
tion similar to the equilibrium case,12,32

Z��*,�,J,�� =� D�*D�Dm exp�iA��*,�,m,�*,�,J��

� ��2,m2����1,m1� , �A3�

where we have used the following notation for the now clas-
sical tensor fields m and � :m��m+ ,m−� ,����+ ,�−�,
where � and � stand for the component that is propagating
forward and backward in time, respectively. The field m is
therefore a 2�3 tensor, while � is a 2�2 tensor. Similarly,
we write the source terms in terms of tensors, �
= ��1 ,�2� ,J= �J1 ,J2�. Hence � becomes a 2�2 tensor and J
a 2�3 tensor. This notation greatly simplifies the manipula-
tion of the path integral. The action A is given as the differ-
ence of two actions; one due to the fields propagating for-
ward in time and the other due to fields propagating
backward in time,

A��*,�,m,�*,�,J� = A��1
*,�1,m1,�1

*,�1,J1�

− A��2
*,�2,m2,�2

*,�2,J2� .

�A4�

Both terms on the right are obtained in the usual way. The
electron contribution is standard. The magnetic moment con-
tribution can be obtained in the same way, but it involves a
geometrical part coming from the SU �2� symmetry. Hence
the forward part of the action is given by

A��1
*,�1,m1,�1

*,�1,J1� = AWZ�m1� −� dxHd�m1�x��

+� dx�i�1�
† �x�

�

�t
�1��x�

− Hs+sd��1�
† ,�1�,m1��

+� dx��1�
* �x��1��x�

+ �1�
† �x��1��x� + J1�x� · m1�x�� ,

�A5�

where a summation over �, the spin index, is implied. The
AWZ is the Wess-Zumino part of the action A. Because of the
boundary conditions on the spin fields at the left ends of the
time path at t=−� �KMS-type conditions�, this WZ term has
the same form as in the equilibrium case where the path of
integration is along the imaginary-time branch from t=0 to
t=−i,29,33

AWZ = �
0

1

d��
C

dtm�t,����tm�t,�� � ��m�t,��� . �A6�

The vector map m�t ,�� is a parametrization of the surface
enclosed by the trajectory of the magnetization,

m�t,0� = m1�t�,t � C1 = m2�t�,t � C2,

m�t,1� = m0, �A7�

m�− � + i0+,�� = m�− � + i0−,�� .

m0 is a distinguished vector and is usually taken along the
quantization axis. Next we expand the initial density matrix
elements in terms of the initial configurations of the conduc-
tion electron field and the magnetization field. Therefore we
are led to define a new functional F which may describe any
initial correlations between the conduction electrons and the
local magnetic moments,

��2,m2����1,m1� = exp�iF��†,�,m�� . �A8�

Since we are assuming that the density matrix of the whole
system is decoupled at t= t0, then all cross terms in the ex-
pansion are zero. Keeping only terms up to second order, the
expansion is

F�m,�,�†� = C�0� +� dx
�C�
�1��x� · m�x�

+
1

2
� dxdy
��
�m��x� · C��

�2��x,y� · m�y�

+� dxdy
��
���
†�x� · Q���x,y� · ��y� .

�A9�

The tensor 
 is defined such that 
11=−
22=1, and 
12=
21
=0. The functional coefficients. C�0�, C�1�, C�2�, and Q are as
yet unknown. The notation used should be clear; for example
the last term involves summations over the path index and
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the spin index, 
��
���
† ·Q�� ·�=
��
��s�

† Q��
ss��s�,, where the upper indexes on Q are for spin up and spin down.

Inserting this expansion back in Eq. �A3�, we end up with the following expression for the action A:

A��*,�,m,�†,�,J,Q,C� = 
��AWZ�m� −� dxHd�m�x��� + 
�� dx�i�
†�x�

�

�t
��x� − Hs+sd��

† ,�,m��
+ 
�� dx��

†�x���x� + �
†�x���x� + J�x� · m�x��

+
1

2

��
�� dxdym��x� · C���x,y� · m�y� + 
��
�� dxdy��

†�x� · Q���x,y� · ��y� ,

�A10�

where we have made an obvious redefinition of the coeffi-
cients. The functional Z now becomes of the standard form32

Z��†,�,J,Q,C� = � D�*D�Dm

�exp�iA��†,�,m,�†,�,J,Q,C�� .

�A11�

The integral notation emphasizes that the path in time is
closed, Fig. 2. Therefore we now can apply the usual field
theoretical methods to extract the equations of motion from
this functional. From the correlation functions, it is clear that
the functional

W��†,�,J,Q,C� = − i ln Z��†,�,J,Q,C� �A12�

is the generator that we need to derive the irreducible
Green’s functions of the system. To get the average value of
the conduction electron field or the magnetization, we differ-
entiate with respect to the coefficients in the linear terms. For
the conduction electrons, we have

�W

���s
† �x�

= 
���s�x�� , �A13�

and for the magnetization, we get

�W

�J�i�x�
= 
��mi�x�� . �A14�

The average of the conduction electrons field, a Fermi-type
field, is set to zero while we set the average of the magneti-
zation to be

M�i�x� = �m�i�x�� . �A15�

Given the above definitions, Eqs. �A13� and �A14�, the two-
point correlation terms are easily obtained,

1

Z

�Z

�Q��
ss��x,y�

= i
� ln W

�Q��
ss��x,y�

= i
��
����s
† �x��s��y�� ,

�A16�

�W

�C��
ij �x,y�

= 
��
�
1

2
�m�i�x�mj�y�� , �A17�

where s, s� are for spin up and spin down and i, j are for the
spin field components. The indices � , , . . . denote the
branch of time in Fig. 2. Mixed correlation functions can be
obtained in the same way. Clearly, solving for the two-point
propagators is the least we can do to have a meaningful
solution that includes relaxation effects. Knowing these
propagators amounts to knowing the particle density, the spin
density, the current density, and the scattering amplitudes,
among others. Since we assume that the conduction elec-
trons’ field has no mean value, its two-point propagator is
then explicitly given by time-ordered products,

Gss��x,y� = �Tc��s�x��s�
+ �y��� , �A18�

where Tc is the time-ordered operator on the closed time
path. From the above expressions, it is clear that the function
G21 is the “less than” Green’s function and G12 is the “greater
than” Green’s function. G11 is the Feynman propagator, while
G22 is the Dyson propagator.24 These Green’s functions are
not all independent. From their definitions, we can see that

G11
ss��x,y� + G22

ss��x,y� = G12
ss��x,y� + G21

ss��x,y� . �A19�

The Green’s function G12 is of special interest since it is
related to the average of the density operator of the conduc-
tion electrons. The two-point functions for the magnetization
are similarly given by

Mij�x,y� = �Tc�Si�x�Sj�y��� − �Si�x���Sj�y�� . �A20�

These Green’s functions are easily related to the retarded and
advanced Green’s functions. Since we are considering a situ-
ation which is not far from equilibrium, we will follow
closely the treatment in Ref. 34. Therefore, as in the equilib-
rium case, we relate the “less than” functions to the distribu-
tion function of electrons and spin in the semiclassical limit.
Since the functions J, Q, C are not bound to a simple physi-
cal interpretation, we make the following Legendre transfor-
mation:
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��M�i�x�,G�
ss��x,y�,M�

ij �x,y��

= W�J�i,Q�
ss�,C�

ij � −� dxJ�i�x�M�i�x�

−� dxdyQ�
ss��x,y�G�

s�s�y,x� −
1

2
� dxdy

�C�
ij �x,y��M�

ji �y,x� + Mj�y�M�i�x�� . �A21�

We end up with a functional � that is expressed solely in
terms of magnetization and correlation functions of the cur-
rent and the localized spins. The equations of motion are
then found by differentiating � with respect to its arguments,

��

�M�i�x�
= − J�i�x� −� dyC�

ij �x,y�Mj�y� , �A22�

��

�G�
ss��x,y�

= − Q�
s�s�y,x� , �A23�

��

�M�
ij �x,y�

= −
1

2
C�

ji �y,x� . �A24�

Using the standard tools of field theory27 we solve for J, Q,
C in terms of M, G, and M. A discussion of Wick’s theorem
is beyond the scope of this paper. Omitting terms of order �4

and higher, we have the approximate effective action for the
conduction electrons and the localized magnetic moments,
Eq. �9�.

APPENDIX B: THE FLUID EQUATIONS FOR THE SPIN
ACCUMULATION

The equations of motion for M, G, M are obtained by
minimizing � and setting the external sources to zero with
the appropriate initial conditions. Within the above stated
approximations, the magnetization of the medium obeys the
following equation of motion:


�
ilkMl�x��tMk�x� + 
���Bi�x� +
1

2
J
��2Mi�x�

+
�

2

���	s�s

i G���
ss� �x,x�� = 0. �B1�

Here we have taken the long-wavelength limit to get the
familiar exchange term through a coarse-graining procedure
where each cell is taken to have a maximum spin of S. The
last term on the left is clearly the interaction with the con-
duction electrons’ magnetic moments to all orders in �. The
equation of motion for the conduction electrons is

	�i�ty
− � �y���s�s +

�

2
	s�s

i Bi +
�

2
	ss�M�i�y�
G��

ss��y,z�

+ �2g�����g��
	s4s

i

2

	s�s3

j

2
� dx�G���

s3s4 �y,x�

�G��
s�s�z,x�M���

ij �x,y��

= − i��
s�s��z − y� , �B2�

where ��y� is the spin-independent energy of the conduction
electron. The term of first order in � describes the full ex-
change interaction between the magnetic moments of the lo-
calized electrons and those of the current. The structure of
this equation is familiar from the theory of correlation func-
tions due to Coulomb interactions.21 There, the propagator
M�x ,y� is replaced by the Hartree propagator. Therefore the
solution of this equation should follow by analogy with the
treatment in Ref. 21. The final equation is the equation of
motion for the magnetic correlation functions,


�
ijk��tMk�x� − Mk�x��t�M��
k�j �z,x�

+ 
�� dy�J�x − y�M��
k�i �z,y��

+ �2g�1�2g12�
	s4s1

j

2

	s2s3

i

2
� dy�M��

k�j �z,x�

�G�11

ss� �x,y�G�22

s�s �y,x��

= i����
k�i �x − z� . �B3�

The integrals are all four-dimensional and hence we have
defined J�x−y�=J�x� −y����tx− ty�. It is important to observe
that up to this point, the propagators M and G are the true
propagators of the theory. Hence the above equations are
nonperturbative in nature. Since we are interested in how the
magnetic moment of the current influences that of the me-
dium �or vice versa�, we define

M�
i �x,y� =

1

2
	ss�

i G�
s�s�x,y� �B4�

to be the conduction electron spin propagator. The spin
“charge” of the current is easily seen to follow from M� by
setting �=1, =2 and letting y→x+,

Mi�x� =
1

2
	ss�

i G12
s�s�x,x� . �B5�

However, we will find it useful to go to the center of mass
and relative coordinates �Wigner coordinate system� to make
contact with the classical quantities,

X =
1

2
�x� + y��, T =

1

2
�tx + ty� ,

x� = x� − y� , t� = tx − ty . �B6�

In this new coordinate system, the magnetic moment of the
conduction electrons Mi�x� becomes a function of the mac-
roscopic variables X and T only,

Mi�x,y� =� d�

2�
� dp

�2��3 exp�i�t� − ip · x��Mi�X,T;�,p� .

�B7�

To get the equation of motion for M, the spin charge of
the conduction electrons, we first multiply Eq. �B2� from the
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left-hand side by 	ss�
l and sum over the spin degrees of free-

dom. We end up with an equation for the polarized current
propagator,


��ss��i�ty
− ���M���y,z� +

i
�

2
�B + �M�y�� � M���y,z�

+ �2g�����g��
	s4s

i

2

	s�s3

j

2
� dx�G���

s3s4 �y,x�

�M���
ij �x,y�	s�s�

l G��
s�s�z,x�� = 0. �B8�

The last term on the left provides for the relaxation of the
spin moment of the conduction electrons. To derive the equa-
tion for the polarization of the current, in the following we
use the relaxation time approximation and replace the last
term in Eq. �B8�, the collision integral, by a local term. The
classical polarization of the current Mc is found by first as-
suming that the lth component, Ml�x�, has the following
form:

Ml�T,X,p,�� = ��� − p2/2m − V�T,X��Ml�T,X,p� ,

�B9�

where we have set ��p�= p2 /2m+V�T ,X�. Then by averag-
ing over the fast degrees of freedom, we have by definition

Mc
l �T,X� = v� d�

2�

dp

�2��3M
l�T,X,p,�� , �B10�

where v is the volume of the system. The spin current J is
defined in the usual way. It has a tensorial character because
of the vector character of the spin charge,

Jkl�T,X� =
v
m
� dp

�2��3M
k�T,X,p�pl. �B11�

The equation of motion for Mc is found by first going to the
center of mass coordinates and using the quasiparticle
approximation.24 We find for each k-component

	�T +
p

m
· �X
Mk�T,X,p� + 
klp�Bl + �Ml�T,X��Mp�T,X,p�

= −
Mk�T,X,p� − Meq

k

�k
−

Mk�T,X,p� − M0
k

�p
, �B12�

where �k��p� is the relaxation time for spin flip �momentum�
scattering processes.35,36 By definition the average of the last
term over the momentum is zero. This way of writing the
collision term is valid only in the absence of spin-momentum
coupling terms such as L ·S coupling.
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