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We study the role of defects in the “single-chain magnet” CoPhOMe by inserting a controlled number of
diamagnetic impurities. The samples are analyzed with unprecedented accuracy with the particle induced x-ray
emission technique, and with ac and dc magnetic measurements. In an external applied field the system shows
an unexpected behavior, giving rise to a double peak in the susceptibility. The static thermodynamic properties
of the randomly diluted Ising chain with alternating g values are then exactly obtained via a transfer matrix
approach. These results are compared to the experimental behavior of CoPhOMe, showing qualitative
agreement.
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I. INTRODUCTION

The theoretical treatment of one dimensional �1D� models
is significantly easier than that of two or three dimensional
ones and, in many cases, it is the only one which leads to
exact analytical solutions. A number of theoretical predic-
tions concerning magnetic 1D materials could thus be made
in the last three decades and many of them, even the most
surprising ones, have been tested and successfully verified
experimentally. To mention only a couple of examples
Haldane’s conjecture1 has been confirmed2 in a variety of
real compounds and solitons have been shown to play an
important role in the properties of several easy plane
quasi-1D systems.3 All these effects could be found in
chemically simple systems, but, to move on in the study of
low dimensional magnets, it has been necessary to shift to
more sophisticated materials,4 whose properties can be selec-
tively adjusted. In this regard molecular materials have al-
ready shown their great potential, allowing, thanks to the
means of classical synthetic chemistry, for chemical modifi-
cations aimed to the desired behavior. In particular the orga-
nometallic polymeric systems formed by alternating
nitronyl-nitroxide radicals and transition metal or rare earth
ions, although already extensively studied,5 still seem to hold
unexplored potential. It is, for example, in an alternating
gadolinium-nitronyl-nitroxide chain that the first experimen-
tal evidence of a chiral magnetic phase has recently been
found.6

One of these systems, made of alternating Co�II� and radi-
cal paramagnetic centers, CoPhOMe, has recently attracted
great attention as it is the archetypal massive magnetic ma-
terial in which Glauber dynamics7 of the magnetization
could be observed.8,9 This makes this system quite appealing
as, at low temperature, slow relaxation of the magnetization
and the opening of an hysteresis cycle without three dimen-
sional �3D� magnetic order are observed. As this behavior is
reminiscent of that observed in the more well-known class of

“single-molecule magnets” �SMMs�,10 the name “single-
chain magnets” �SCMs� has been proposed11 for a class of
compounds comprising CoPhOMe and similar recently de-
veloped materials.11–17

In truth the possibility of observing Glauber dynamics is,
at least at first glance, a paradox, as the two major assump-
tions of this dynamical model are a strong Ising-like aniso-
tropy of the magnetic centers and the negligibility of inter-
chain interactions J� in respect to the intrachain exchange
coupling J. In Ising systems, however, the correlation length
diverges exponentially on lowering the temperature and this,
in a mean field treatment of interchain interactions,18 gives
rise to the onset of 3D ordering at relatively high tempera-
tures. It is easy to calculate that in an infinite Ising system
with �J� /kB�100 K �as previously estimated for CoPhOMe�
and a �J� /J�=10−4 ratio �which should be close to that of
CoPhOMe�, the transition temperature to 3D order is ex-
pected to be found close to 25 K, well above any observed
dynamical regime. The fact that no phase transition is ob-
servable in SCMs down to very low temperatures could be
due to the presence of naturally occurring defects, which
impose a geometrical limit to the correlation length. It has
already been observed, both experimentally and theoretically,
that the presence of impurities or defects can dramatically
reduce the onset of 3D ordering18,19 and significantly alter
the static properties.20

In an earlier letter21 we showed that naturally occurring or
artificially introduced defects strongly influence the proper-
ties of CoPhOMe and pointed out that slow relaxation of the
magnetization is observable even in small segments of chain.
In this work we provide a more detailed investigation, both
from the theoretical and experimental point of view, of finite-
size effects on the static magnetic properties of CoPhOMe.

First of all we obtain, using a transfer matrix approach,
the exact analytical expressions for the free energy of a ran-
domly diluted ferrimagnetic Ising chain with spin �=1 and
alternating Landé g factors in zero field and in an external

PHYSICAL REVIEW B 72, 064406 �2005�

1098-0121/2005/72�6�/064406�10�/$23.00 ©2005 The American Physical Society064406-1

http://dx.doi.org/10.1103/PhysRevB.72.064406


applied field. We show that these results differ significantly
from those obtained for isotropic and anisotropic quantum
XY chains,22,23 displaying characteristic features. Incidentally
it must be noticed that, although several models of 1D sys-
tems with exotic patterns of interaction or disorder have been
studied, no work on finite-size effects in ferrimagnetic
chains, that are the most common magnetic experimental
systems, is available. We then present experimental data on
CoPhOMe samples where a known amount of diamagnetic
impurities has been inserted using chemical means and
which have been accurately characterized with a particle in-
duced x-ray emission �PIXE� analysis.24 These results can be
qualitatively explained with the theoretical analysis devel-
oped, especially if the observed trend of the dopant concen-
tration is used in the calculation. We then analyze the behav-
ior of Griffiths singularities25–27 on varying the difference
between the Landé g factors and show that the doubling of
the magnetic unit cell and the simultaneous breaking of
translational invariance lead to a threefold splitting of the
unique singularity found in ferromagnets and antiferromag-
nets.

II. EXACT THERMODYNAMICS OF THE RANDOMLY
DILUTE FERRIMAGNETIC ISING CHAIN

A transfer matrix approach to ferromagnetic and antifer-
romagnetic Ising chains was developed by Matsubara and
coworkers28 and was later more deeply studied by Wortis,25

who pointed out that the introduction of defects adds singu-
larities of the Griffiths type26 to the divergences of the ther-
modynamic quantities of the pure chains. The effect of dilu-
tion on the thermodynamics of classical Heisenberg and
planar spin chains was then studied by Pini and Rettori29 and
Hu and McGurn30 using an analogous classical transfer ma-
trix method to explain experimental data from several dilute
compounds.31 Here we will consider the ferrimagnetic Ising
chain with alternating g values and only nearest-neighbor
coupling interactions J. The spin Hamiltonian for the pure
system is:

H = − �
i=1

N/2

�J��2i−1�2i + �2i�2i+1� + �BH�gCo�2i + gR�2i−1�� ,

�1�

where gCo and gR are the two Landé factors �they corre-
spond, respectively, to those of Co and radical spins of the
experimental system�, �B is the Bohr magneton, H is the
external magnetic field, and �= ±1, except for �N+1=0. We
shall concentrate only on random site dilution, in which each
magnetic site of the chain is either substituted by a diamag-
netic impurity �with probability C� or is left unchanged �with
probability 1−C�, but the results we obtain can be trivially
extended to bond dilution.25 In our model we also assume
that, as no next nearest neighbor interactions are present, the
dilution splits the system into noninteracting segments of
chain. Thus, after dilution, we can treat the whole system as
a collection of independent finite chains of length L whose
corresponding free energies FL�T ,H�, functions of the tem-
perature T and of the external applied field H, are additive.

The free energy per site F can be computed by the
expression25,26,28

F = C2�
L=1

�

�1 − C�LFL�T,H� . �2�

To do this we must calculate the free energies FL�T ,H� of the
finite chains. It is convenient to define the basic matrices
needed to describe the problem

S = �1 1

0 0
	, TJ = � eaJ e−aJ

e−aJ eaJ
	 ,

TR = �eaR 0

0 e−aR
	, TCo = �eaCo 0

0 e−aCo
	 , �3�

where aCo=��BgCoH, aR=��BgRH, aJ=�J, and �= �kBT�−1.
The products of matrices

PCo = TCo
1/2TJTRTJTCo

1/2

= �2eaCocosh�aR + 2aJ� 2 cosh�aR�
2 cosh�aR� 2e−aCocosh�aR − 2aJ�

	 ,

PR = TR
1/2TJTCoTJTR

1/2

= �2eaRcosh�aCo + 2aJ� 2 cosh�aCo�
2 cosh�aCo� 2e−aRcosh�aCo − 2aJ�

	 �4�

are Hermitian symmetric matrices and have identical right
and left eigenvectors. They can thus be used as convenient
transfer matrices to evaluate the partition function, since the
properties of completeness and orthonormality are applicable
in a straightforward way. In writing the partition function ZL
of a chain of length L we must only take care to consider
even and odd segments separately and notice that, for the
latter, we must make a distinction between segments begin-
ning �and ending� with a radical or with a cobalt site. The
three partition functions take the form

ZL = 
ZOdd
Co = tr�STCo

1/2PCo
�L−1�/2TCo

1/2St�
ZEven = tr�STCo

1/2PCo
L/2−1TCo

1/2TJTRSt�
ZOdd

R = tr�STR
1/2PR

�L−1�/2TR
1/2St� .

� �5�

Following the calculations reported in the appendix ana-
lytical expressions for the free energy associated to these
three contributions can be obtained. In analogy to results
previously reported for more simple systems25,29 each of the
free energies corresponding to the partition functions in Eq.
�5� can be rewritten as a sum of three analytically separable
parts

FOdd
Co = Fb

Co + Fend
Co + Ffs

Co = − kBT�L

2
ln���� + ln� �M�

Co�2

��

	
+ ln�1 + �M�

Co

M�
Co�2���

��
��L−1�/2	� ,
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FEven = Fb
Even + Fend

Even + Ffs
Even = − kBT�L

2
ln����

+ ln�2M�
CoD�

��

� + ln�1 +
M�

CoD�

M�
CoD�

���

��
�L/2−1	� ,

FOdd
R = Fb

R + Fend
R + Ffs

R = − kBT�L

2
ln���� + ln� �M�

R �2

��

	
+ ln�1 + �M�

R

M�
R �2���

��
��L−1�/2	� , �6�

where �� and �� are the larger and the smaller eigenvalues
of the product matrices in Eq. �4� and �M�

Co�2, �M�
Co�2,

�M�
R �2, �M�

R �2, D�, and D� are combinations of elements of
the eigenvectors, as defined in the Appendix. The total free
energy itself can now be separated into the same three con-
tributions summing up the terms deriving from different
chains

FL = Fb + Fend + Ffs �7�

with

Fb = Fb
Co + Fb

R + Fb
Even,

Fend = Fend
Co + Fend

R + Fend
Even,

Ffs = Ffs
Co + Ffs

R + Ffs
Even. �8�

This separation has a physical meaning and can help in
understanding the behavior of the system. The first of these
three terms, Fb, which is proportional to the segment length
L and thus the most important one for long chains, corre-
sponds to the free energy of the infinite system in the zero
dilution limit and is therefore considered a bulk contribution.
The second, Fend, is independent of L and is a contribution
given by the presence of surface �end point� spins at the end
of the chains and obviously vanishes for zero dilution. The
third term, Ffs, which decays exponentially with L and dis-
appears in the infinite limit as the previous one, is the finite
size contribution. It can be somewhat regarded as the contri-
bution of small segments behaving as a whole, as appears
from the following discussion.

In Fig. 1 we show the temperature dependence of the
magnetic susceptibilities that arise from these three contribu-
tions and their role on the total susceptibility. Here it might
be useful to point out that in the following we will always
calculate and measure the susceptibility using its proper defi-
nition of 	=−�2F /�H2. This quantity is experimentally ac-
cessible via ac susceptibility measurements and its use is
preferable, as it is not related to any linear regime assump-
tion, to the often used “static” 	=M /H definition. Interest-
ingly both 	end and 	 fs can be negative: as the bulk progres-
sively orders, before the peak in 	b on lowering T, the
residual thermal fluctuations become localized at the end
point spins and thus the contribution 	end is negative. A
higher field would tend to align many spins in the bulk while
some spins at the end points would align antiparallel to the
field to maximize the entropic contribution due to the tem-

perature. Once the bulk contribution begins to decrease a
small increase in the field aligns a great number of surface
spins and entropy must accumulate into short segments of
ordered spins not aligned with the field, thus giving a nega-
tive value of 	 fs. At even lower temperatures the main con-
tribution to the susceptibility is then due to the aligning of
these last short segments with the field. This fact can be
easily shown by eliminating the contributions arising from
the shorter segments, as shown in Fig. 2. The low tempera-
ture feature rapidly decreases as more and more short seg-
ments are eliminated from the calculation and it almost dis-
appears when only chains with L�100 are accounted for.

To this regard it is to be noted that, in contrast to the
behavior of the dilute XY and classical Heisenberg models in
field,32 for the Ising ferrimagnetic chain 	end and 	b decrease
so rapidly, on lowering the temperature, that 	 fs can give rise
to a second low temperature structure, which can become a
well separated peak if a distribution in the concentration of
defects is considered, as we will show in the next section.
Thus, in this case, the contribution of finite size effects can
be at least partially separated from the two other contribu-
tions, leading to a distinctive feature which can be experi-
mentally investigated. This is a report of such a behavior in

FIG. 1. �Color online� Different contributions to the magnetic
susceptibility of an Ising ferrimagnetic chain in field calculated us-
ing the parameters J /kB=−90 K, H=2 kOe, gCo=7, gR=2, and C
=1.2%. Blue squares represent the finite-size contribution, red
circles the bulk contribution, green triangles the surface term, and
the black line is the total susceptibility curve.

FIG. 2. �Color online� Variation of the low temperature structure
of the magnetic susceptibility in field with the progressive elimina-
tion of longer segments of chain. All curves are calculated using the
parameters J /kB=−90 K, H=2 kOe, gCo=7, gR=2, and C=4%.

FINITE-SIZE EFFECTS ON THE STATIC… PHYSICAL REVIEW B 72, 064406 �2005�

064406-3



1D systems and a study to point out the rise of a structure, in
the paramagnetic phase, directly related only to finite size
effects. It must be stressed, anyhow, that the requirements
needed to experimentally observe such a structure are indeed
very difficult to fulfill. The behavior of the chains shall be
dominated by a strong Ising anisotropy and the J� /J ratio
must be sufficiently small to prevent interchain interactions
from prevailing on intrachain ones at low temperature. More-
over, a big difference in the two g values is preferable in
order to obtain significant effects. When both g values are set
equal to 2 the low temperature feature becomes undistin-
guishable as the finite size contribution is found to be much
broader and at lower temperature. The application of a field
also plays an important role in separating the contributions,
and the higher the g difference the lower the field needed to
obtain a distinguishable low temperature feature. In the lim-
iting case of an antiferromagnetic chain no such feature is
observed and in no temperature range the finite size contri-
bution can develop the low temperature shoulder to the main
peak.

It can also be interesting to look at the behavior in zero
field, although no low temperature shoulder can be clearly
identified. It must actually be noticed that, in Ising systems,
the rise of the susceptibility on lowering the temperature
follows the growth of the correlation length with a rather
distinctive exponential behavior, and 	T
e2J/kBT.33 A plot of
ln�	T� vs 1/T will then give a straight line as long as the
correlation length does not find a geometrical limit imposed
by the defects. In Fig. 3 we plot the theoretical curves cal-
culated for a ferrimagnetic Ising chain at different doping
levels. The temperatures at which the deviation from the lin-
ear regime is observed are progressively higher for higher
doping levels and this is due to the fact that, for samples with
shorter distances between two defects, the correlation length
will reach the geometrically imposed limit earlier. In this
sense such a zero field scaling gives an idea of the behavior
of the system and allows for easy schematic visualization of
the effect of defects but, compared to the analysis of the

behavior in field it lacks the possibility to distinguish be-
tween the three different contributions, as some give nega-
tive susceptibility values. When making comparison to real
systems, as the low temperature region can be strongly af-
fected by defects, it also heavily relies on the assumption that
the behavior of the system is still Ising in the high tempera-
ture region, while real systems tend to be in the Ising limit
only at low temperatures. Such limitations do not affect, on
the contrary, the previously discussed effects in field, which
allow the observation of a distinctive low-temperature fea-
ture directly related to finite size effects that should be ob-
servable only for Ising spin systems, as discussed before.

Eventually it can be interesting to spend a few words on
the effect of the alternation of different spin centers on Grif-
fith’s singularities. Griffiths’s argument26 on the presence of
singularities in the free energy of Ising dilute systems relies
on the theorem of Yang and Lee27 and states that in a dilute
Ising model �of whatever dimensionality� the magnetization
is a nonanalytic function of the magnetic field, at zero field,
at a transition temperature TG between the critical tempera-
ture of the pure system and that of the dilute one.

The role of defects in the occurrence of Griffiths singu-
larities in ferromagnetic and antiferromagnetic chains was
studied by Wortis,25 who pointed out how the finite chain
partition function vanishes for some imaginary values of the
field, due to the finite size contribution to the free energy. In
the 1D case both this kind of singularities and the trivial
singularity at T=0, characteristic also of the infinite system,
are present in the finite chain. This latter trivial singularity is
connected to the branch cut belonging to �1/2 from Eq. �A5�,
which the Fb and Fend terms depend on, and is quite uninter-
esting, while the former arises from the remaining Ffs con-
tributions. The finite size term of Eq. �8� is, in our case,
deriving the sum of three different contributions from differ-
ent chains. Following Eq. �A2� this leads to the presence of
singularities whenever


�����L−1�/2�M�
Co�2 + �����L−1�/2�M�

Co�2 = 0

2D�M�
Co����L/2−1 + 2D�M�

Co����L/2−1 = 0

�����L−1�/2�M�
R �2 + �����L−1�/2�M�

R �2 = 0.
� �9�

The roots of these equations all lie outside the physical
domain but it is easy to see that now we have, instead of one
essential singularity for any value of L, a splitting of the only
root found in ferromagnets and antiferromagnets; this is due
to the presence of the breaking of translational invariance, as
in the cases already reported,25 together with the doubling of
the magnetic unit cell, which is an intrinsic characteristic of
ferrimagnets. Physically this is due to the fact that segments
of different composition �i.e., beginning with cobalt or with
the radical� contribute in a slightly different way to the free
energy of the system and the critical point is approached, for
T→0, along different paths.

III. EXPERIMENTAL RESULTS ON CoPhOMe

It has long been predicted that 1D materials should easily
display the influence of finite-size effects on their behavior,
due to the presence of only one path along which the inter-

FIG. 3. �Color online� Theoretical scaling plots calculated at
zero field for different concentrations of the dopant and using the
parameters J /kB=−90 K, gCo=7, and gR=2. The blue line repre-
sents calculated values for the infinite chain, black empty squares
C=0.1% missing sites, green full triangles C=0.3%, red open
circles C=1.9%, and violet open triangles C=4.7%.
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action can propagate, and a good number of theoretical
works on the subject exist. Most of the direct experimental
investigations attempted have been focused on a restricted
range of materials, most noticeably Luttinger liquids,34

TMMC,35 and cupratelike systems.36 Moreover most of them
regard the use of neutron diffraction techniques to probe the
presence of defects in the crystals and, rather surprisingly, it
has never been possible to observe the emergence of a key
feature in the thermodynamic properties to be associated
only to finite-size effects. This is probably due to the choice
of the materials and, in many cases, to the fact that either
three or two dimensional ordering takes place before the cor-
relation length becomes comparable to the length of the
chains. Thus, to our knowledge, no experimental evidence
has been reported of a behavior such as the one theoretically
predicted in the previous section.

CoPhOMe �also called, more extensively,
Co�hfac�2NitPhOMe� chains are constituted by Co2+ ions
�effective s=1/2 spins at low temperature� coordinated by
two hexafluoroacetylacetonate �hfac� ligands and two
nitronyl-nitroxide �NitPhOMe� radicals �s=1/2 spins� so as
to form polymeric metallorganic chains with a wide inter-
chain spacing, as described elsewhere.37 Every single chain
is structurally twisted in a helix that curls around the c axis
and data seem to indicate the presence of noncollinearity of
the Co2+ easy axes,38 which form a chiral magnetic structure.
The g factors of these two alternating s=1/2 magnetic cen-
ters have been shown to be very different,9,38 thus giving rise
to ferrimagnetic behavior, while the J coupling has been de-
scribed as an interaction with a strong Ising anisotropy, as
often reported for Co2+ magnetic centers. This latter fact is at
the basis of the strong Ising behavior of the system and, thus,
of the slow dynamics found at low temperature.8

In Fig. 4 we report ac susceptibility measurements per-
formed in a static field Hdc=0.2 T using a PPMS system

from Quantum Design. The out-of-phase ac susceptibility
�	�� shows a single a peak at different temperatures, depend-
ing on the frequency used, below which the behavior is
dominated by Glauber slow dynamics of the magnetization.
The study of finite size effects in this dynamical region,
which has led to a deeper understanding of the dynamics of
the Ising model with finite chains and to the observation of
multispin processes,21 deserves a theoretical frame and a
treatment of its own and will thus be reported in a forthcom-
ing study.39 In the present work we will focus on the region
above this temperature, at which the behavior of the system
shows no frequency dependence and we will thus show only
the measurements obtained for a single frequency, being im-
plicit that data have also been acquired for several other fre-
quencies. In this region the in-phase component �	�� clearly
displays a peak at 33.5 K and a second one at about 14 K,
just above the blocking temperature for all the frequencies
used. As previously reported9 the system in this region is still
in the paramagnetic phase and the only relevant interactions
are those along the chains.

No 1D model which makes use of Born-von Kármán
boundary conditions accounts for the presence of these two
peaks which, on the contrary, can be explained by the clas-
sical treatment exposed in the previous part. To obtain clear
evidence that this behavior is indeed due to the influence of
finite size effects we decided to investigate the effect of the
insertion of a controlled quantity of randomly placed dia-
magnetic impurities in the chains. We then chose, for chemi-
cal reasons, to substitute some of the cobalt magnetic centers
with Zn2+ diamagnetic ions. We then prepared a number of
doped samples by precipitation from solutions with different
ratios of Zn�hfac�2 ·2H2O vs Co�hfac�2 ·2H2O. As already
noted,40 using this procedure the dopant can be inhomoge-
neously distributed among the crystals and even inside single
crystals. These inhomogeneities can significantly affect the
magnetic properties and we thus chose to measure the distri-
bution of the dopant inside the crystals in order to directly
observe possible concentration trends which, up to now, have
been considered only on general and hypothetical basis.40

The samples were then analyzed using an inductively
coupled plasma-mass spectrometer �ICP-MS� coupled
plasma and the PIXE technique with the external microbeam
apparatus available at the accelerator of the INFN unit in
Florence.41 The low minimum detection limits of the PIXE
allowed us to find that no metals other than Co and Zn were
present in concentration higher than 12 ppm and thus no
appreciable contribution could rise from paramagnetic impu-
rities. The Zn concentration was always found to be repro-
ducible in crystals from the same batch �within a deviation of

5% on the mean concentration of dopant C̄�, but not repro-
ducible in different syntheses. In the upper part of Fig. 5 we
show, as an example, the results of the measurements per-
formed on crystals obtained using an exactly identical syn-
thetic procedure from two batches which contained the same
starting Zn/Co ratio of 5%. At least ten different points were
measured on every crystal and the doping can be considered
homogeneous inside each batch, as each value lies within the
standard deviation bars. On the contrary the doping is clearly
not reproducible from one batch to another, being the differ-

FIG. 4. �Color online� In-phase �	�, shown as circles� and out-
of-phase �	�, represented with triangles and magnified four times�
components of the ac susceptibility for CoPhOMe. The measure-
ment was performed on isooriented crystals in a static magnetic
field Hdc=0.2 T along the c crystallographic axis and at different
frequencies of the superimposed ac field, spanning a 10–10 000 Hz
frequency range.
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ence of concentration between the two batches much larger
than the deviation from the mean value in a single batch.
Anyway it is interesting to note that, although the Zn content
in the crystals was not reproducible in different batches, it
was always found to be much lower �about ten times lower�
than that of the starting solution. This indicates a lower ten-
dency of the radical to bind Zn2+ ions than Co2+ ones, which
is consistent with the fact that no Zn-nitronyl-nitroxide chain
has been synthesized to date.

In the lower part of Fig. 5 we show one of the scans
performed with the microbeam apparatus to analyze the con-
centration trend inside the crystals. The scans were per-
formed longitudinally and transversally on sliced crystals, as
shown in the figure. These scans revealed that the dopant is
uniformly distributed along the c axis direction, while the
concentration of Zn increases transversally going from the
center to the edges. This observation is consistent with the
acicular morphology of the crystals, which seem to grow

much more rapidly along the c axis, and the progressive
enriching of the solutions in Zn content, due to the scarce
reactivity of Zn with the radical. The same transversal trends
were observed in crystals sliced along planes perpendicular
to the c axis, thus excluding possible geometrical effects.
The mean concentration of Zn inside the samples and ob-
served Zn/Co ratios were also confirmed by ICP-MS
coupled plasma measurements. The mean Zn/Co ratios of

the magnetically investigated samples, C̄, were 0.3%, 1.9%,

and 4.7%, respectively, giving a range of average lengths L̄
between two Zn2+ ions variable from about 300 to almost 20
spins. Higher concentrations could not be obtained, presum-
ably due to the aforementioned reactivity problems with Zn.

In the upper part of Fig. 6 we report the observed evolu-
tion with the concentration of the real component 	� of the
ac magnetic susceptibility measured at 2.7 kHz in a static
magnetic field of 0.2 kOe. The low temperature peak of the
large anomalous structure present in the pure sample in-

creases visibly with the reduction of L̄ and, at high doping, is
the only one to survive. The high temperature peak, on the
contrary, is more pronounced in the pure sample and de-
creases and shifts to lower temperatures as the concentration
of Zn increases. In the shaded area dynamical effects domi-
nate the behavior of the material.

These data can be at least qualitatively reproduced by the
transfer matrix approach exposed in the previous section, as
shown by the calculations reported in the lower part of Fig.
6, performed for J /kB=−90 K, H=2 kOe, gCo=7, and gR
=2 and for different doping values. No distinction was made

FIG. 5. �Color online� �top� Distribution of the dopant among
the crystals obtained from two different batches containing the same
5% Zn/Co ratio in solution. The bars are the calculated standard
deviations. �bottom� Zn/Co ratio in a single crystal of CoPhOMe.
The distribution of the dopant is reported with blue triangles for the
longitudinal direction, along the c axis, and with green circles along
the transversal direction, perpendicular to the c axis. Lines are
guides to the eye. In the drawing, in the bottom-left corner, one of
the scanning geometries used is schematized.

FIG. 6. �Color online� �top� Temperature dependence of the lon-
gitudinal magnetic ac susceptibility �2.7 kHz� measured at 2 kOe
for the three different dopings indicated in the legend. In the shaded
region we observe slow relaxation and 	��0. �bottom� Calculated
susceptibility �parameters in the text� for different concentrations of
impurities as indicated in the legend. A parabolic distribution is
used, at low concentrations, to account for the observed transversal
trend.
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between breaks arising from defects on radical or from sub-
stituted cobalt sites, as the two contributions are almost the
same even for very different g values. For the infinite chain
we obtain only one peak, due to saturation effects, at T
�34 K and the dilution of the chain gives rise to the ob-
served peak shift and to the development of the shoulder at
about 15 K into a single peak at high doping.

Although complete quantitative agreement is not possible
due to the helicoidal crystal structure of the CoPhOMe �Refs.
9 and 37� and the complexity of the Hamiltonian of the real
system, the overall behavior and the anomalous double-
peaked feature seem to be remarkably well reproduced by
the schematic Hamiltonian of Eq. �1�. This is especially true
if one introduces, at concentrations in which both peaks are
present, a parabolic distribution of the dopant, as observed in
the analysis. At higher concentrations the behavior can be
reproduced using either a distribution or a homogeneous
doping, being the low temperature peak the only one to sur-
vive. Such an agreement seems to suggest a strongly domi-
nant Ising behavior, which, despite the above-mentioned
complications in the Hamiltonian, allows for at least the
qualitative modeling of the main experimental features. It is
then interesting to show how the complications inherent to
the Hamiltonian of the experimental system do not really
alter the Ising nature of the magnetic behavior performing
the aforementioned scaling procedure plotting ln�	T�
vs 1/T. The results are plotted in Fig. 7 for both the undoped
and the doped samples.

The expected linear behavior is observed in the undoped
sample from 55 to 26 K, a much wider temperature range
than that found in previously reported data33 and this obser-
vation is then clear evidence that the system, at low tempera-
tures, shows a very strong Ising-like anisotropy. The tem-
perature of 55 K, above which we have deviation from this
regime, is in agreement with the reported energy spacing of
Co2+ ions. So the observed deviation has to be attributed to

the population of higher energy electronic levels of the me-
tallic centers and, thus, to the fact that the spin 1/2 approxi-
mation with high anisotropy does not hold anymore.

The low temperature deviation from the linear regime,
which is found at about 26 K for the pure sample, is consis-
tent with a geometrical limitation of the correlation length
due to the presence of defects. From the data, using J /kB
=90 and 26 K as temperature of departure from the linear
regime, an average length of the order of a thousand spins
between two defects can be calculated, in overall agreement
with the above estimation of the concentration of defects for
the pure sample. The deviation from the linear regime is
found, in the curves for the doped samples, at progressively
higher temperatures for higher doping values. In these cases
the three temperatures are also in agreement with the order of
magnitude of the expected average segment length for the
three observed dopings. Fitting of the linear regime for the
pure system, also shown in the figure, gave a slope of
117±2 K �with R=0.999�, thus leading to an estimation
J /kB=−58 K.

This value is in good agreement with previous analysis
performed in the same temperature range with an infinite
ferrimagnetic chain model,8 but is sensibly lower than the
J /kB=−90 value estimated from the above discussion of the
low temperature region under field and also disagrees with
the value extracted from the dynamics of the system, which
was J /kB�−80 K.21 Such data seem to indicate that al-
though the system can be very well schematized with an
Ising model below 55 K the behavior in the low temperature
and high temperature regions is not exactly the same. This
trend is expected to be quite common as a real magnetic
system is never exactly described by the Ising model but
approaches it only at low temperature. A spreading of the
domain walls inside the chains is then expected at high tem-
peratures, and this can lead to the observed discrepancy of J
values. In many SCM compounds, as the Ising correlation
length diverges exponentially, the low temperature region
will probably be dominated by finite-size effects and thus the
scaling plot will not allow for an estimation of the param-
eters of the Hamiltonian in the same temperature region at
which the dynamics is observed. It is also to be noticed that
the most appealing systems, i.e., those with a high barrier
and thus high J values, will be those most affected by the
geometrical breaking of the chains. For such systems it can
become very difficult to individuate the linear regime, as this
will be squeezed between a temperature region, where ions
are not anisotropic, and the low-temperature regime, domi-
nated by finite-size effects.

On the contrary the analysis of the behavior in field relies
on features which appear at low temperature, right above the
dynamical regime. Although we did not perform a real fitting
procedure the estimated parameters which qualitatively re-
produce the behavior are then in much better agreement to
the values extracted from the dynamic properties. This analy-
sis, which is applicable also to compounds with very high J
values, can then give information that cannot be obtained by
performing only the scaling plot.

Eventually it can be interesting to observe how the zero
field data are connected to the measurements in an externally
applied field and how the discussed low temperature struc-

FIG. 7. �Color online� Scaling plot obtained for CoPhOMe. All
data were taken in zero field and measured at a frequency of 27 Hz
of the superimposed ac field on isooriented crystals along the c axis.
Measurements were taken for different concentrations of the dop-
ant: open squares represent the undoped sample, solid triangles C
=0.3%, open circles C=1.9%, open triangles C=4.7%. The blue
dashed line evidences the linear behavior observable between 55
and 26 K. The continuous lines are guides to the eye.

FINITE-SIZE EFFECTS ON THE STATIC… PHYSICAL REVIEW B 72, 064406 �2005�

064406-7



tures grow with the field. To this aim we show, in Fig. 8, the
field evolution of the 	� curve of CoPhOMe with the one
calculated for a ferrimagnetic Ising chain with random dilu-
tion using the parameters reported in the caption. The data
were obtained using a homemade ac probe.42 In both cases
the only visible peak at zero field develops into the two
previously discussed structures with increasing field. Notice-
ably the observed field evolution of the peaks is also reason-
ably well reproduced by the model.

IV. CONCLUSIONS

In this paper we have investigated the temperature and
field dependence of the static susceptibility of a dilute ferri-
magnetic chain in presence of a longitudinal external mag-
netic field. Supposing that the nonmagnetic impurities are
randomly distributed and that they divide the chain into non-
interacting segments, the free energy of the dilute system can
be evaluated summing over all the contributions of the inde-
pendent segments. We calculated these contributions with a
transfer matrix approach and taking into account the distinc-
tion between segments beginning and/or ending with spins
with different g values. Contrary to results previously ob-
tained for ferromagnetic Heisenberg and XY chains,29,30,32 in
the present case the finite size contribution, which decays
exponentially with increasing length of the segment, results
to be fundamental at low temperatures, giving rise to a sec-
ond feature in the static susceptibility. In zero field the cal-
culated scaling plots for ln�	T� vs 1/T predicts a discrep-
ancy from the linear behavior at higher temperatures for
higher concentrations of defects.

These theoretical predictions have been compared, with
qualitative agreement, to ac magnetic measurements that we

have performed on samples of the SCM CoPhOMe, where
some cobalt magnetic centers are randomly substituted with
Zn2+ diamagnetic ions. With the aim of verifying the ad-
equacy of the model to represent the real system we have
used the PIXE with an external microbeam setup to analyze
the profile of the concentration of the dopant inside single
crystals. In all the investigated samples a uniform distribu-
tion of the nonmagnetic dopant along the chain was ob-
served, while a concentration trend was observed transver-
sally, in agreement with what has to be expected from the
morphology of the crystals and the reactivity of the two met-
als. Such a distribution of the impurities was then inserted
into the calculations, improving the agreement between the
calculated and experimental curves.

Finally, we have shown that even if a clear Ising behavior
is observed in the nominally pure system, this evidence can
be totally obscured by the presence of nonmagnetic impuri-
ties.
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APPENDIX A

Analytical expressions for the three contributions to the
free energy can be obtained with some calculations. First of
all we must find the eigenvalues and eigenvectors of the
product matrices defined by Eq. �4� and we shall define

ACo�CoACo
−1 = PCo,

ACo = �a�,+
Co a�,+

Co

a�,−
Co a�,−

Co 	 , �Co = ���
Co 0

0 ��
Co	 ,

AR�RAR
−1 = PR,

AR = �a�,+
R a�,+

R

a�,−
R a�,−

R 	 , �R = ���
R 0

0 ��
R 	 .

Note that the two eigenvalue matrices shall be identical,
�R=�Co=�, as the same solution for the infinite must be
obtained whichever of the two products of Eq. �4� we choose
as transfer matrix. Thus after some algebra we obtain

� = e2aJcosh�aCo + aR� + e−2aJcosh�aCo − aR�

± �e4aJcosh2�aCo + aR� + e−4aJcosh2�aCo − aR�

+ 2 cosh2�aCo� + 2 cosh2�aR� − 2 cosh�4aJ��1/2.

�A1�

We can now rewrite the three expressions in Eq. �5� as

FIG. 8. �Color online� �top� Susceptibility calculated using the
C=0.6–1.5% concentration range and the same parameters of Fig.
3. �bottom� Field evolution of 	� in CoPhOMe as measured on
oriented crystals at 4.282 kHz frequency of the superimposed ac
field. The same symbols and colors are used to indicate the field
value of both calculated and experimental data: black squares, 0 T;
red circles, 0.05 T; green up-triangles, 0.1 T; blue down-triangles,
0.15 T; cyan rhombuses, 0.15 T. The shaded area indicates, as in
Fig. 6, the temperature region where dynamical effects are observ-
able and 	��0.
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ZL =

ZOdd

Co = tr�STCo
1/2ACo�

�L−1�/2ACo
−1TCo

1/2St� = �����L−1�/2�M�
Co�2 + �����L−1�/2�M�

Co�2

ZEven = tr�STCo
1/2ACo�

L/2−1ACo
−1TCo

1/2TJTRSt� = 2M�
Co����L/2−1�a�,+

Co eaCo/2cosh�aR + aJ� + a�,−
Co e−aCo/2cosh�aR − aJ��

+ 2M�
Co����L/2−1�a�,+

Co eaCo/2cosh�aR + aJ� + a�,−
Co e−aCo/2cosh�aR − aJ��

ZOdd
R = tr�STR

1/2AR��L−1�/2AR
−1TR

1/2St� = �����L−1�/2�M�
R �2 + �����L−1�/2�M�

R �2,
�
�A2�

where we have used the following notation:

D� = a�,+
Co eaCo/2cosh�aR + aJ� + a�,−

Co e−aCo/2cosh�aR − aJ� ,

D� = a�,+
Co eaCo/2cosh�aR + aJ� + a�,−

Co e−aCo/2cosh�aR − aJ� ,

�A3�

and

M�
Co = a�,+

Co eaCo/2 + a�,−
Co e−aCo/2,

M�
Co = a�,+

Co eaCo/2 + a�,−
Co e−aCo/2,

M�
R = a�,+

R eaR/2 + a�,−
R e−aR/2,

M�
R = a�,+

R eaR/2 + a�,−
R e−aR/2. �A4�

We can now observe that, after a bit of manipulation on the
above expressions, we need only calculate the values of
�a�,−�2 , �a�,−�2 , �a�,+�2 , �a�,+�2 , �a�,−a�,+� and �a�,−a�,+�
for both Co and R superscripts. To do that it is convenient to
use a quantity �, which is analogous to the one introduced
by Wortis25 and invariant for Co and R suffixes

� = 4�e4aJcosh2�aCo + aR� + e−4aJcosh2�aCo − aR�

+ 2 cosh2�aCo� + 2 cosh2�aR� − 2 cosh�4aJ�� �A5�

which can also be used to easily express the eigenvalues

� = e2aJcosh�aCo + aR� + e−2aJcosh�aCo − aR� ±
�1/2

2
.

�A6�

It leads to compact forms for the products and squares of
elements

�a�,−
Co a�,+

Co � = �a�,−
Co a�,+

Co � =
cosh�aCo�

�1/2 ,

�a�,−
R a�,+

R � = �a�,−
R a�,+

R � =
cosh�aR�

�1/2 , �A7�

�a�,−
Co �2 = �a�,+

Co �2

=
1

2
+

e2aJsinh�aCo + aR� − e−2aJsinh�aCo − aR�
�1/2 ,

�a�,−
Co �2 = �a�,+

Co �2

=
1

2
−

e2aJsinh�aCo + aR� − e−2aJsinh�aCo − aR�
�1/2 ,

�a�,−
R �2 = �a�,+

R �2

=
1

2
+

e2aJsinh�aCo + aR� + e−2aJsinh�aCo − aR�
�1/2 ,

�a�,−
R �2 = �a�,+

R �2

=
1

2
−

e2aJsinh�aCo + aR� + e−2aJsinh�aCo − aR�
�1/2 ,

�A8�

where before calculating the explicit expressions for these
values, we have taken advantage of the fact that, being the
product matrices of Eq. �4� symmetric, some of the above
square values and products must be equal. Using these last
expressions we can eventually rewrite the squares of Eq.
�A4� in a more explicit form

�M�
Co�2 = cosh�aCo� +

e2aJsinh�aR + aCo�sinh�aCo� + e−2aJsinh�aR − aCo�sinh�aCo� + 4cosh�aCo�

2�
1
1

,

�M�
Co�2 = cosh�aCo� −

e2aJsinh�aR + aCo�sinh�aCo� + e−2aJsinh�aR − aCo�sinh�aCo� + 4cosh�aCo�

2�
1
1

,

�M�
R �2 = cosh�aR� +

e2aJsinh�aCo + aR�sinh�aR� + e−2aJsinh�aCo − aR�sinh�aR� + 4cosh�aR�

2�
1
1

,
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�M�
R �2 = cosh�aR� −

e2aJsinh�aCo + aR�sinh�aR� + e−2aJsinh�aCo − aR�sinh�aR� + 4cosh�aR�

2�
1
1

. �A9�
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