PHYSICAL REVIEW B 72, 064305 (2005)

Monte Carlo transient phonon transport in silicon and germanium at nanoscales
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Heat transport at nanoscales in semiconductors is investigated with a statistical method. The Boltzmann
transport equation (BTE), which characterizes phonon motion and interaction within the crystal lattice, has
been simulated with a Monte Carlo technique. Our model takes into account media frequency properties
through the dispersion curves for longitudinal and transverse acoustic branches. The BTE collisional term
involving phonon scattering processes is simulated with the relaxation times approximation theory. A new
distribution function accounting for the collisional processes has been developed in order to respect energy
conservation during phonons scattering events. This nondeterministic approach provides satisfactory results in
what concerns phonon transport in both ballistic and diffusion regimes. The simulation code has been tested
with silicon and germanium thin films; temperature propagation within samples is presented and compared to
analytical solutions (in the diffusion regime). The two-material bulk thermal conductivity is retrieved for
temperature ranging between 100 K and 500 K. Heat transfer within a plane wall with a large thermal gradient
(250 K to 500 K) is proposed in order to expose the model ability to simulate conductivity thermal dependence
on heat exchange at nanoscales. Finally, size effects and validity of heat conduction law are investigated for

several slab thicknesses.
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I. INTRODUCTION

The development of nanotechnologies has led to an un-
precedented size reduction of the electronic and mechanical
devices. For example, transistors of a few nanometer size are
now openly considered.! The heat that will be dissipated by
joule effect in these semiconductor junctions will reach soon
the levels of the heat dissipated in a light bulb. This high
volumetric heat dissipation in electronic devices will have to
be evacuated very efficiently in order to avoid possible fail-
ures of the systems. This task will not be achieved without a
precise knowledge of the phenomena governing the heat
transfer at nanoscale. Furthermore, new technologies based
on a local heating are being developed in order to enlarge the
computer hard disk capacity. The ultimate limit of storage is
to write a byte at the atomic scale. This goal is already fea-
sible with near-field microscope probes but at a too slow
rate. A way to write bytes at the nanometer scale is the melt-
ing of a polymer by heating it on a very short time scale
(<1 ns) by an array of heated near-field probes.? In this ex-
ample, the heat transfer has to be controlled not only at the
nanometer scale but also at the nanosecond scale.

Through these two examples, one can anticipate that the
foreseeing technological challenges in miniaturization will
have to solve more and more problems of heat transfer at
short time and space scale. However, the physics of heat
transfer usually used (Fourier’s law, radiative transfer equa-
tion) can no longer be applied when some characteristic
length scales are reached.? In thermal radiation, for example,
wave effects appear as the system characteristic lengths be-
comes lower than the typical wavelength (\~ 10 um at T
=300 K).*> A substantial increase of the radiative heat trans-
fer can even be reached at nanometric distances.® On its side,
heat conduction is classically described by the Fourier law
and the heat conduction equation (J7/dt=aAT) which is a
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diffusion equation. It is well known that this kind of equation
can be interpreted as a random walk of particles.” In the case
of heat conduction, we are actually dealing with energy car-
riers which are electrons in metals and phonons in crystalline
materials. When these carriers undergo a large number of
collisions, the use of the diffusion equation is valid whereas
a more careful study is required when the number of inter-
actions between carriers lowers.

A way to achieve this goal is to consider the evolution of
a distribution function f(r,p,f) which describes the number
of particles in a certain elementary volume d’rd’p around
the point (r,p) in the phase space. The evolution equation of
f, called the Boltzmann transport equation (BTE), makes f
vary in space and time under the influence of advection,
external force, and collision.® Note that this approach is not
relevant to treat the wave aspects of the problem such as
interference or tunneling. The understanding and the model-
ing of the collision term is actually the key point in the
resolution of the BTE. It can sometimes be fully expressed as
in radiation transfer. Then the collision term is in that case
the sum of an absorption term, an elastic scattering term, and
an emission term proportional to an equilibrium
distribution.” Many resolution techniques have been devel-
oped in radiation transfer such as the discrete ordinates
method, the Monte Carlo method, or the ray-tracing
method.'” They can hardly be used when the collision pro-
cesses are inelastic as it is the case for electrons and
phonons.!! For example, the phonons, which are eigenmodes
of the harmonic oscillators constituting the crystal, can only
interact through the anharmonic term of the potential leading
to three or more phonon collisions. These interactions pre-
serve neither the number of phonons nor their frequency in
the collision process. Nevertheless, these three or four pho-
non interactions tend to restore thermal equilibrium, i.e., to
help the phonons to follow an equilibrium distribution func-
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tion which can be easily determined from thermodynamic
equilibrium considerations. Thus, many of the studies ap-
proximate the collision term in the BTE by the so-called
relaxation time approximation: the distribution function
f(r,p,t) relaxes to an equilibrium function f°(r,p) on a time
scale 7(p). The BTE resulting from this approximation is
nothing but the radiative transfer equation without
scattering.'?> All the numerical tools developed in thermal
radiation can therefore be used in this case. The key point in
this model is to calculate a suitable 7(p) in order to charac-
terize the collisions.

In the middle of the 20th century, a great theoretical effort
has been made to determine the relaxation times of the
phonons in a bulk material. At ambient temperature, it has
been shown that the main contribution to the relaxation time
finds its origin in the anharmonic phonon interaction. These
anharmonic interactions can be triadic or quartic. Triadic in-
teractions involve three phonons (for example, two phonons
anihilate to give birth to a third one) whereas quartic inter-
actions involve four phonons (two phonon anihilate to give
birth to two others). Quartic interactions contribute often less
to the phonon relaxation time, but sometimes have to be
taken into account, especially in the case of high tempera-
tures (7>1000 K) as it has been shown by Ecsedy and
Klemens.!? At ambient and low temperature, semiconductor
(such as Si and Ge, which are treated here) studies are usu-
ally limited to triadic interactions.'* Nevertheless, taking
them into account or not does not change the ways the BTE
can be solved. Among these anharmonic processes, two dif-
ferent kinds can be identified. The so-called normal pro-
cesses (N), which maintain the momentum in the collision,
and the Umklapp processes (U), which do not preserve the
momentum. The former do not affect the material thermal
resistance, contrary to the latter. These Umklapp processes
follow selection rules' and it is an amazing feat to calculate
them.'6

In the case of semiconductors such as silicon (Si), germa-
nium (Ge),'”!® and gallium arsenide (GaAs),'*?° the relax-
ation times have allowed us to compute semianalytically
thermal conductivities in good agreement with measure-
ments. Resolution of the BTE have been achieved on these
materials in bulk situations, thin film, or superlattice
configuration.'>?!-23 At short time scale, these resolutions
have been compared to classical solutions’*?> and some
modifications of the BTE have been proposed.?® The resolu-
tions based on the discrete ordinates method or on the finite
volumes method converge very quickly numerically but have
a major drawback: they are governed by a single relaxation
time taking into account all the different processes of relax-
ation such as the anharmonic interactions between phonons,
the interactions with impurities and dislocations, or the scat-
tering on the material boundaries. The Matthiesen rule,
which states that the inverse of the total relaxation term is the
sum of the relaxation times due to every different phenom-
ena, is usually used. In the context of the BTE in the relax-
ation time approximation, this means that all the different
interaction or scattering phenomena tend to restore thermal
equilibrium.

An alternative way to solve the BTE is the Monte Carlo
method. This method is quite computer time greedy because
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it necessitates to following a large number of energy carriers,
but it becomes competitive when the complexity of the prob-
lem increases, particularly for nontrivial geometries. This
method is therefore useful in order to calculate the heat trans-
fer in electronic devices of any shape. Moreover, in this
method, different scattering phenomena (impurities scatter-
ing, boundary scattering, and inelastic scattering) can be
treated separately. The resolution of the BTE by the Monte
Carlo method has been performed for electrons®’~3? but has
been little used in the case of phonons. Peterson®? performed
a Monte Carlo simulation for phonons in the Debye approxi-
mation with a single relaxation time. He presented results
both in the transient regime and in equilibrium situation. Ma-
zumder and Majumdar®* followed Peterson’s approach but
included in their simulation the dispersion and the different
acoustic polarization branches. They retrieved both the bal-
listic and the diffusion situation but did not show any result
in the transient regime. Another limit of this last paper is that
the N processes and the U processes are not treated sepa-
rately although they do not contribute in the same way to the
conductivity.

The starting point in our work is these two contributions.
We follow individual phonons in a space divided into cells.
The phonons, after a drift phase, are able to interact and to be
scattered. The speed and the rate at which phonons scatter
depends on the frequency. We ensure that energy is con-
served after each scattering process. This procedure is differ-
ent whether the phonons interact through an N process or a U
process. This paper is therefore an improvement of existing
phonon Monte Carlo methods and is validated on simple
examples such as a semiconductor film heated at two differ-
ent temperatures.

Section II recalls the basic hypothesis governing the BTE.
Fundamental quantities such as the number of phonons, the
energy, and the density of states are also defined. The phonon
properties are also presented through their dispersion rela-
tions. Section III exposes the Monte Carlo method used in
this paper. Boundary conditions, phonon drift, and scattering
procedures are given in detail. Section IV presents transient
results in the diffusion and ballistic regimes. Thermal con-
ductivities of silicon and germanium between 100 K and 500
K are numerically estimated. The influence of conductivity
thermal dependence on heat conduction within a slab is stud-
ied. Finally, size effects on phonon transport at very short
scales are considered.

II. THEORY

A. Boltzmann transport equation

The Boltzmann transport equation (BTE) is used to model
the phonon behavior in a crystal lattice. This equation is
related to the variation of the distribution function f(z,r,K)
which depends on time ¢, location r, and wave vector K.
f(z,r,K) can also be defined as the mean particle number at
time ¢ in the d°r volume around r with K wave vector and
&K accuracy. In the absence of external force, the BTE
expression is>

of
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with the phonon group velocity v,=Vgw.
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Integration of the distribution function over all the wave
vectors of the first Brillouin zone and all the locations leads
to the phonon number N(7) at a given time in the crystal. The
lhs term of Eq. (1) accounts for the phonon drift in the me-
dium and the rhs term for the equilibrium restoration due to
phonon collisions with themselves, impurities, and bound-
aries.

The collisional term modeling is the key point in the BTE
resolution. In the case of photons, it appears as the sum of an
absorption term, of an emission term, and of an elastic scat-
tering term in which a scattering phase function relates a
photon in the incoming and outgoing propagation directions
during a scattering event.” However, in the case of phonons,
there is no absorption, nor emission, but only scattering
events. Scattering events at the borders can simply be treated
during the drift phase, i.e., when a phonon reaches a border.
Scattering with impurities can be treated similarly to the iso-
tropic scattering of photons when addressing thermal radia-
tion. Scattering of phonons due to the anharmonic terms of
the potential are quite difficult to express. We know never-
theless that these terms are responsible for the thermal con-
ductivity, i.e., tend to restore thermal equilibrium. Therefore,
in this work we use the relaxation time approximation for
three phonon scattering processes. The collision time used in
this formalism comes from normal and Umklapp relaxation
times which are further estimated.

B. Lattice modeling

As it has been exposed previously, the thermal behavior
of the crystal can be considered from the phonon character-
istics (location, velocity, and polarization) within the me-
dium. They might be obtained through the BTE solution
since the distribution function can be easily related to the
energy and therefore to the temperature. Using an integrated
distribution function, one can express the total vibrational
energy of the crystal as®

E=3 S () + Lo o
p K

where (ng ,) is the local thermodynamic phonon population
with polarization p and wave vector K described by the
Bose-Einstein distribution function

1

()= G)
exp(—) -1
kgT

E is the material volumic energy. It is obtained by summa-
tion in Eq. (2) of each quantum A over the two polariza-
tions for transverse, longitudinal, and optical modes of pho-
non propagation. Assuming that the phonon wave vectors are
sufficiently dense in the K space, the summation over K can
be replaced by an integral. Moreover, using D,(w), the pho-
non density of state, we can achieve the integration in the
frequency domain. This two modifications yield
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E=, f (<nw,p>+%)ﬁwpp(w)gpdw, (4)
V4 [

with D,(w)dw the number of vibrational modes in the fre-
quency range [, w+dw] for polarization p and g, the de-
generacy of the considered branch. In the case of an isotropic
three-dimensional crystal (V=L?) we have®

dK VK?dK
Qu/L)? 277

The 1/2 term in Eq. (2) is the constant zero point energy
which does not participate to the energy transfer in the ma-
terial, therefore it has been suppressed. Using the group ve-
locity definition, Eq. (4) might be rewritten

D (w)dw= (5)

hw K?
E=sz do. (6)
)4 (o] ) -1 21720ggp ¢

fiw
exp T
B

The numerical scheme we are going to present is mainly
based upon energy considerations. The previous expression
Eq. (6) will be also used to estimate the material temperature
by means of a numerical inversion.

C. Dispersion curves

Only a few studies on that topic take into account disper-
sion. Indeed, frequency dependence makes calculations
longer, accounting for velocity variation. However, realistic
simulation of phonon propagation through the crystal must
take into account interaction between the different branches.
Here optical phonons are not considered because of their low
group velocity: they do not contribute significantly to the
heat transfer. These modes can actually contribute indirectly
through the interaction with other modes such as the acoustic
modes. By modifying their relaxation times, they can in-
flence the total thermal conductivity of the material. Never-
theless, in this work, we did not consider this phenomenon.
Consequently only transverse and longitudinal branches of
silicon and germanium are presented here (Fig. 1). We have
made the common isotropic assumption for wave vectors and
consider the [001] direction in K space. For silicon, we used
data obtained from a quadratic fit,*' whereas germanium ex-
perimental curves’’ have been fitted by cubic splines. Pho-
non group velocity has then been extracted from this data.
Note that in silicon and germanium, two acoustic branches
have been considered. The transverse branch is degenerated
(g7=2) whereas the longitudinal branch is non-degenerated

(g=1).

III. MONTE CARLO METHOD

The Monte Carlo technique has been widely used in order
to solve transport equations. In the heat transfer field, Monte
Carlo solutions of radiative transfer equation are often con-
sidered as reference benchmarks. The method accuracy only
lies on the number of samples used. Among others, the main
advantages of this method are

e the simple treatment of transient problems,

064305-3



LACROIX, JOULAIN, AND LEMONNIER

o (rad s'1)
N
\\
\

FIG. 1. (Color online) Phonon dispersion curves for silicon and
germanium in the first Brillouin zone, K,y ;=1.1326x 1010 m~!
and K ge=1.1105X 10" m~".

e the ability to consider complex geometries, and

e the possibility to follow independently each scattering
process (for instance, phonon-phonon, phonon-impurity, and
phonon-boundary processes).

The main drawback is computational time. However, this
method remains a good choice between deterministic ap-
proaches such as the discrete ordinates method (DOM) or
“exact solutions” such as those provided by molecular dy-
namics which is limited to very small structures.

A. Simulation domain and boundary conditions

As it was said before, the geometry of the studied material
does not matter. Here, a simple cubic cells stack (Fig. 2) is
considered since it can be readily related to the plane wall
geometry commonly used in thermal problems. Cylindrical
cells or multidimensional stacks can also be considered in
order to model nanowires or real semi-conductors.

Concerning boundary conditions, we assume that the lat-
eral walls of the cells (in x and y directions) are specularly
reflecting in most of the simulation cases. This means that
walls are adiabatic and perfectly smooth. Note also that in
that case, the dimension in the x and y directions should not
change the result in the simulation. Indeed, when reflection is
specular on the lateral cells boundaries, the momentum is
preserved in the z direction. The heat flux and the tempera-
ture along z should thus not be affected. At both ends of the

FIG. 2. (Color online) Studied model. Phonon location, energy,
and velocity are randomly chosen in each cell according to disper-
sion curves and local temperature.
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medium, temperature is assumed to be constant. Therefore,
energy in the first and the last cells is calculated from equi-
librium distribution functions. Incoming phonons in these
cells are thermalized at each time step. Consequently theses
cells act as blackbodies.

At this stage, an important point is the choice of the three
discretizations: temporal, spatial, and spectral. Spatial dis-
cretization is directly related to the material geometry: usu-
ally cells length are about L,~ 100 nm for micrometric ob-
jects and can be smaller in the case of thin films or
nanowires, for instance. The time step choice depends on
two parameters: the cell size and the group velocity at a
given frequency. In order to consider all scattering events
and to avoid ballistic jump over several cells, we state that
the time step must be lower than Ar<<L_/Vy™*.

The spectral discretization is uniform; we used N,=1000
spectral bins in the range [0,w]"s']. We have checked that
larger discretizations do not increase the result accuracy.

B. Initialization

The first step of the simulation procedure, once medium,
geometry, and mesh have been chosen, is to initialize the
state of phonons within each cell describing the material.
Hence, the number of phonons present in each cell is re-
quired. It will be obtained considering the local temperature
within the cell and using a modified expression of Eq. (6). In
this equation, energy is given for all the quanta 7w associ-
ated to a spectral bin. Therefore, it can be rewritten to give
the total number of phonons in a cell as

1 K,

Ny,
N=V X X -
— _ w
p=TALA b=1 exp( b,g) -1
kT

gAw. (7)

The number of phonons obtained with Eq. (7) is usually very
large, for instance in a 10 nm silicon cube at 300 K, N can be
estimated around 5.45X 10°. In the case of nanoscale struc-
tures, direct simulations can be achieved if the temperature is
relatively low. In the case of microscale samples or multidi-
mensional cell stacking, a weighting factor shall be used to
achieve Monte Carlo simulations. Hence, Peterson’s> tech-
nique has been used. The actual number of phonons N is
divided by a constant weight W in order to obtain the number
of simulated phonons N*

N* = (8)

SIE

In our simulations W’s value is set around W~ 10* for mi-
crometric structures, in order to preserve accuracy.

During the initialization process, a temperature step is
prescribed in the medium. The first cell is raised to the hot
temperature 77, the last to the cold one 7. All the phonons in
the intermediate boxes are also at T,. Associated theoretical
energy in the whole structure is obtained from Eq. (6). This
energy should match the calculated energy E* within all the
cells, written into the following form:
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Ncell N*
E*=2 > WXhao,,. 9)
c=1 n=1

As a consequence, during the initialization, phonons should
be added by packs of W at a given frequency, sampled from
a normalized number density function F. According to Ma-
zumder and Majumdar’s work,3* this function is constructed
doing the cumulative summation of the number of phonons
in the ith spectral bin over the total number of phonons Eq.

(7):

> NAT)
=1
> N(T)
j=1

In this process, a random number R is drawn (all the random
numbers discussed here check 0<R < 1) and the correspond-
ing value F; gives the frequency w;, knowing that the F,_;
<R = F;, location is achieved with a bisection algorithm. The
actual frequency of the phonon is randomly chosen in the
spectral interval prescribing

A
w,-:wo,i+(2R—l)7w, (11)

where w; is the central frequency of the ith interval.

Once the frequency is known, the polarization of the pho-
non has to be determined. It can belong to the TA or LA
branch with respect to the Bose-Einstein distribution and the
density of states. For a given frequency w;, the number of
phonons on each branch are Ny s(w;)=(n;s(®;))D;s(w;) and
Nyalw;)=2 X{nps(w;))Dralw;), where the density of states
are calculated with Eq. (5) in which the relation between w
and K are taken from the dispersion curves. The associated
probability to find a LA phonon is expressed as

Nya(w))
Nia(®) + Npa(w;)

Pia(w) = (12)

A new random number R is drawn: if R<<P;(w;), the pho-
non belongs to the LA branch, otherwise it is a transverse
one.

The knowledge of the frequency and the polarization
leads to the estimation of the phonon group velocity and the
phonon wave vector merely using the dispersion curves and
their derivatives. Assuming isotropy within the crystal, the
direction € is obtained from two random numbers R and R’
randomly distributed between O and 1. Indeed, chosing a
direction in 3D consists in chosing two angles (6, ¢») which
are the spherical coordinates angles. Moreover, these angles
have to be chosen so that the corresponding directions are
uniformly distributed in the 47 full space solid angle. The
elementary solid angle is dQ)=sin 6d6d¢=-d(cos O)d¢ so
we see that cos 6 has to be uniformly distributed between —1
and 1 and ¢ beteween 0 and 2. Hence ) is written as
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sin 6 cos ¢
Q =sin fsin ¢ (13)
cos 0

where cos #=2R-1 and ¢=27R’.

The last operation of the initialization procedure is to give
a random position to the phonon within the cell. In the grid
previously considered, location of the nth phonon in the cell
¢, whose lengths are L,, Ly, and L_, is

r,.=r.+LRi+LR'j+LR"k (14)

where r, is the coordinates of the cell and R, R, and R” are
three random numbers.

C. Drift

Once the initialization stage is achieved, phonons are al-
lowed to drift inside the nanostructure. Considering the time
step Ar and their velocities, each phonon position is updated:
Farif=Tola+ VoA, In the case of shifting outside of the lateral
boundaries (in i and j directions), the phonon is specularly
reflected at the wall. In the case of diffuse reflection with a
particular degree d (0=<d=<1, d=0 purely specular, d=1
purely diffuse) a random number R is drawn. When R is
lower than d a new phonon propagation direction is calcu-
lated using Eq. (13).

When a phonon reaches the bottom (z,,;,) or the top (Zay)
of a cell, it is allowed to carry on its way in the previous or
next cell, respectively. As a result, it is going to modify the
cell energy and by extension its locathJemperature. At the end

of the drift phase, the actual energy E* is computed in all the

cells using Eq. (9). Then, the actual temperature 7 is ob-
tained with Eq. (6) doing a Newton-Raphson inversion.3®
Phonons drifting in the first and last boxes are thermalized to
the cold or hot temperature in order to keep boundary cells
acting as blackbody sources.

D. Scattering

In the Monte Carlo simulation, the scattering process has
been treated independently from the drift. The phonon-
phonon scattering aims at restoring local thermal equilibrium
in the crystal since it changes phonon frequency. Collisions
with impurities or crystal defects as well as boundary scat-
tering do not change frequency but solely the direction €.
These last phenomena are significant when low temperatures
are reached and the phonon mean free path becomes large. In
the present study we do not consider impurity and defect
scattering for calculation. Besides, the bulk hypothesis is as-
sumed, there is no boundary scattering. The phonons are
specularly reflected at the side limits. Hence, only three-
phonon interactions have been considered.

As already said before, there are two kinds of three-
phonon processes: normal processes (N) which preserve mo-
mentum and Umklapp processes (U) which do not preserve
momentum by a reciprocal lattice vector. These two mecha-
nisms have consequences on the thermal conductivity of
the crystal. When the temperature is sufficiently high
(T=Tpevye)» U processes become significant and directly
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modify heat propagation due to the resistivity effect on en-
ergy transport. On the other hand, normal scattering also af-
fects heat transfer since it modifies frequency distribution of
the phonons. For phonons described by (p,w,K) and
(p’, o', K’) scattering to (p”,»”,K"), the following relations
are checked

energy: hw+ho' — ho”,

N processes: K+ K’ — K",

U processes: K+K' — K"+G, (15)

where G is a lattice reciprocal vector. Scattering also in-
volves polarization in the way that acoustic transverse and
longitudinal phonons can interact. According to Srivastava,
for N and U processes different combinations are possible:

N and U processes:

T+T=L, L+T=L,andT+L=L,

N processesonly: T+T=TandL+L=L. (16)

For the N processes only, all the participating phonons must
be collinear to achieve scattering. Usually these interactions
are neglected.

Direct simulation of phonons scattering is an awkward
challenge. With Monte Carlo simulations, it is possible to
estimate phonon collisions with neighbors as in the gas ki-
netic theory calculating a three-particle interaction cross sec-
tion. However, in the present study, the frequency discretiza-
tion might not be sufficiently thin to assess every three-
phonon processes. Thus the collisional process is treated in
the relaxation time approximation. Several studies on that
topic have been carried out since the early work of
Klemens;'> a detailed paper of Han and Klemens'* recalled
them.

Relaxation times 7 have been proposed for several crys-
tals. They depend on the scattering processes, the tempera-
ture, and the frequency. Holland’s work on silicon'® and the
recent study of Singh for germanium*’ provide various 7
values. The independence of the scattering processes is used
to consider a global three-phonon inverse relaxation time
accounting for N and U processes 7yy. It has been obtained
using the Mathiessen rule (T]_VIU=T&1+ Tfjl .

In order to be implemented in the Monte Carlo simula-
tion, the scattering routine requires an associated collision
probability P, This one is derived saying that the probabil-
ity for a phonon to be scattered between ¢ and t+dt is dt/ 7.
Thus,

- At
Pscatzl_exp<_)' (17)
NU
A random number R is drawn; if R<P,,, the phonon is
scattered. As a result, new frequency, polarization, wave vec-
tor, group velocity, and direction have to be resampled with
respect of energy and momentum conservation. Relaxation
times are temperature and frequency dependent. For each
simulated phonon considered 7y is calculated at every time
step.
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FIG. 3. (Color online) Normalized number density function in
silicon with and without Py, correction.

In previous studies on that topic,** the frequency sam-
pling after collision was achieved from the normalized num-

ber density function F' at the actual temperature T of the cell
obtained at the end of the drift procedure. In this approach
the actual energy after the scattering stage is usually different

from the “target” one obtained with temperature T. Hence a
subsequent “‘creation/destruction” scheme is necessary to en-
sure energy conservation. In fact, in the preceding procedure
at thermal equilibrium, the probability of destroying a pho-
non of frequency w and polarization p is different from the
probability of creating this phonon. This means that the
Kirchhoff law (creation balances destruction) is not re-
spected. In order to create phonons at the same rate they are
destroyed at thermal equilibrium, the distribution function
used to sample the frequencies of the phonons after scatter-
ing has to be modulated by the probability of scatterring. So
we define a new distribution function
i
ENJ'(T) X Pscatj
Frea)= o (18)

2 N,(T) X Pscal j
Jj=1

Taking into account the scattering probability in the dis-
tribution function F., ensures that a destructed phonon on
both transverse and longitudinal branches can be resampled
with a not too weak energy as it can be seen in Fig. 3.

According to the described simulation procedure after the
initialization step, phonons in cell ¢ are described by
[T, F(T.),N*(T.),E*(T,)]. They are allowed to drift and the
state of cell ¢ before scattering is [7,,F(T.),N'*(T,).E'*(T,)].
Then three-phonons collisions occur and change energy
by frequency resetting of the colliding phonons (using
the distribution function F,, leading to the final state
[T., FoulT.), N'*(T,), E"*(T,)]). Hence energy can be ex-
pressed as
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Furthermore the number of colliding phonons can simply be
expressed as N'2 (T,) =Py, X N'*(T,). One then sees that, if
we want to preserve energy at thermal equilibrium, the new
normalized number density function F' ., must take into ac-
count this collisional probability. Energy conservation during
Monte Carlo simulation might be noticed from frequency
distribution (Fig. 4, which matches the theoretical distribu-
tion given by Eq. (7)].

Concerning momentum conservation, the task is harder to
address since the Monte Carlo process considers phonons
one by one. Consequently triadic N or U interactions cannot
be rigorously treated. In a first approach, we propose the
following procedure to take into account the fact that U pro-
cesses contribute to the thermal resistance whereas the N
processes do not. When the phonons scatter through a U
process, their directions after scattering are randomly chosen
as in the initialization procedure. Therefore, these phonons
are randomly scattered and contribute to the diffusion of
heat. On the contrary, it is assumed that scattering phonons
experiencing an N process do not change their propagation
direction €.

Statistically, for a given temperature and frequency, the
phonons are destroyed by scattering at the same rate they
appear. A phonon which scatters has a great chance to be
replaced in the computation by a phonon of a near frequency.
Therefore, by this treatment, the N processes ‘“‘approxi-
mately” preserve momentum. Nevertheless, a more accurate
treatment should be done in order to respect exactly the mo-
mentum in the N processes. For a plane-parallel geometry, it
seems possible to guarantee the momentum conservation in a
single direction.
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In fact, the relaxation time estimation'# states that there is
a frequency limit wy;,,; for the transverse acoustic branch.
Wjimic actually corresponds to K=K, ../2. Below this limit
frequency, there are no U processes. On the other hand, for
> Wy, N processes are no longer considered and the
propagation direction must be resampled in the case of a
collision. In what concerns the longitudinal acoustic branch,
there is no limit frequency. According to Holland'® only N
processes exist. However, applying this assumption implies
that momentum has to be conserved for each scattering event
involving a LA phonon. This leads to thermal conductivity
values higher than the theoretical ones for temperatures be-
tween 100 K and 250 K. In order to ensure a more realistic
momentum conservation we set that half of the colliding
phonons keep their original €, and the others (U processes)
are directionally resampled.

IV. RESULTS AND DISCUSSION

Different kinds of simulations have been performed so as
to check the computational method. Tests in both diffusion
and ballistic regimes are carried out for silicon and germa-
nium. Moreover, if small thermal gradients are considered,
one can estimate the thermal conductivity k£ from the heat
flux through the structure. This has been realized for Si and
Ge between 100 K and 500 K.

Knowing that the conductivity varies with temperature ac-
cording to a power law in the case of Si and Ge for T greater
than 100 K, it is obvious that a large thermal gradient applied
to our media should not bring a purely linear solution. Hence
simulations in this specific case have been done. We will see
that our model correctly predicts the steady-state regime
when compared to the steady-state analytical solution.

Eventually, we studied size effects on thermal behavior of
nanostructures. It appears that the ballistic regime can be
retrieved at room temperature when the sample size is close
to the nanometer scale.

A. High-temperature transient calculations

Concerning high-temperature transient calculations, the
simulated case is described by the following parameters:

* hot and cold temperatures: 7,=310 K and 7,=290 K,

* medium geometry: stack of 40 cellules (L,=L,
=5X10"" m,L,=5X 107 m),

e time step and spectral discretization: At=5 ps and N,
=1000 bins, and

* weighting factor: W=3.5X10* for Si and W=8 X 10*
for Ge.

Both materials were tested. Germanium calculation re-
sults are presented here (Fig. 5). In order to assess the Monte
Carlo solution, transient theoretical comparison exists in the
case of the Fourier limit. Nevertheless, it requires that the
thermal diffusivity a remains constant. In the chosen tem-
perature range, according to the IOFFE database,*! Ge ther-
mal diffusivity is equal to @=0.36 X 107 m? s~

The considered test case has been described in Ozisik’s
book*? on the heat conduction equation. Within the described
structure heat transfer is along the z axis and analytical so-
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FIG. 5. Transient temperature in Fourier’s regime for germa-
nium and comparison with the analytical solution of heat
conduction equation with a constant thermal diffusivity (ag,
=0.36 X 107* m?s~!) (dotted curves).

lution for a one-dimensional medium could be obtained from
an integral transform. Temperature distribution in the slab is
given by an infinite sum that requires enough terms in the
case of short time calculation. However, a simpler analytical
solution might be obtained with Laplace’s transform

T(z,1) - T(L,1) { ( z ) <2L—z)
—— = | erfc| —= | —erfc =
T(O,[) - T(L,t) 2\3'052‘ 2\f'at

+ erfc( 2L E) ] , (20)

2\ at

with erfc the complementary error function. The theoretical
solution is only valid for short time and its accuracy is better
than 1% if the Fourier number (Fo=at/L?) checks Fo<0.7.
In the case of a 2 um germanium slab it leads to +<78 ns,
which is large enough to reach steady state.

The calculated values have been obtained from ten simu-
lations being averaged (Fig. 5), the random number seed
being reset for each computations. The Monte Carlo model’s
ability to predict correctly temperature from the first mo-
ments till steady state is clearly illustrated. The remaining
noise can be reduced with lower values of W weighting fac-
tor. The diffusion regime is obtained after 30 ns. Similar
results are obtained for silicon, however the simulated slab
has to be larger (L=4 pum) because ballistic effects are ob-
served near the cold limit. This point will be discussed later.

B. Low-temperature transient calculations

For low temperatures, heat transport inside the slab is
different since phonon interactions change. In this case U
collisions are negligible and the only resistive processes are
assigned to impurities, defects, and boundary scattering.
These phenomena have to be carefully assessed in the case of
thermal conductivity estimation below 100 K. In fact, for
very low temperatures the phonon mean free path grows and
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FIG. 6. (Color online) Transient temperature in the ballistic re-
gime for silicon and germanium.

becomes larger than the structure length. Hence, phonons can
travel from hot to cold extremities without colliding. This is
the ballistic regime similar to the one observed with photons
exchanged between two black plates at different
temperatures.*> In this peculiar case temperature in steady
state is equal to the following constant value:

Tﬁ"‘ Tﬁ]m
(21)

Toanistic = { >

The simulation case parameters are

* hot and cold temperatures: 7,=11.88 K, 7.=3 K, and
Thanisic=10 K

* medium geometry: stack of 40 cellules (L,=L,
=5%1077 m,L =2.5X 1077 m);

e time step and spectral discretization: At=5 ps and N,
=1000 bins; and

e weighting factor: W=20 for Si and W=30 for Ge.

Results for silicon and germanium (Fig. 6) give the ex-
pected results for the ballistic limit. It can be noticed that the
current representation exhibits an artificial link between
black boundaries and the first medium cell due to the spatial
discretization.

It can be seen that hot phonons do not fly straight toward
the cold limit. More than 1 ns is necessary to heat the last
cell in the case of silicon. This is in agreement with veloci-
ties prescribed by dispersion curves. Heat propagation in ger-
manium is slower since phonon group speed is also lower.
Note also that in both materials, the temperature seems to
propagate at two different velocities. For example, the 500 ps
and 1 ns temperature curves exhibit two components. The
fastest one propagates at the longitudinal wave velocity
whereas the slowest is traveling at the transverse wave ve-
locity. Results at low temperatures obtained with our method
have already been predicted by Joshi and Majumdar® in
similar cases, who applied successfully the equation of pho-
non radiative transfer (EPRT) in the ballistic regime.
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FIG. 7. Silicon and germanium thermal conductivities; compari-
son between bulk theoretical values and Monte Carlo calculated
values.

C. Si and Ge thermal conductivities

There are several ways to perform the thermal conductiv-
ity calculation of a semiconductor. Among these techniques,
Holland’s method'® based on phonons kinetic theory was
largely employed. Molecular dynamic simulations can also
be used to obtain k. In the present study thermal conductivity
has been determined knowing the heat flux (phonon energy
transport) through the medium for a given thermal gradient
directly applying Fourier’s law. As in Mazumder’s work,>*
the temperature difference between hot and cold extremities
is set to 20 K so as to determine average conductivities. The
phonon heat flux is calculated along the z axis according to
the following relation:

N*

=2 Who,Vy k. (22)

n=1

Simulations have been carried out between 100 K and 500
K (Fig. 7) on 2 um thick samples.

Comparison of the Monte Carlo calculated conductivities
is achieved with bulk data. Solid and dashed curves are lin-
ear power law regression of theoretical data in the considered
thermal range. These values are used in next analytical cal-
culations. We have appraised for 200 K=7=<600 K;

exp(12.570)
ksi(T) = 71326
exp(10.659)
kee(T) = T (23)

For germanium a very good agreement is obtained with
bulk values in the whole temperature domain. The maximum
relative error is under 8%. In this case, at 100 K, the phonon
mean free path is lowered to the micrometer according to
Dames.** Consequently the stucture size is large enough to
assume the acoustic thick limit. Furthermore, this calculation
benefits from recent relaxation time estimation, which has
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been fixed with a good accuracy.*’ The influence of these
factors on calculated conductivity is usually strong. Silicon
results are also close to the bulk ones until 150 K where the
relative error is equal to 7%. For lower temperatures, dis-
crepancy between theory and simulation increases. This gap
can be assigned to size effects since the phonon mean free
path grows when temperature is falling. Here, it becomes
similar to the slab size. Yet, if we refer to Asheghi’s* work
on thin films, thermal conductivity, at temperatures below
100 K, significantly decreases in comparison with bulk prop-
erty due to stronger reduction of phonon mean free path by
boundaries. Actually, for pure 3 um silicon film, thermal
conductivity is close to 600 W m™' K=! at 100 K.*> This
value is comparable to the 658 W m~' K~! obtained for our
2 pm film by Monte Carlo simulation.

D. Effect of nonlinear conductivity

In this fourth part, transient simulations with samples
heated under a large thermal step have been conducted. The
purpose of such calculations was to underline the model ca-
pacity to correctly predict steady state when medium prop-
erties [k(T)] vary with temperature. In the previous part ther-
mal conductivities of both bulk materials have been
estimated with a power law [Eq. (23)]. Hence, the analytic
solution for temperature profile within a slab can be easily
determined in steady state by the resolution of a first-order
differential equation as

T(Z)Steadystate: [(f)TE‘%I)+ <1 _§>T§ly+1):| ,
(24)

where conductivity can be written as N(T)=C X T”.

In order to avoid boundary effects in the case of silicon, a
4 um thick sample, with larger cells (L,=1X10"" m), is
used. The initial geometry is kept for the germanium slab.
Temperatures are now 7,=500 K and 7,.=250 K. The time
step remains equal to 5 ps. In both cases (Fig. 8) Monte
Carlo simulations give a very good estimation of the steady-
state behavior. Results are averaged over five computations
on the last 1000 time steps (i.e., after 45 ns of elapsed time).
At the cold limit of the germanium sample a weak deviation
exists between simulation and theory. The relative error on
temperature remains smaller than 1.5%, in this area. This
mismatch could be assigned to boundary effects, associating
diffusive and ballistic regimes near the limits as we will de-
tail in the last part. It could also be due to the accuracy of the
bulk thermal conductivity fitting at low temperatures.

Besides, inversion of such curves can theoretically pro-
vide the variation of k on a given thermal range, as long as
the medium is in the acoustic thick limit.

E. Size effect on heat diffusion

From the previous calculations, it is obvious that the pho-
non mean free path modification with the temperature acts as
a major factor in heat conduction. So, if the structure size is
adjusted in order to match the mean free path at any tem-
perature, ballistic phenomena should be observed. In this
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FIG. 8. (Color online) Steady-state temperature in Fourier’s re-
gime for silicon and germanium in the case of a large thermal
gradient; comparison to the heat conduction equation analytical so-
lution for temperature dependent conductivity.

study only silicon is used and the simulation parameters are

e hot and cold temperatures: 7;,=310 K and 7.=290 K,

e number of cells: 40, and

« total length and time step (L,A7): (2 nm, 5X 1073 ps),
(20 nm, 5% 1072 ps), (200 nm,5X 107" ps), (2um, 5 ps),
and (4um, 5 ps).

Weighting parameters and lateral cell lengths are adjusted
in order to keep approximately 18 000 phonons in each cell.

Temperature profiles when steady state is reached have
been plotted for each sample versus adimensional length z/L.
Comparison to diffusive and ballistic regime is displayed in
Fig. 9. With the imposed boundary temperatures the ballistic
limit is equal to Ty ;6.=300.5 K.

In the case of structure length lower than 200 nm ballistic
trend mixed to phonon diffuse transport is observed. The
temperature profile gets closer to the ballistic limit for
sample size around the nanometer scale. Nevertheless, this
approximately represents ten atom layers and therefore might
encounter the simulation limitation. On the contrary, in a
silicon sample thicker than 4 wm, temperature reaches the
Fourier’s regime and can be similarly obtained with heat
conduction equation at least cost.

V. CONCLUSIONS

An improved Monte Carlo scheme that allows transient
heat transfer calculations at time and space nanoscales, on
the basis of phonon transport, has been presented. This
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FIG. 9. (Color online) Steady-state temperature for silicon, in-
fluence of the slab thickness; comparison to the analytical solution
in the diffusive and ballistic limits.

model accounts for phonon transitions between longitudinal
and transverse acoustic branches and can be simply applied
to several semiconductors if their dispersion relations are
known. A particular attention has been paid to the energy and
momentum conservation during collision process.

Numerical result forecasts have been successfully as-
sessed in different heat transfer modes. In slab configuration,
a good agreement was found for both extreme phonon mo-
tions which are the diffusive and ballistic ones. Bulk thermal
conductivities of silicon and germanium have been numeri-
cally retrieved with a maximal error lower than 8%. Besides,
our Monte Carlo model correctly predicts temperature profile
in more peculiar situations, when strong thermal gradient or
very small sizes are encountered.

Nevertheless some key points need to be refined. Among
them the momentum conservation procedure might be im-
proved, especially for one-dimensional applications. Also, a
treatment of the optical phonons influence would improve
our model. Indeed, according to the recent study of
Narumanchi,? capacitive properties prediction need the op-
tical phonons to be taken into account. This influence seems
less critical for conductivity predictions in the studied tem-
perature range.'> Moreover, regarding the collision process,
improvements might be expected. Using theoretical values of
7 recalled by Han and Klemens,'* direct calculation of pho-
non scattering relaxation time can be realized in each autho-
rized spectral bin. Hence, a more realistic approach of three-
phonon interactions should be achieved.

We are currently working on these improvements but also
on other potential implementations of the method such as
those related to the superlattices and the nanowires.
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