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We argue that for generic systems close to a critical point, an extended fluctuation-dissipation relation
connects the low frequency nonlinear �cubic� susceptibility to the four-point correlation function. In glassy
systems, the latter contains interesting information on the heterogeneity and cooperativity of the dynamics. Our
result suggests that if the abrupt slowing down of glassy materials is indeed accompanied by the growth of a
cooperative length �, then the nonlinear, 3� response to an oscillating field �at frequency �� should substan-
tially increase and give direct information on the temperature �or density� dependence of �. The analysis of the
nonlinear compressibility or the dielectric susceptibility in supercooled liquids, or the nonlinear magnetic
susceptibility in spin-glasses, should give access to a cooperative length scale, that grows as the temperature is
decreased or as the age of the system increases. Our theoretical analysis holds exactly within the mode-
coupling theory of glasses.
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I. INTRODUCTION

A yet unexplained property of fragile glasses is the ex-
tremely fast rise of their relaxation time �or viscosity� as the
temperature is lowered, much faster than predicted by a
simple thermal activation formula.1 If interpreted in terms of
an effective activation energy, the latter increases by a factor
of 5–10 between 1.5Tg and the glass transition temperature
Tg. The basic mechanism for this increase is not well under-
stood, but it is reasonable to think that it is intimately related
to cooperative effects2,3 and possibly to the presence of an
underlying critical point.4–11 The dynamics becomes sluggish
and the activation energy increases because larger and larger
regions of the material have to move in a correlated way to
allow for a substantial motion of individual particles. Long
time scales must be somehow associated with large length
scales. Although the idea of a cooperative length has been
discussed in the context of glasses for many years,2,12 it is
only recently that proper measures of cooperativity �and of
the size of the rearranging regions� were proposed
theoretically8 �see Ref. 13 for earlier insights� and measured
in numerical simulations13–16 �see also Refs. 12, 17, and 18
for related experimental work�. The idea is to measure how
the dynamics is correlated in space; technically, this involves
a four-point correlation function which measures the spatial
correlations of the temporal correlation �see Eq. �9� below
for a more precise definition�. Recent extensive numerical
evaluations of this four-point correlation function in
Lennard-Jones systems have confirmed the existence of a
growing length scale as temperature is decreased,11,15,16 and
have shown that different observables, such as the relaxation
time or the diffusion constant, scale as powers of this length,
emphasizing its crucial importance as far as the physics is
concerned. In the framework of granular systems, diverging
length scales near the jamming transition have also been re-
ported in numerical studies of model systems.19

Although many different theoretical approaches to the
glass transition4–11 can potentially explain the existence of

such a growing dynamical correlation length, these theories
lead to rather different quantitative predictions for the behav-
ior of the four-point correlation function �see the detailed
discussion in Ref. 20�. Thus, experiments measuring directly
this four-point function would be extremely valuable to re-
fine our understanding of the glass phenomenon and prune
down the number of candidate models. Up to now, unfortu-
nately, only indirect experimental indications of a coopera-
tive length scale associated to heterogeneous dynamics have
been reported.12,17,21

On a different front, that of spin-glasses, length scale
ideas have also been expressed in recent years to account for
nonequilibrium phenomena such as aging, memory, and re-
juvenation effects.22–27 Although spin-glass order is not easy
to define nor to detect, the idea is that some kind of domain
growth occurs, whereby spin-glass correlations establish on
larger and larger length scales as the age of the system in-
creases. The growth of this “coherence length” has been es-
tablished numerically by comparing two replicas of the same
system.28–32 This trick is obviously inaccessible to experi-
mentalists, who have nevertheless provided indirect evidence
of a growing length scale, and some indications on its rate of
growth with time and temperature.25,33–35 Again, a direct
measure of this length scale is lacking—finding a clear-cut
experimental signal of a cooperative length in disordered,
amorphous systems would certainly be a major
breakthrough.12

The aim of this paper is to point out that in slow glassy
systems at equilibrium, the nonlinear �cubic� response to an
external field �electric, magnetic, pressure, etc.� in fact
probes directly the four-point correlation function mentioned
above, and therefore the cooperative length it may contain.
Our main prediction, detailed below, is that the 3� harmonic
response to an ac field of frequency � and amplitude h is
given by �3�� ,T�h3, where the nonlinear susceptibility �3

behaves at low frequency as
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�3��,T� =
�s

2

kBT
�2−�̄H���� . �1�

In the above relation, �s is the static linear susceptibility, H a
certain complex function that depends weakly on tempera-
ture, and � is the temperature dependent relaxation time of
the system, which can be directly measured using the linear
susceptibility. The cooperative length � �measured in units of
the microscopic length � obtained from the two point corre-
lation function� is expected to grow as the temperature is
reduced, and �̄ an exponent related to the spatial structure of
the four-point correlation function.36 Our central result, Eq.
�1�, that we will motivate below, states that �a� the nonlinear
susceptibility has the same frequency scaling as the linear
susceptibility, which is not surprising and �b� it grows as the
cooperative length increases, which should allow a direct
experimental test of the relationship between length and time
scales in glassy systems.

The above prediction holds for equilibrium systems; we
will however see below that in the case of glasses and spin-
glasses in a field, H�0�=0. Below the glass transition tem-
perature, on the other hand, the system by definition falls out
of equilibrium. Its dynamics becomes nonstationary and ex-
hibits aging, which means that the effective relaxation time
of the system increases with the age tw of the system.37,38

This increase of the relaxation time is again most probably
related to the growth of a coherence length in the system,
�w=��tw�. On very general grounds,38 one expects that the
generalization of the equilibrium result �1� to the aging case
will read, for a large class of systems:

�3��,tw� =
�s

2

kBT
�w

2−�̄H̃�h�1/��
h�tw�

� , �2�

where h is a certain increasing function, which in simple
domain growth models is the typical size of the domains.
From experimental results,37 a plausible guess is that simple
aging will hold in spin-glasses, i.e., h�tw�= tw. �Of course,
more complicated scaling forms, with an infinite number of
time domains, may hold in some cases, such as models with

full replica symmetry breaking.38� In the above equation, H̃
is another scaling function, which also contains possible vio-
lations of the standard fluctuation dissipation theorem and
the appearance of a nontrivial, tw dependent, effective
temperature.39 Equation �2� should in any case allow one to
extract from nonlinear aging susceptibilities a nonequilib-
rium coherence length, in a much more direct way than pre-
vious attempts.

As for comparison with previous works, the divergence of
the static nonlinear susceptibility at the spin-glass �in zero
field� or dipolar-glass transition, displayed by Eq. �1� at
�=0, is of course well documented, both theoretically40 and
experimentally.40–42 The generalization to the dynamical
nonlinear susceptibility in the critical region was also
discussed22,43,44 but not, to the best of our knowledge, its
generalization to the nonequilibrium, aging regime, Eq. �2�.
The situation for glassforming liquids is quite different, since
no static phase transition with a diverging static susceptibil-
ity has ever been identified, neither in experiments nor in

simulations. Purely based on an analogy with spin-glasses, it
was suggested in Ref. 45 that the nonlinear dielectric con-
stant of molecular glasses might grow as the glass phase is
approached �although this was not borne out by the experi-
ments done at that time45�. A similar suggestion was made in
Ref. 46 concerning the nonlinear compressibility of soft
sphere binary mixtures, with numerical results that are not
incompatible with a substantial increase of �3���0� as the
temperature is lowered. We will show below that such a
growth is indeed expected, although the theoretical situation
for glass formers is much less clear than for spin-glasses—in
particular, although �3 is growing may never diverge in glass
formers. Different scenarios for the glass transition can be
envisaged and lead to quite different predictions, for example
on the value of �̄ and on the relationship between � and � �or
tw�.

In the following section we will give some physical argu-
ments that motivate our results, and muster the predictions of
different theoretical models for glassformers. A more de-
tailed and technical discussion is then presented in Sec. III.
Finally our conclusions are presented in Sec. IV.

II. PHYSICAL ARGUMENTS AND RESULTS

A. Spin-glasses

1. Order parameter and nonlinear susceptibility

Let us first focus on spin-glasses in zero external mag-
netic field, H=0. These systems are thought, both theoreti-
cally and experimentally, to have a nonzero transition tem-
perature below which the magnetization profile, �sx	, freezes
into one �or more� amorphous configurations. The ordered
state is characterized by a nonzero Edwards-Anderson �EA�
parameter q= ��sx	2�, where �¯	 indicates thermal averaging
and the brackets a spatial �or disorder� average. These sys-
tems display an unusual type of long-range order, which can-
not be detected using either one body or two-body spin-spin
correlations: because the ordering pattern is random, the av-
erage magnetization ��sx	� remains zero and the spin-spin
correlation ��sxsy	� short-ranged, even in the spin-glass
phase. Correspondingly, the linear susceptibility, related by a
fluctuation dissipation theorem �FDT� to the integral of the
spin-spin correlation function, does not diverge as Tg is ap-
proached, even if some long-ranged correlations appear in
the system. The way to get rid of the spurious cancellation
between strongly correlated and strongly anticorrelated spins
is well known: exactly as one should square �sx	 to obtain a
nonzero Edwards-Anderson parameter, one should also
square �sxsy	 before averaging over disorder. The integral
over space of that quantity now diverges as Tg is approached,
and in fact has two interesting physical interpretations.

�1� The first one is the susceptibility of the spin-glass
order parameter to small random ordering fields. Imagine
one adds small random magnetic fields hx on every site. Us-
ing linear response, one can write, for a given sample at
T�Tg and H=0:

��sx	 =
1

kBT



y

�sxsy	0hy , �3�

where the subscript 0 means that the correlation functions are
evaluated at zero external field. Squaring this relation, sum-
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ming over x and averaging over the random fields gives the
sensitivity of the EA order parameter to a random pinning
field:

�SG =
�q

��h2	
=

1

N�kBT�2

x,y

��sxsy	0
2� . �4�

Clearly, the divergence of �SG signals an incipient instabil-
ity towards an ordering pattern favored by the small pin-
ning fields, exactly as the divergence of the usual two-
body susceptibility signals an instability to ferromagnetic
order, triggered by a small �uniform� magnetic field.

�2� As defined above, �SG has a clear theoretical interpre-
tation but seems hard to access experimentally. Fortunately,
�SG has another interpretation in terms of a nonlinear suscep-
tibility, which can be directly measured. The intuitive idea is
that the nonlinear susceptibility is actually a measure of the
�quadratic� dependence of the linear susceptibility on the ex-
ternal field. Using again FDT the change of the connected
correlation function between two spins �and hence of the
linear susceptibility� induced by the field contains the term:

���sx	�sy	� � 

z,z�

�sxsz	0�sysz�	0
h2

�kBT�2 . �5�

Averaging over space �or over disorder�, only the terms
�z=y ,x ,z�=x ,y� survive, the first one giving ��sxsy	0

2� as in
�SG. A more precise treatment for Ising spins at zero field
leads to the exact relation �3��=0�=−�3�SG−2� / �kBT�.3

Therefore, the static nonlinear susceptibility of spin-
glasses diverges as the spin-glass transition temperature Tg is
approached, a well-known effect that allows one to measure
some of the critical exponents experimentally.40,41 The phys-
ics behind the correlation induced amplification of �3 is
clear: the influence of the polarization of spin sx on sy may be
either positive or negative, but it has the same sign as the
reverse influence of sy on sx. Therefore, the quadratic effect
of an external field h on the dynamical correlation between
any pair of spins has a well defined sign, in turn leading to a
diverging nonlinear susceptibility as the size of correlated
regions increases, even if the linear susceptibility remains
small.

2. Nonzero external field and T�Tg

The case where a nonzero external field H is present is
more subtle. In mean-field, the spin-glass phase survives in a
whole region of the T, H plane, below the de Almeida-
Thouless �AT� line. The spin-spin correlation function
���sxsy	− �sx	�sy	�2� is long-ranged in the whole spin- glass
phase but is no longer directly related to the static nonlinear
susceptibility. Some exact compensation mechanism47,48 ac-
tually cancels the divergence in the combination of four-spin
correlations appearing in �3��=0�. Therefore, the nonlinear
susceptibility is finite in the whole spin-glass phase �includ-
ing H=0 in strict mean-field�. There is in particular no di-
vergence of �3��=0� on the AT line, except at H=0; rather,
the nonlinear susceptibility is discontinuous across the AT

phase transition.49

Within the droplet theory, on the other hand, the spin-
glass is detroyed by any nonzero field in finite dimensions.

Both the spin-glass and nonlinear susceptibilities are there-
fore finite when H�0.22,50 For H=0, a compensation mecha-
nism similar to that of mean-field glasses is also at play, but
does not prevent the nonlinear susceptibility to diverge for
all T	Tg.22 The replica field theory of spin-glasses in finite
dimensions seems also compatible with a diverging nonlin-
ear susceptibility for T�Tg at zero field.51

3. Dynamical nonlinear susceptibility

The above qualitative arguments for the static nonlinear
susceptibility can be extended to the dynamical case as well.
As will be recalled below, the dynamical FDT gives

�sx	�t1� =
1

kBT



y
� dt3

d

dt3
�sx�t1�sy�t3�	0hy�t3� . �6�

Therefore, the change in the connected dynamical correla-
tions between sx�t1� and sy�t2�, induced by a uniform, but
time dependent external field, will contain a term like



z,z�

� dt3dt4
d

dt3
�sx�t1�sz�t3�	0

d

dt4
�sy�t2�sz��t4�	0h�t3�h�t4� .

�7�

Repeating the same argument developed in the static case,
i.e., averaging over space �or disorder� and using FDT to
relate the connected correlation function to the dynamical
linear susceptibility leads to a nonlinear response function
that reads

�3�t1;t2,t3,t4� � 

y

d3

dt2dt3dt4
��sx�t1�sy�t3�	0�sx�t4�sy�t2�	0� .

�8�

Taking t1 , t2 , t3 , t4 all within an interval of the order of the
relaxation time � of the system, we see that the correlation
function entering �3 above defines a cooperative length scale
�, such that the dynamics of sx and sy within this time inter-
val is dominated by common events. This in turn leads to our
scaling prediction, Eq. �1�, near the transition temperature.
The exact result for the dynamical �3�t1 ; t2 , t3 , t4� needs to be
worked out carefully �see Sec. III�, since FDT for higher
order correlations is more involved than for two point
functions.52 Although different from the above naive expres-
sion, it indeed contains four-spin correlation functions that
capture the cooperativity of the dynamics. Intuitively, again,
the nonlinear response is strong if on the scale of the relax-
ation time, two spins feedback on each other’s dynamics—
this cross correlation is squared and survives averaging, even
if the correlation itself is of random sign.

4. The aging regime

In the low temperature, spin-glass phase, the relaxation
time � is infinite and the age of the system tw plays a crucial
role—all time dependent correlation functions depend ex-
plicitly on tw, which sets the time scale for the relaxation of
the system,38 and also for higher order correlation functions,
such as the four-point correlation. Intuitively, exciting the
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system with a field of frequency 1/ tw will give the nonlinear
response of a spin-glass equilibrated only up to a certain
length scale �w=��tw�.53

Interestingly, and contrarily to standard ordering transi-
tions, spin-glasses are thought to be critical throughout their
low temperature phase, in the sense that the space integral of
the connected correlation function ��sxsy	c

2� diverges for all
T�Tg. In the special case of mean-field spin-glasses, the
static nonlinear susceptibility within one phase is, as men-
tioned above, finite �except for T=Tg and H=0�.47 Except if
some further cancellations operate at finite frequencies, an
equation similar to Eq. �2� should hold in the aging phase of
mean-field spin-glasses, but with an infinite number of time
domains rather than a simple scaling variable such as �tw.38

The explicit calculation of H̃ in the context of a spherical
p-spin model would be extremely interesting; in particular
one may ask whether the effective temperature appearing in
the nonlinear response is the same as that appearing in the
linear response.54

In the droplet picture,22,50 and for the replica theory in
finite dimensions,51 the static nonlinear susceptibility di-
verges for all T�Tg �at least for H=0�, and one should cer-
tainly observe a nonlinear susceptibility increasing as in Eq.
�2�. In the original droplet model with activated dynamics

one predicts a function H̃ of ln � / ln tw associated with the
logarithmic growth of ��tw�. The peak value �3�tw ,�=1/ tw�
should grow as ��tw�2−�̄. The numerical value of 2− �̄ is yet
unknown, but following Fisher and Huse,22 one may expect
d−3
	2− �̄	d−
 with 

0.2 in three dimensions.

B. Structural glasses

1. Four-point density functions

Let us now discuss structural glasses. The important les-
son we learn from spin-glasses is that a nontrivial amorphous
type of long-range order can set in. In the case of glasses, the
subtlety comes from the absence of quenched disorder; how-
ever, there has now been many papers exploring the idea of
self-induced disorder which could drive a similar transition
in homogeneous, frustrated systems �see, e.g., Ref. 38, and
references therein�. This has led, in particular, to the “Ran-
dom First Order Transition” scenario,4 where a glass transi-
tion of the same nature as the spin-glass transition in mean-
field p-spin models takes place �see Ref. 7 for recent
quantitative results�. Whether a true transition of this type
can exist in real systems with finite range interactions is still
an actively debated issue; it is nevertheless extremely fruitful
to explore the properties of systems for which this transition
is, in some sense, nearly present. The order parameter in the
would-be glass phase is the amplitude of the frozen in �ran-
dom� density fluctuations ��x. As for spin-glasses, the aver-
age of this quantity is zero, but ����x	2� is not, and plays the
role of the Edwards-Anderson parameter. �The square brack-
ets above now means an average over times longer than the
relaxation time of the system, see Sec. II B 3.� Similarly, one
expects ����x��y	� not to show any interesting features �be-
yond that typical of a liquid structure factor�, whereas its
square may reveal long-range cooperative dynamics. The

analog of the spin-glass and nonlinear susceptibilities dis-
cussed previously can be easily found in the case of glasses:
the former can be seen as the susceptibility to a random
external pinning field55 that triggers the appearance of one
particular type of frozen density fluctuation, whereas the lat-
ter is directly related to the nonlinear compressibility, i.e., the
response to a pressure field that couples to the density. Other
nonlinear responses to a field that couples to the degrees of
freedom undergoing a glass transition are also relevant �for
example, the dielectric response when the dipoles are
strongly coupled to the translational degrees of freedom,
such as in glycerol, OTP, etc.�.

Let us directly focus on the dynamical susceptibility and
postpone the discussion of its static limit to Sec. II B 3. In-
deed, the analogy with spin-glasses has to be taken with a
grain of salt �see Sec. II B 3�. The dynamical four-point den-
sity function is defined as

G4�r,t� = ���x�t = 0���x�t���x+r�t = 0���x+r�t�	

− C2�t�, C�t� � ���x�t = 0���x�t�	 . �9�

The point of this paper is that this correlation function is
related to the dynamical nonlinear response of the system to
an external excitation that couples to the density.56 Once
again, the idea is that the change of the two point correlation
between x and y induced by the external field of frequency
���−1 will be large if on that time scale, the dynamics at
these two points is strongly correlated, which is true pre-
cisely if G4�x−y ,�� is large. The extended, nonlinear FDT
discussed in the next section makes this statement more pre-
cise and finally leads to our central results, Eq. �1� and Eq.
�26� below. Now, recent numerical 13–16 and theoretical
work8,9,11,20,57 have focused on the above choice of four point
density function. Its integral over space �4�t�=�ddrG4�r , t�
�divided by V� gives the variance of the correlation function
C�t� for a system of finite volume V,58 and is therefore a
good quantitative measure for dynamical heterogeneities.
This quantity was unambiguously shown to display a peak at
t=�, of increasing amplitude as the temperature is decreased
and the glass temperature is approached,13–16 signaling in-
creased cooperativity in the dynamics and the growth of a
length scale �, which should in turn show up in the nonlinear
response of the system.

2. Different scenarios for the glass transition: Qualitative
predictions

We therefore expect, on very general grounds, the nonlin-
ear response to a field that couples to degrees of freedom
undergoing a collective freezing phenomenon, to increase
substantially �as �2−�̄� as the glass phase is approached.
However, as we discuss now, the details of this increase do
depend on the specific scenario at play. Most important in
that respect is the quantitative relation between the coopera-
tive length scale � and the relaxation time �, which is often a
power-law ���z where z is the dynamical exponent.

One scenario for the glass state is based on the idea that
some mobility defects are needed to trigger the dynamics,
which slows down at low temperatures because these defects
become rare.57,59,60 Kinetically constrained models provide
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an interesting framework to quantify this idea. The class of
so-called “East” models seems able to capture some of the
phenomenology of fragile glasses and predict a temperature
dependent exponent z=z0 /T, which may become large at low
temperatures.60,61 This is very important since the relaxation
time of the system is known to increase by 15 orders of
magnitude as the temperature is reduced from 1.5Tg to Tg.
But if, say, z=15 the cooperative length � would only in-
crease by a very moderate factor 10.

Another well known scenario is based on the mode-
coupling theory �MCT� of supercooled liquids, which pre-
dicts a dynamical singularity at a finite temperature
TMCT, where the relaxation time should diverge as
���T−TMCT�−�,62 with a nonuniversal exponent �. It was
recently shown that this singularity is actually accompanied
by the divergence of a cooperative length �, precisely de-
fined in terms of the four-density correlation function above,
Eq. �9�.9 The nature of the transition is actually equivalent to
that of the mean-field p-spin glass, where both the spin-glass
and the nonlinear susceptibility diverge at TMCT

− .8,63 The ex-
ponent z is found to be equal to 2�; reasonable values of z
being in the range 4–6. However, the ideal MCT phase tran-
sition is “avoided” in real systems. Only the first 2–4 de-
cades of increase of � can be satisfactorily accounted by
MCT, before some new physics come into play, that smear
out the MCT transition. In the temperature region where
T�TMCT, the system should, according to mean-field, be
completely frozen. In finite dimensions, however, barriers to
motion are finite and the dynamics is instead strongly acti-
vated. The liquid is conjectured to be a “mosaic” of local
metastable glass states, that must rearrange collectively.2,4,10

The size of these frozen clusters is the cooperative length �,
which increases as T decreases, but now only logarithmically
with �. Therefore, within the random first order theory
�RFOT� of Ref. 4 which unifies the MCT and the mosaic
scenario, one expects a crossover between a power-law in-
crease of � for T�TMCT and a much more modest increase
of � as the temperature is reduced from TMCT to Tg. �Below
Tg, aging effects come into play and we expect that an equa-
tion similar to Eq. �2� will hold in that regime.� Finally, the
“avoided critical point” scenario of Kivelson and Tarjus also
predicts a cooperative length that grows weakly �logarithmi-
cally� with the relaxation time.6

The value of �̄ in Eq. �1� above is not known either, and
presumably depends both on the scenario and on the tem-
perature regime. Negative values of �̄
−1.58 have been re-
ported for East models.60 In the simplest mosaic state sce-
nario where clusters are compact, the exponent 2− �̄ is equal
to the dimension of space d. Rather independently of the
scenario, we therefore expect a noticeable rise of the nonlin-
ear susceptibility in supercooled liquids as the temperature is
reduced: taking �̄=0 and ��Tg� /��1.5Tg�=5 leads to an in-
crease of the peak value of �3 by a factor 
25. �Note how-
ever that depending on the particular physical observable
there might be other contributions coming from the tempera-
ture dependence of �s or, for example for the nonlinear di-
electric susceptibility, from the Lorentz field effects that may
play an important role in strongly dielectric systems.64�

3. Glasses vs spin-glasses: Some caveats

The tricky aspect of the analogy between glasses and
spin-glasses is that the static nonlinear susceptibility of
glasses is in fact not expected to display any divergence. As
a matter of fact, no growing correlation length has ever yet
been found in any static correlation function close to the
glass transition, neither in experiments nor in simulations.
This is not only because the glass transition is never sharp in
real glasses, but also because from a purely theoretical point
of view the situation is more subtle than in spin-glasses.
Within RFOT, for example, the static nonlinear susceptibility
does not diverge. The reason is that RFOT predicts an expo-
nentially large number of possible amorphous states and thus
a nonzero configurational entropy for TK�T�TMCT �Refs.
7, 65, and 66� �where TK is the “entropy crisis” temperature�.
Now, since equilibrium thermal averages are sums over all
states, one has ���x��y	�

w
���x��y	
, where the sub-
script 
 indicates that the average is restricted to the meta-
stable state 
, and w
 is the weight of state 
. Therefore:



y

���x��y	2 � 


,�



y

w
w����x��y	
���x��y	�. �10�

The divergence of the static spin-glass susceptibility is due to
the diagonal terms 
=�. In the case of spin-glasses, the
number of relevant states is effectively finite, and the above
sum diverges in the spin-glass phase. Within RFOT, on the
other hand, the number of relevant metastable states is so
huge for TK�T�TMCT that the diagonal contribution, even
divergent, tends to zero in the above sum, as does the off-
diagonal contribution since the different frozen patterns are
uncorrelated with each other. The only way to unveil any
growing correlation is to focus on the terms 
=�, a calcula-
tion that is possible in mean-field �see previous footnote�. In
nonmean-field situations, this can be done in two ways: one
can study �a� the static correlations but in a self-induced
static pinning field �freezing all the particles outside a cavity
and studying the thermodynamics inside10�, which select a
particular state 
 or �b� the dynamical correlations on a time
scale short enough for the system to equilibrate but remain in
a single state.8 For example, the four-point correlation func-
tion defined in Eq. �9� for t��, effectively reproduces, for �
large enough, the static sum restricted to 
=�,8 since � is the
time needed to evolve from state 
 to any other state. More
precisely, one sees that in this time regime, G4 can be written
in a form closer to the corresponding expression for spin-
glasses:

G4�r,t� 
 ����x�t����x+r�t��	
���x�t� + t���x+r�t� + t�	
�t�,

�11�

where the disorder average �¯� in the case of spin-glasses is
replaced by an average over time, �¯�t�, corresponding to
different configurations of the self-induced disorder in
glasses. Therefore, we expect that the analogy with static
spin-glasses indeed makes sense, but only for t��. A prac-
tical consequence of this observation is that the scaling func-
tion H�x� in Eq. �1� should tend to zero at zero frequency for
glasses, at variance with the spin-glass case where it remains
finite at T=Tg

+ and for zero field.

NONLINEAR SUSCEPTIBILITY IN GLASSY… PHYSICAL REVIEW B 72, 064204 �2005�

064204-5



Even the spin-glass case turns out to be tricky since, as
mentioned above, the scaling function H�x→0� in fact also
goes to zero for H�0 in the context of the full replica sym-
metry breaking solution.47,48 Nevertheless, our dynamical re-
sult Eq. �26� suggests this sum rule will generically not hold
at finite frequency whenever the four-point correlation func-
tion has a nontrivial time dependence. This statement should
of course be checked explicitely for mean-field models with
continuous replica symmetry breaking.54 If indeed H�x�1�
is found to be nonzero close to the AT line, the experimental
study of the dynamical nonlinear susceptibility, predicted to
diverge for ���1, would offer a direct way to prove or
disprove the existence of an AT line in real systems �see Ref.
67 for a recent discussion�.

III. THEORETICAL ANALYSIS

In the rest of this paper, we give some theoretical justifi-
cations of our central result, Eq. �1�. These arguments also
suggest that in the nonequilibrium phase, Eq. �2� will hold.
We will use the Langevin equation formalism for continuous
spins,52 but our result are expected to hold more generally
�for example, if the continuous spins are replaced by inter-
acting particles with Newtonian dynamics�.

A. Linear response

We assume that the equation of motion of spin si is given
by

�tsi = − �si
H + �i�t� , �12�

where H is the Hamiltonian of the system, which we do not
specify explicitly. In the case of spin glasses it contains
quenched disorder and possibly one body terms ensuring an
Ising-type character to the spins si. The coupling to an exter-
nal, site dependent field hi�t�, amounts to add to H the sum
over spins of hi�t�si. The Gaussian noise �i is as usual of zero
mean, white in time and decorrelated from spin to spin,

��i�t1�� j�t2�	 = 2kBT��t1 − t2��i,j . �13�

Since the noise is Gaussian, one can establish the following
identity:

�si�t1�� j�t2�	 = kBT� �si�t1�
�hj�t2�� . �14�

Let us first quickly re-establish the standard linear FDT.
From the above equation and the equation of motion, the
response of a spin to an earlier field is

�ij�t1,t2� = � �si�t1�
�hj�t2�� =

1

kBT
�si�t1���t2

sj + �sj
H�t2��	 .

�15�

The averaging above assumes the system to be in equilib-
rium: we average over all histories with initial conditions
appearing with the equilibrium Boltzmann weight. The sec-
ond term in the right-hand side is zero since, for an arbitrary
observable O��ta�� that depends on times ta, all posterior to
t2, one has

�O��ti���sj
H�t2�	 � − kBT� �

a

ds�ta�P��s�ta���s2�O��s�ta���

�ds2�s2
exp�− H�s2�/kBT� = 0, �16�

where s2=s�t2� and the last equality holds because the last
term is a total derivative. Therefore, one finds the usual FDT
relation,

�ij�t1,t2� =
1

kBT

d

dt2
�si�t1�sj�t2�	 . �17�

Integrating this quantity over t2 with a constant field
hi�t2�=h gives the static susceptibility �s, which, as is well
known, is found to be the integral over space of the two-
body correlation function. In the case of a static critical point
where the correlation length � diverges, one would have
�s��2�2−� /kBT, where � is the standard critical exponent of
the static transition and � the elementary magnetic moment.
However, in the case of glassy systems, the two point func-
tion is not critical and one rather expects �s��2�d /kBT
where � remains microscopic and does not grow appreciably
lowering the temperature �or increasing the density�. As em-
phasized in Sec. II, one should in the case of amorphous
systems rather focus on nonlinear effects to observe some
nontrivial behavior.

B. Nonlinear response: The static limit

As a consequence we want to extend the above calcula-
tion to the response at time t1� t2 to three field “kicks” at
times t2� t3� t4. This is given by

�3,ijkl�t1,t2,t3,t4� = � �3si�t1�
�hj�t2��hk�t3��hl�t4��

= �kBT�−3�si�t1�� j�t2��k�t3��l�t4�	 .

�18�

Using three times the Langevin equation of motion, and once
the above trick to get rid of the final �sl

H�t4�, we find the
following general relation, involving four terms:

�kBT�3�3,ijkl�t1,t2,t3,t4� =
d3

dt2dt3dt4
�si�t1�sj�t2�sk�t3�sl�t4�	

+
d2

dt3dt4
�si�t1��sj

H�t2�sk�t3�sl�t4�	

+
d2

dt2dt4
�si�t1�sj�t2��sk

H�t3�sl�t4�	

+
d

dt4
�si�t1��sj

H�t2��sk
H�t3�sl�t4�	 .

�19�

Let us first analyze the static limit of this expression. From
the above result, one can show in full generality that the
static nonlinear susceptibility �3s=�3��=0,T�, obtained by
integrating over all t2� t3� t4 with a constant field hi�t�=h
on all sites, is given by
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�kBT�3�3s =
1

N


ijkl

�si�t1�sj�t1�sk�t1�sl�t1�	c, �20�

where the subscript c means that one takes the connected
part of the correlation and N the total number of sites. This
result is exact and can be obtained directly using equilibrium
statistical mechanics. In the present context, only the first
term in expression Eq. �19� for �3,ijkl�t1 , t2 , t3 , t4� contributes
to �=0. As discussed in Sec. II, the long range order setting
in spin-glasses is unveiled not by the two-body correlation
that oscillates in sign and averages to zero, but by the square
of this two-body correlation. Therefore, the leading dominant
term in the above sum corresponds to the square of the two-
body correlation obtained pairing i, j, k, l, say, i with j and k
with l within the two-body correlation length � �which typi-
cally remains small at all temperatures�:

�kBT�3�3s 
 −
3

N
�2d


ik

Gik Gik = �si�t1�sk�t1�	c
2. �21�

If one now assumes that Gik scales as in usual critical
phenomena22,47

Gik =
1

�ri − rk�d−2+�̄
G� �ri − rk�

�
� , �22�

then the sum over i, k behaves as N�2−�̄, finally leading to a
static nonlinear susceptibility given by

�3s 

C�4�2d

�kBT�3 �2−�̄ �
�s

2

kBT
�2−�̄, �23�

where C is a constant, and � is counted in units of the static
correlation length �. This is the zero frequency result given
in Eq. �1�.

C. Nonlinear response: Dynamics

1. Some general arguments

The extension to nonzero frequency of the above result
can proceed in different ways. Our result Eq. �1� can be
simply seen as a standard dynamical scaling assumption
close to a critical point, as is indeed correct for
spin-glasses.43,44 This result is expected to hold whenever a
critical point is responsible for the simultaneous increase of
the relaxation time and the cooperative length. This is true of
the mode-coupling theory of glasses,8,9 and also of other sce-
narios discussed in the introduction and in Sec. II, which rely
on the existence of an underlying critical point.4–7,10,11 From
a more technical point of view we want to justify that the
behavior of the nonlinear cubic response is the same as of the
first term on the right-hand side of Eq. �19�, whereas the
three other terms are either negligible or of the same order of
magnitude �on frequencies of the order of �−1�, but not more
divergent.

A simple case that can be treated in some generality is
when the fluctuation of the norm of the spins can be ne-
glected, for example for Ising spins that can be recovered
from the Langevin equation in the limit of infinitely sharp
double well potential that is zero if s2=1 and infinite other-

wise. After several integration by parts and using s2=1, one
can show that the three last terms of Eq. �19� do not contrib-
ute to the nonlinear ac susceptibility at low frequencies
�much smaller than the microscopic, high frequency scale of
the model�. One is therefore left with the first term of Eq.
�19�, that contains three derivatives with respect to time. If
one assumes that the four-body correlation
�si�t1�si�t2�sk�t3�sk�t4�	 is, for �i−k���, only a function of
�t1− t2� /�, �t2− t3� /� and �t3− t4� /�, the integration over t2, t3,
t4 with an oscillating field at frequency � and over space
directly leads to Eq. �1�, i.e., a nonlinear susceptibility that
scales as a certain function H of ��. This result is only
justified in the low frequency domain; for high frequency,
contributions from the short-time �-regime will obviously
come into play. Note that very generally, we expect H to be
nontrivial, although it does vanish at zero frequency when-
ever the static susceptibility is finite, as is the case for glasses
and spin-glasses in an external field �see the discussion in
Secs. II A 2 and II B 3�.

More generally, one can argue both physically and dia-
grammatically that the three last terms of Eq. �19� give con-
tributions which are at most of the same order of magnitude
as the first one. From a physical point of view, these terms
contain less time derivatives that the first, but also contain
the local “force” acting on the configuration, �sH�t�. Since
we are interested in the low frequency response of the sys-
tem, we can decompose the dynamics of the spins into a fast
part sf and a slow part s*, that corresponds to the dynamics
on a time of order �. It is clear that the force acting on the
slow modes can only lead to a slow dynamics of these
modes, i.e., ��s*H���−1. Therefore, for frequencies ��−1,
one has, for example,

�si�t1��sj
H�t2�sk�t3�sl�t4�	 � �−1F� t1 − t2

�
,
t2 − t3

�
,
t3 − t4

�
� ,

�24�

�where F is a certain function�, which after integration leads
again to a result of the form �1�.

2. Diagrammatic analysis

One can understand the above result from a different point
of view using diagrams for a general Langevin equation,
which leads to a dynamical field theory with the spin field s
and the response field ŝ.68 The nonlinear cubic response �3 at
time t1 to three instantaneous fields at times t2 , t3 , t4 can be
written in full generality as �see Fig. 1�

�3�t1;t2,t3,t4� =� dt1�dt2�dt3�dt4��ŝ,s,s,s�t1�;t2�,t3�,t4����t1 − t1����t2�

− t2���t3� − t3���t4 − t4�� , �25�

where �ŝ,s,s,s is the amputated vertex with legs ŝ, s, s, s �for
simplicity we skip here the space indices�. Note that the ver-
tex �s,s,s,s is zero by causality because it contains for sure a
closed loop of response functions. The other vertices do not
appear because the correlation function �ŝŝ	 vanishes by cau-
sality.
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Now let us consider the diagrams contributing to the con-
nected four body correlation function. There is a first contri-
bution G4

a obtained by plugging three two body correlation
functions into �ŝ,s,s,s, see Fig. 2. It is straightforward to
check, using FDT, that this first series of diagrams, G4

a, is
directly related to the nonlinear cubic response. If G4

a was the
only contribution, then one would find an extended FDT

where only the first term on the right-hand side of Eq. �19�
contributes.

There is another contribution, G4
b, that corresponds to con-

structing ladders with the irreducible vertices �s,s;ŝ,ŝ
irr , �s,s;s,ŝ

irr ,
�ŝ,ŝ;s,ŝ

irr , �ŝ,ŝ;ŝ,ŝ
irr , �ŝ,ŝ;s,s

irr on the left of �ŝ,s,s,s and the irreducible
vertices �s,s;ŝ,ŝ

irr , �s,ŝ;ŝ,ŝ
irr , �ŝ,ŝ;ŝ,ŝ

irr , �ŝ,ŝ;s,ŝ
irr , �ŝ,s;s,ŝ

irr , �s,s;s,ŝ
irr , on the

right of �ŝ,s,s,s �see Fig. 3�. �We recall that the irreducible
vertex �1,2;3,4

irr is the sum of all Feynman diagrams contribut-
ing to �1,2;3,4 �the amputated vertex� that has the property
that cutting two internal lines does not separate the diagram
into two disconnected parts, such that one part contains the
lines 1,2 and the other one the lines 3,4.� Finally, the last
contribution, G4

c, is formed by plugging together the same
irreducible diagrams used in G4

b but without making use of
�ŝ,s,s,s.

In the case of the critical equilibrium dynamics of spin-
glasses, Eq. �1� is already known43,44 and could have been

guessed a priori from the general scaling properties of sec-
ond order phase transitions with a single diverging length
�and time� scale. As a consequence in this case G4

b, G4
c are of

the same order or less divergent than G4
a. The case of struc-

tural glasses is a priori more tricky, since there is no consen-
sus on the effective critical microscopic model that would
describe them. However, if we take as an established fact �at
least numerically� that the four body correlation is governed
by a length scale that increases as the glass is approached,
then this effect has to be contained in �at least� one of the
three contributions G4

a, G4
b, G4

c. Now, the nonlinear response
certainly contains the contribution related to G4

a; therefore
both �3 and G4 grow �or even diverge� similarly unless an-
other family of �more� diverging diagrams �the ones contrib-
uting to G4

b, G4
c� can be constructed. We believe that this is a

rather unlikely scenario and instead expect that in general
�ŝ,s,s,s contains the leading divergence. As a consequence G4

a

and G4
b, and therefore �3 and G4, are of the same order of

magnitude whereas G4
c is subdominant. In this case Eq. �1�

holds. Strictly speaking, these arguments only prove that if
the nonlinear cubic dynamical response diverges, a similar
�or stronger� divergence is expected for the four body corre-
lation function, but not vice versa. Therefore it would be
important to check our prediction for specific models of the
glass transition, in the spirit of Ref. 20. Although the above
general arguments are clearly incomplete, we want to em-
phasize here they are indeed correct within the mode-
coupling theory of the glass transition. This can be seen us-
ing the ideas of Ref. 10 which establish the validity of our
central result, Eq. �1�.

Finally, let us remark that the extension to the nonequilib-
rium case can be tackled in a similar way. In particular, since
the four-body correlation function diverges with tw �Ref. 69�
in spin-glasses, and the classification in terms of G4

a, G4
b, G4

c

carries over to the nonequilibrium case, the above discussion
can be generalized to the nonequilibrium case as well.

In summary, we have shown in this section that for glassy
systems close to a critical point, where the relaxation time
and cooperative length diverge, an extended approximate
FDT relates the nonlinear susceptibility to the four-point cor-
relation function in the low frequency domain,

�kBT�3�3,ijkl�t1,t2,t3,t4� �
d3

dt2dt3dt4
�si�t1�sj�t2�sk�t3�sl�t4�	 ,

�26�

where � means that right and left-hand side have the same
critical behavior. The additional terms missing in the above
equation are either of the same order of magnitude, or neg-
ligible.

IV. CONCLUSION

In conclusion, we have shown in this paper that if the
abrupt slowing down of glassy materials is accompanied by
the growth of a cooperative length �, then the nonlinear, 3�
response to an oscillating field �at frequency �� should sub-
stantially increase and give precious information on the tem-
perature �or density� dependence of �. The theoretical moti-

FIG. 1. General diagrammatic representation of the nonlinear
cubic response.

FIG. 2. Diagrammatic representation of G4
a.
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vation is that the nonlinear susceptibility is approximatively
related, for glassy systems close to a critical point, to the
four-point correlation function that captures dynamical coop-
erativity. This relation is certainly correct within the context
of the mode-coupling theory of glasses, but should hold in
other cases as well.

In supercooled liquids, the analysis of the nonlinear com-
pressibility �sound wave harmonics� should allow one to
probe directly the existence of a growing cooperative length.
This should also be true of the nonlinear dielectric suscepti-
bility, at least in systems where the dipoles are strongly
coupled to the glassy degrees of freedom. Although early
experiments seemed to show no interesting effects,45 we be-
lieve that more systematic studies should be performed,64

especially now that numerical simulations have unambigu-
ously shown the growth of a cooperative length in the four-
point function.11,13–16 These experiments should also allow
one to bridge the gap between the length-scales observed on
simulation time scales and the length-scales observed experi-
mentally on much larger time-scales close to the glass tran-
sition temperature.12 The study of nonlinear specific heat ef-
fects, although more complex, may be interesting too.70,71

From a more general point of view any nonlinear dynamical
response �for example, nonlinear rheology in soft glassy ma-
terials� should be worth studying if the corresponding linear
response can be used as a probe of slow dynamics.

In spin-glasses, nonlinear ac magnetic susceptibility mea-
surements in nonzero field could shed light on the existence
of a de Almeida-Thouless line. In the aging phase, such mea-
surements should allow one to test in more details the length

scale ideas put forward in Refs. 22–27. Compared to the case
of glasses, the experimental situation is particularly encour-
aging since the nonlinear susceptibility is already known to
diverge at the spin-glass transition. There should be a clear
trace of this divergence in the aging phase, except if some
unlikely cancellation occurs at nonzero frequency �such a
cancellation indeed operates in the static limit for spin-
glasses in mean-field, but not in finite dimensions�. The ef-
fect of temperature cycling on the nonlinear susceptibility
should then give direct indications of the mechanisms of
rejuvenation and memory.25,26 We therefore hope that the
ideas expressed in this paper will help shed light on the issue
of dynamical heterogeneity and cooperativity in disordered,
amorphous systems.
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