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The interference pattern eventually leading to nuclear emission holography results from the interference of
radiation, produced by an excited source nucleus, that goes directly to a detector and radiation that is first
resonantly scattered by neighboring identical nuclei in the ground state before going to the detector. The
interference between these two processes gives rise to fluctuations in the radiated intensity as a function of the
emission angle, giving information about the surrounding of the emitting nucleus. The quantum mechanical
theory of the interference pattern using �-radiation is developed in frequency domain. It is shown that if the
wavelengths of the relevant vibrational modes, which are excited due to the recoil of nuclei, are large compared
with the relative distances of the absorber nuclei, with respect to the source nucleus, processes without as well
as with recoil can give a contribution to the interference pattern. For nuclei that are situated at large distances
from the source nucleus, only processes without recoil have to be considered.
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I. INTRODUCTION

Probably the earliest articles mentioning the possibility of
the determination of chemical structures using gamma radia-
tion go back to the early 1970’s. Hannon and coworkers used
already the term holography in their papers,1 dealing with the
description of the emission of � rays from crystals based on
covariant quantum electrodynamics.2

Internal source holography3 was proposed as a tool for
three-dimensional imaging of atomic structures. It was per-
formed with electrons,4 and later with x rays,5 � rays,6 and
neutrons.7

In the implementation of �-ray holography, the Möss-
bauer effect and the internal detector principle of holography
have been utilized.6,8,9 Simulations10,11 and subsequently
experiments12 were performed to study three-dimensional
imaging of local iron arrangements in sublattices of magne-
tite.

Recent reviews of x-ray and �-ray holography can be
found in Refs. 13 and 14. Internal source holography using �
radiation is based on the interference between two processes.
The first process corresponds to the emission of a photon by
a radioactive nucleus, embedded in a solid-state lattice, go-
ing directly to a far-field detector. This is the reference wave.
The second process corresponds to radiation produced by
resonant scattering of the emitted photon by neighboring nu-
clei, before it goes to the detector. This is the object wave.
This version of holography has not been realized so far. In
Ref. 15, an expression for the interference pattern of the
reference and object waves was calculated using a fully
quantum mechanical approach. In the analysis presented in
Ref. 15, it was assumed that emission and scattering occur
without recoil, i.e., the Mössbauer effect. If the state of the
lattice would be taken into account, the Mössbauer-Lamb
factor would appear naturally in the theory.

In the present paper, the influence of the lattice on the
formation of the interference pattern will be investigated.
The expressions of Ref. 15 will be generalized by including

the lattice terms. Furthermore, it will be shown that if the
wavelengths associated to the relevant vibrational modes, ex-
cited because of the recoiling nucleus, are large compared to
the relative distance of the absorber nuclei with respect to the
source nucleus, there will be a contribution to the interfer-
ence pattern due to processes with recoil. The interpretation
of this would be that the vibrational effects because of the
recoil by the source nucleus are the same for all absorber
nuclei situated in the vicinity of the source nucleus. This
situation would only be realized for nuclei in the immediate
surrounding �at distances of the order of a few ångstroms� of
the source nucleus, which are precisely the nuclei that are
considered for the construction of the hologram.

With our scheme, an interference pattern could be ob-
tained using a Mössbauer isotope incorporated in a sample
having a recoilless fraction that is small because of, e.g., the
sample being at high temperature. Also � radiation with
higher energies than those utilized in Mössbauer spectros-
copy could be used, although it should be mentioned that the
nuclear scattering cross section decreases with increasing en-
ergy.

As has been mentioned before, a hologram results from
the interference between a well-defined reference wave and
various components of this wave that are scattered by the
object to be imaged. The main problem arising in the recon-
struction of the image is the presence of twin images,16

which cause the disappearance of images in real-space recon-
struction. Recently,17 a solution to twin images problem in
�-ray holography has been given. If interference patterns us-
ing multiple �-ray energies would become possible, they
could be used to suppress twin image effects as well as other
aberrations and artifacts in reconstructed images.18

II. ESTABLISHMENT OF THE EQUATIONS

A. Mathematical formalism

The method discussed in this paper makes use of the
Schrödinger equation in frequency domain.19–22 This has the
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advantage of transforming coupled differential equations for
the coefficients into a set of linear algebraic equations.

If a quantum mechanical system is described by a Hamil-
tonian H, which is the sum of an unperturbed part H0 and a
perturbation V, the actual state of the system can be devel-
oped into eigenstates ��l�0��, of H0

���t�� = �
l

al�t�e−iElt/���l�0�� �1�

with

H0��l�0�� = El��l�0�� . �2�

Substituting Eq. �1� into the Schrödinger equation leads to
the well-known coupled differential equations

i�
dal

dt
= �

q

aq�t�ei��l−�q�t��l�0��V��q�0�� , �3�

where �l−�q= �El−Eq� /�.
Generally, the system is initially in a well-defined eigen-

state of H0, say ��n�. This means that al�0�=0 and an�+0�
=1, where t= +0 means that t approaches zero from the posi-
tive side.

Following Heitler,19 the solution will be extended to the
negative time axis. All al’s will be chosen such that al�t�
=an�t�=0 for t	0. Heitler showed that adding an inhomo-
geneous term to the right-hand side of expression �3� takes
into account the initial condition and the discontinuity of
an�t� at t=0. One has

i�
dal

dt
= �

q

aq�t�ei��l−�q�tVlq + i�
ln
�t� , �4�

where

Vlq = ��l�0��V��q�0�� �5�


ln is the Kronecker delta, which takes into account the initial
condition, and 
�t� the Dirac delta function, which correctly
describes the discontinuity at t=0.

Again following Heitler,19 a particular type of Fourier
transform is introduced

al�t� = −
1

2�i
�

−�

�

d�Al���ei��l−��t. �6�

Al��� is the amplitude in frequency domain. It can be shown
that one has now a set of coupled linear equations relating
these amplitudes.

�� − �l + i
�Al��� = �
q

Aq���
Vlq

�
+ 
ln. �7�

The infinitesimal positive quantity 
 has been introduced to
guarantee causality when going back to time again. This

general formalism will be applied to the study of the inter-
actions of electromagnetic radiation with nuclei embedded in
a solid-state lattice, taking into account the state of the lat-
tice.

B. Base states

As the initial state we consider an excited nucleus, the
“source nucleus,” surrounded by identical ground state nu-
clei m, the “scattering” nuclei, with no photons or conversion
electrons present. Initially, the lattice is described by a state
��s	, which gives the phonon occupations of the different
phonon modes s. The source nucleus is at the origin of a
coordinate system, the scattering nucleus m is at r�m. To sim-
plify the notations and the equations a bit, we will not take
into account the conversion electrons, although the complete
analysis could be done including them. We will show later
how the expressions are modified if the conversion electron
processes are taken into account. The initial state of the glo-
bal system nuclei-radiation field-solid-state lattice can be
written as

����s	
� = �e0,�gm	,�0	,��s	� . �8�

Although the notation looks cumbersome, it should be
straightforward: The first symbol inside the ket of the right-
hand side of Eq. �8� represents the source nucleus excited,
the second symbol represents all scattering nuclei in the
ground state, the third symbol represents the vacuum of the
electromagnetic radiation field �no photons in any of the field
modes�, and, finally, the fourth symbol represents the lattice
expressed in terms of phonon occupations of the vibrational
modes s. ����s	

� is the base state from which the system will
evolve. At finite temperatures, the state of the lattice is not
unique and, rather than having a unique lattice state ���s	�,
one has a statistical mixture of lattice states, described by a
Boltzmann distribution g���s	�, which gives the occupation
of the phonon modes s. It will be shown further how this will
affect the calculation. Other base states can be considered.
There are “intermediate” states where nucleus m is excited,
all other nuclei in the ground state, no photons present and
the lattice in the same state as before.

��m,��s	
� = �g0,em,�gm��m	,�0	,��s	� , �9�

where g0 ,em , �gm��m	 means that the source nucleus is in the
ground state, nucleus m excited and all other scattering nu-
clei in the ground state. One need not consider states where
there is a different lattice state, say, �ns	� ��s	, because we
do not consider a transition without resonant character. The
nonresonant character would imply a negligible amplitude
for this transition. This can be shown after a straightforward
albeit lengthy calculation.

States corresponding to the presence of a photon having
wave vector k�, all nuclei in the ground state and the lattice in
a state ��s	 should also be considered. There are a great
number of these states, because of the many possibilities for
��s	. They are denoted
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��k�,��s	
� = �g0,�gm	,k�,��s	� . �10�

The interpretation of expression �10� should be obvious. The
first symbol inside the ket of the right-hand side of expres-
sion �10� represents the source nucleus in the ground state,
the second symbol represents all absorber nuclei in the
ground state, the third symbol represents the photon with
wave vector k�, and the fourth symbol the lattice state. By
allowing these base states, it is implicitly allowed, among
other things, that creation of phonons is possible due to emis-
sion by the source nucleus and that these phonons can be
absorbed again by nucleus m, so that it can be excited. In
other words, we allow for nuclear resonant scattering with
phonon creation and annihilation. Strictly speaking, we
should have characterized the photon state by a second sub-
script, describing the photon polarization. This would be nec-
essary if the nuclear system is submitted to hyperfine inter-
actions. In this paper we will not consider this for simplicity.

The state vector of the global system can be developed as
a function of the base states, which are eigenstates of the
unperturbed Hamiltonian H0. We have not given the explicit
expression of H0. It is a lengthy expression, which is the sum
of the Hamiltonians of the “free” nucleus, the “free” radia-
tion field, and the “free” solid-state lattice.

The coefficients corresponding to each base state are time
dependent functions. Applying the formalism sketched in
Sec. II A, amplitudes in frequency domain can be assigned to
these coefficients. In the next section the fundamental equa-
tions in frequency domain will be established.

C. Fundamental equations

Specializing the formalism of Sec. II A to the global sys-
tem nucleus-radiation field-solid-state lattice, one has the fol-
lowing set of coupled equations relating the amplitudes in
frequency domain:

�� − �k� + i
�Ck�,��s	
��� = Vk�,��s	

* A��s	
���

+ �
m

Vm,k�,��s	
* Bm,��s	

��� , �11�

�� − �0 + i
�A��s	
��� = �

k�
�
��s	

Vk�,��s	
Ck�,��s	

��� + 1,

�12�

�� − �0 + i
�Bm,��s	
��� = �

k�
�
��s	

Vm,k�,��s	
Ck�,��s	

��� . �13�

We have incorporated � 
see expression �7�� into the cou-
pling constants Vk�,��s	

and Vm,k�,��s	
and their complex conju-

gate. In expression �11�, we have assumed that the source
nucleus and the scattering nuclei experience the same pho-
non ensemble, which is of course defined by the state of the
lattice in which the nuclei are incorporated, hence the same
subscript ��s	 in the right-hand side.

It has to be noticed here that the same value for �0 occurs
in Eqs. �12� and �13�. The coupling constants appearing in
expressions �11�–�13� can be written explicitly as

Vk�,��s	
= �e0,��s	�Hint�g0,��s	� . �14�

In the ket and the bra of expression �14�, we do not have
explicitly written the photon part and the part associated to
the scattering nuclei.

The interaction Hint can be written in general terms as
usual as

Hint = �p� −
q

m0
A�
2

�15�

with p� the momentum operator of the radiating system, q its

electric charge, mo its mass, and A� the vector potential. Fol-
lowing a standard procedure �see, e.g., Ref. 23�, which is
basically the development of the vector potential in terms of
plane waves, also used in the theoretical description of the
Mössbauer effect, it can be shown that the matrix element
�14� can be written in terms of a nuclear part, Kk�,nucl, and a
lattice part, ���s	�eik�·u�0���s	�, where u�0 is the displacement
from equilibrium of the source nucleus. So expression �14�
becomes then

Vk�,��s	
= Kk�,nucl���s	�eik�·u�0���s	� . �16�

Analogously

Vm,k�,��s	
= Kk�,nucle

ik�·r�m���s	�eik�·u�m���s	� , �17�

where eik�·r�m is a factor describing the equilibrium position r�m
where absorption took place and u�m is the displacement from
equilibrium of nucleus m.

The frequencies involved in expressions �11�–�13� are ex-
plicitly

�0 = �0,nucl + ���s� , �18�

�k� = �k�,phot + ���s� , �19�

where ��0,nucl is the energy of the excited nuclear state of the
“free” nucleus, ��k�,phot is the photon energy, and ����s� and
����s� are the phonon energies corresponding to the initial
and final phonon distribution, respectively.

Explicitly, the Eqs. �11�–�13� become now

�� − �k� + i
�Ck�,��s	
���

= Kk�,nucl
* ���s	�e−ik�·u�0���s	�A��s	

���

+ �
m

Kk�,nucl
* e−ik�·r�m���s	�e−ik�·u�m���s	�Bm,��s	

��� ,

�20�
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�� − �0 + i
�A���

= �
k�

�
��s	

Kk�,nucl���s	�eik�·u�0���s	�Ck�,��s	
��� + 1, �21�

�� − �0 + i
�Bm,��s	
���

= �
k�

�
��s	

Kk�,nucle
ik�·r�m���s	�eik�·u�m���s	�Ck�,��s	

��� .

�22�

Equations �20�–�22� are the fundamental equations describ-
ing the complete system. In the next section, these equations
will be solved under simplifying assumptions.

III. SOLUTION OF THE EQUATIONS

A. Solution for A
ˆ�s‰

„�…

Solving Eq. �20� for Ck�,��s	
��� gives

Ck�,��s	
��� =

1

� − �k� + i

Kk�,nucl

* ���s	�e−ik�·u�0���s	�A��s	
���

+
1

� − �k� + i

�
m

Kk�,nucl
* e−ik�·r�m���s	�e−ik�·u�m���s	�

�Bm,��s	
��� . �23�

Substituting expression �23� into Eq. �21� gives

�� − �0 + i
�A��s	
��� = �

��s	
�

k�

1

� − �k� + i

�Kk�,nucl�2���s	�e−ik�·u�0���s	����s	�eik�·u�0���s	�A��s	

���

+ �
m

�
��s	

�
k�

1

� − �k� + i

�Kk�,nucl�2���s	�e−ik�·u�m���s	����s	�eik�·u�0���s	�e−ik�·r�mBm,��s	

��� + 1. �24�

If we were allowed to neglect the second series of the right-
hand side of Eq. �24�, then we would have

�� − �0 + i
�A��s	
���

= �
��s	

�
k�

1

� − �k� + i

�Kk�,nucl�2���s	�e−ik�·u�0���s	�

����s	�eik�·u�0���s	�A��s	
��� + 1. �25�

The magnitude of k� varies within a small range that is deter-
mined by the linewidth of the nuclear excited state in the
case of recoilless processes or, in the case of processes with
recoil, by an energy of the order of the energy of the
phonons, which is still an order of 106 times smaller than the
nuclear energy. Furthermore, we suppose that the lattice in
which the nuclei are embedded is isotropic. Then the lattice
part ���s	�eik�·u�0���s	� and its complex conjugate can be evalu-
ated for some value k�0, whose magnitude is defined by the
center of the nuclear linewidth and whose direction is arbi-
trary. The lattice part can then be put in front of the sum over
k�. The reason why ���s	�eik�·u�0���s	� does not depend on di-
rection has to do with the fact that the phonon states are
related to the properties of the entire solid-state lattice. Be-
cause of its isotropy, nothing should depend on the direction
of k�.

Expression �25� can then be written as

�� − �0 + i
�A��s	
���

= �
��s	

���s	�e−ik�0·u�0���s	����s	�eik�0·u�0���s	�

��
k�

1

� − �k� + i

�Kk�,nucl�2A��s	

��� + 1. �26�

It is shown in Appendix A that

�
k�

1

� − �k� + i

�Kk�,nucl�2 = ��0 − i

�R

2
, �27�

where ��0 and �R are real quantities. The explicit expression
for �R can be shown to be

�R =
V

�c3 �Kk�,nucl��0,nucl��2�0,nucl
2. �28�

This definition of �R coincides with the linewidth �divided by
�� defined in Ref. 15. It is the usual radiative linewidth.24 It
can be mentioned here that the presence of V, a volume, in
the expressions above and below is only apparent because
the matrix element Kk�,nucl��0,nucl� contains 1/�V.24

With expression �27� and the closure relation
���s	

���s	����s	�=1, expression �26� can then be written as

�� − �0 + i
�A��s	
��� = ���0 − i

�R

2

A��s	

��� + 1. �29�

When moving the term with A��s	
��� to the left-hand side of

expression �29�, one has
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A��s	
��� =

1

� − �0 + i
�R

2

, �30�

where the energy shift ��0 has been incorporated into �0.
When going back to time domain, the exponential radiative
decay results.

If the second term of the right-hand side of expression
�24� would be retained, the expression for A��s	

��� would
contain all Bm,��s	

���. This term describes the absorption by
the source nucleus of radiation scattered by the absorber nu-
clei. An iteration procedure, based on expression �31� of the
next section, would show that the effective linewidth of the
source nucleus would be altered because of the presence of
the resonant absorber nuclei. It can be shown that this effect
is only appreciable if the distance of the absorber nuclei to

the source nucleus is less than 1 Å, which does not occur in
a solid. Therefore, this reabsorption term will be neglected,
as was the case in the model developed in Ref. 15. It means
that we neglect the processes where a photon emitted by the
source nucleus is reabsorbed by it after being scattered by an
absorber nucleus.

Expression �30� is the usual expression of the source am-
plitude. It gives a Lorentzian frequency distribution, centered
on the energy �0. If the conversion electron processes would
have been included, �R would have been replaced by the
total linewidth �, which is the sum of the radiative width and
the width due to the processes with electron conversion.

B. Solution for Bm,ˆ�s‰
„�…

Substituting expression �23� into expression �22� gives

�� − �0 + i
�Bm,��s	
��� = �

k�
�
��s	

�Kk�,nucl�2eik�·r�m
1

� − �k� + i

���s	�eik�·u�m���s	����s	�e−ik�·u�0���s	�A��s	

���

+ �
k�

�
��s	

�
m�

�Kk�,nucl�2
1

� − �k� + i

eik�·�r�m−r�m�����s	�e−ik�·u�m����s	����s	�eik�·u�m���s	�Bm�,��s	

��� . �31�

We will calculate successively the first sum, denoted Im, and
the second sum over k�, ��s	 in the right-hand side of expres-
sion �31�. The second sum can be split in terms with m
=m�, denoted Im,m, and terms with m�m�, denoted Im,m�. We
have then

�� − �0 + i
�Bm,��s	
��� = ImA��s	

��� + Im,mBm,��s	
���

+ �
m��m

Im,m�Bm�,��s	
��� . �32�

As before, the lattice contributions can be evaluated at some
central value k�0. Im,m has been calculated before 
see expres-
sion �26� and the discussion following it�. It will again give
rise to a shift, to be incorporated into �0, and a radiative
width �R /2 when brought to the left-hand side of expression
�32�, which can be written then as

�� − �0 + i
�R

2

Bm,��s	

���

= ImA��s	
��� + �

m��m

Im,m�Bm�,��s	
��� . �33�

Im is explicitly given by

Im = ���s	�eik�0·�u�m−u�0����s	��
k�

1

� − �k� + i

�Kk�,nucl�2eik�·r�m,

�34�

where the closure relation ���s	
���s	����s	�=1 has again been

applied.
The remaining sum over k� can again be transformed into

an integral, where we can replace �k� by �k�,phot.

�
k�

�Kk�,nucl�2eik�·r�m
1

� − �k�,phot + i


=
V

�2��3 � � � �Kk�,nucl�2
1

� − �k�,phot + i

eik�·r�md3k� .

�35�

The integral of the right-hand side of expression �35� has
been calculated in Ref. 15. One has

V

�2��3 � � � �Kk�,nucl�2
1

� − �k�,phot + i

eik�·r�md3k� = −

�R

2

ei�rm/c

�rm/c
.

�36�

Substituting expression �36� into expression �34� gives
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Im = −
�R

2

ei�rm/c

�rm/c
���s	�eik�0·�u�m−u�0����s	� . �37�

We still have to calculate Im,m�. Using again the closure re-
lation ���s	

���s	����s	�=1, Im,m� is explicitly given by

Im,m� = ���s	�eik�0·�u�m−u�m�����s	�

��
k�

�Kk�,nucl�2
1

� − �k� + i

eik�·�r�m−r�m��. �38�

The remaining sum over k� can again be transformed into an
integral, which has the same structure as the one in expres-
sion �35�. Therefore, we have

Im,m� =
− �R

2

ei��r�m−r�m��/c

��r�m − r�m��/c
���s	�eik�0·�u�m−u�m�����s	� . �39�

When expressions �37� and �39� are substituted into expres-
sion �33�, we have

�� − �0 + i
�R

2

Bm,��s	

���

= −
�R

2

ei�rm/c

�rm/c
���s	�eik�0·�u�m−u�0����s	�A��s	

���

−
�R

2 �
m��m

ei��r�m−r�m��/c

��r�m − r�m��/c
���s	�eik�0·�u�m−u�m�����s	�Bm�,��s	

��� .

�40�

The interpretation of expression �40� is straightforward. The
first term of its right-hand side gives the excitation amplitude
of absorber m, situated at r�m, due to the field produced by the
source nucleus. The sum over m� gives the excitation ampli-
tude of nucleus m due to the field that is produced by scat-
tering of the radiation by all other absorber nuclei m�, situ-
ated at r�m�.

Later we will consider the condition u�m=u�m� �see Sec.
IV�. If this condition is realized and if it is assumed that the
surroundings of each absorber nucleus are identical, the sec-
ond term of the right-hand side of expression �40� will be

equivalent to an average field, produced by all absorber nu-
clei. This average field will be the same for all absorber
nuclei. In the holographic image �see Sec. IV�, this will pro-
duce only an attenuation of the holographic contrast, without
changing the holographic information. In the following dis-
cussion, this average part, which corresponds in fact to mul-
tiple scattering, will not be considered anymore. In Ref. 15,
the multiple scattering processes were neglected altogether,
corresponding to the single scattering approximation, which
is certainly valid for small samples.

C. Solution for Ck� ,ˆ�s‰
„�… and ck� ,ˆ�s‰

„t…

If we substitute expressions �30� and �40�, not considering
the multiple scattering processes, into expression �20�, we
obtain

�� − �k� + i
�Ck�,��s	
���

= Kk�,nucl
* ���s	�e−ik�·u�0���s	�

1

� − �0 + i
�R

2

−
�R

2

1

�� − �0 + i
�R

2

2�

m

Kk�,nucl
* e−ik�·r�m

ei�rm/c

�rm/c

����s	�e−ik�·u�m���s	����s	�eik�0·�u�m−u�0����s	� . �41�

When going back to time domain, it is shown in Appendix B
that ck�,��s	

�t� is given by the sum of two terms

ck�,��s	
�t� = ck�,��s	

�0� �t� + ck�,��s	
�1� �t� �42�

with

ck�,��s	
�0� �t� = Kk�,nucl

* ���s	�e−ik�·u�0���s	�

�
1 − ei��k�,phot−�0,nucl+���s�−���s�+i�R/2�t

�k�,phot − �0,nucl + ���s� − ���s� + i
�R

2

�43�

and

ck�,��s	
�1� �t� = −

�R

2 �
m

Kk�,nucl
* e−ik�·r�m���s	�e−ik�·u�m���s	����s	�eik�0·�u�m−u�0����s	�

1

�0,nuclrm/c� ei�k�rm/c

��k�,phot − �0 + i
�R

2

2

+ �i��k� − �0 + i
�R

2

� rm

c
− t
 − 1� ei�rm/c−t���0−i�R/2�

�k� − �0 + i
�R

2
� . �44�
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In the next section, these expressions will be used to calcu-
late the probability to find a gamma ray with wave vector k�
present due to processes without and with recoil.

IV. DISCUSSION

As has been mentioned already, c
k�,��s	
�0� �t�, given by expres-

sion �43�, is the probability amplitude of finding a photon
with wave vector k�, with the lattice in state ��s	, taking into
account only the source nucleus. For long times, the prob-
ability distribution is given by P

k�,��s	
�0� �+��= �c

k�,��s	
�0� �+���2. In

fact, the initial lattice state ��s	 is not unique. We have to
take into account the probability g���s	� to find the lattice in
the state ��s	.25 with the obvious normalization condition
���s	

g���s	�=1. So each P
k�,��s	
�0� �+�� has to be multiplied by

g���s	�. We also have to sum over all final states ��s	. The
probability to find a photon with wave vector k� present for
long times is then given by

Wk�
�0��+ �� = �Kk�,nucl

* �2�
��s	

�
��s	

g���s	�����s	�e−ik�·u�0���s	��2

�
1


�k�,phot − �0,nucl + ���s� − ���s��2 +
�R

2

4

.

�45�

It can be noted at this stage that we do not have to consider
lattice interference terms because they vanish due to the
presence of random phases since the ��s	 states are distin-
guishable.

Expression �45� represents a sum of Lorentzian distribu-
tions with width �R /2, concentrated around the value
�0,nucl+���s�−���s�. Each Lorentzian has a coefficient
g���s	��Kk�,nucl

* �2����s	�e−ik�·u�0���s	��2. For each lattice combina-
tion ��s	, ��s	, there is one Lorentzian.

For processes without recoil, we have ���s	�= ���s	�, so
that expression �45� can be simplified

Wk�,nrec
�0� �+ �� = �Kk�,nucl

* �2�
��s	

g���s	�����s	�e−ik�·u�0���s	��2

�
1

��k�,phot − �0,nucl�2 +
�R

2

4

= f �Kk�,nucl
* �2

1

��k�,phot − �0,nucl�2 +
�R

2

4

, �46�

where we have used the definition of the recoilless fraction25

f =���s	
g���s	�����s	�e−ik�·u�0���s	��2.

This is nothing but the familiar Lorentzian distribution of
photons emitted by a source nucleus, centered at the nuclear
energy �0,nucl and having a width �R /2. The present analysis
automatically takes into account the recoilless fraction.

c
k�,��s	
�1� �t�, given by expression �44�, is the probability am-

plitude of having a photon of wave vector k�, with the lattice

in state ��s	 due to the scattering by all resonant nuclei m at
positions r�m. For long times, the explicit expression is given
by

ck�,��s	
�1� �+ �� = −

�R

2 �
m

Kk�,nucl
* e−ik�·r�m���s	�e−ik�·u�m���s	�

����s	�eik�0·�u�m−u�0����s	�
eirm/c
�k�,phot+���s��

�0,nuclrm/c

�
1

��k�,phot − �0,nucl + ���s� − ���s� + i
�R

2

2 ,

�47�

where expressions �18� and �19� have been used.
It is well-known �see, e.g., Ref. 13� that translational sym-

metry of the lattice severely distorts the hologram so that
only samples where the absorber nuclei in the immediate
environment �of the order of a few ångstroms� of the source
nucleus are suitable for emission holography. In Ref. 13
ways are discussed to get rid of possible effects of transla-
tional symmetry to some extent. As will be discussed later in
this section, correlated vibrations could make the source and
near-neighbor absorber nuclei move together, so that pro-
cesses with recoil could give a contribution to the holo-
graphic image. If we consider absorber nuclei at a few ång-
stroms from the source nucleus, and for phonon energies26 of
the order of 0.01 eV, then eirm/c���s��1. Then it can be
shown that the expression for c

k�,��s	
�1� �+�� can be written as

ck�,��s	
�1� �+ �� = −

�R

2
Kk�,nucl

* �
m

e−ik�·r�m
eirm/c�k�,phot

�0,nuclrm/c

�
1

��k�,phot − �0,nucl + ���s� − ���s� + i
�R

2

2

����s	�e−ik�·u�m���s	����s	�eik�0·�u�m−u�0����s	� .

�48�

If only recoilless processes are considered, then this expres-
sion can be simplified

ck�,��s	,nrec
�1� �+ �� = −

�R

2
Kk�,nucl

* �
m

e−ik�·r�m
eirm/c�k�,phot

�0,nuclrm/c

�
1

��k�,phot − �0,nucl + i
�R

2

2

· ���s	�e−ik�·u�m���s	����s	�eik�0·�u�m−u�0����s	� .

�49�

If we take again into account the fact that there is a distribu-
tion of initial lattice states, the probability of finding a pho-
ton with wave vector k� present for long times if only recoil-
less processes are considered is then given by
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Pk�,nrec�+ �� = Wk�,nrec
�0� �+ �� + �

��s	
g���s	��ck�,��s	,nrec

�1� �+ ���2

+ 2 Re��
��s	

g���s	�ck�,��s	,nrec
�0� �+ ��

�ck�,��s	,nrec
�1� �+ ��*� �50�

with W
k�,nrec

�0� �+�� given by expression �46� and

c
k�,��s	,nrec

�0� �+�� defined by 
see expression �44� specialized for

���s	�= ���s	� and for t→ +��

ck�,��s	,nrec
�0� �+ �� = Kk�,nucl

* ���s	�e−ik�·u�0���s	�

�
1

�k�,phot − �0,nucl + i
�R

2

. �51�

The last term of expression �50� gives the holographic infor-
mation, as has been explained in Ref. 15. It gives the inter-
ference of the path where the photon travels directly from the
source nucleus to the detector and the path where the photon
emitted by the source nucleus is first scattered by the ab-
sorber nuclei before going to the detector.

If we consider also the conversion electron processes, it
can be shown that the interference term is given explicitly by

2 Re��
��s	

g���s	�ck�,nrec
�0� �+ ��ck�,nrec

�1� �+ ��*� = − Re� �Kk�,nucl
* �2�R

�k�,phot − �0,nucl + i
�

2

1

��k�,phot − �0,nucl − i
�

2

2�

m

eik�·r�m
e−irm/c�k�,phot

�0,nuclrm/c

��
��s	

g���s	����s	�e−ik�·u�0���s	����s	�eik�·u�m���s	����s	�e−ik�0·u�m���s	�

����s	�eik�0·�u�m−u�0����s	�� . �52�

This term is analogous to expression �23� of Ref. 15
with the only difference the sum over ��s	, which
describes explicitly the influence of the lattice part.
In Ref. 15 it was assumed that all processes occur
without recoil. Expression �52� is a generalization of the
interference term eventually leading to nuclear emission ho-
lography.

The lattice part in expression �52�,

�
��s	

g���s	����s	�e−ik�·u�0���s	����s	�eik�·u�m���s	�

����s	�eik�0·�u�m−u�0����s	� ,

is a complicated expression that can be calculated
using methods from quantum field theory. For low
temperatures, the lattice is in its lowest state and all
�s will be zero. In this case, the sum over ��s	 is
reduced to the square f2 of the recoilless fraction f .

Let us go back to the more general case, described by Eq.
�48� for c

k�,��s	
�1� �+�� and by c

k�,��s	
�0� �+�� given by 
see expres-

sion �43�, specialized for t→ +��

ck,��s	
�0� �+ �� = Kk,nucl

* ���s	�e−ik�·u�0���s	�

�
1

�k�,phot − �0,nucl + ���s� − ���s� + i
�R

2

�53�

and

ck,��S	
�1� �+ �� = −

�R

2
Kk�,nucl

* �
m

e−ik�·r�m
eirm/c�k�,phot

�0,nuclrm/c

����s	�e−ik�·u�m���s	�

�
1

��k�,phot − �0,nucl + ���s� − ���s� + i
�R

2

2

����s	�eik�0·�u�m−u�0����s	� . �54�

The interference term, Ik�,��s	
=2Re
c

k�,��s	
�0� �+��c

k�,��s	
�1� �+��*�

leading to the holographic information is now, using expres-
sions �53� and �54� and taking into account also the conver-
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sion electron processes

Ik�,��s	
= − �R�Kk�,nucl�2 Re�

���s	�e−ik�·u�0���s	�
1

�k�,phot − �0,nucl + ���s� − ���s� + i
�

2

�

�
m

eik�·r�m
e−irm/c�k�,phot

�0,nuclrm/c
���s	�eik�·u�m���s	� �

1

��k�,phot − �0,nucl + ���s� − ���s� − i
�

2

2 ���s	�e−ik�0·�u�m−u�0����s	� � . �55�

If we were allowed to write u�m=u�0, for all m, expression �55� would be simplified and one would have

Ik�,��s	
= − �R�Kk�,nucl�2 Re�

1

��k�,phot − �0,nucl + ���s� − ���s� + i
�

2

��k�,phot − �0,nucl + ���s� − ���s� − i

�

2

2 �

����s	�e−ik�·u�0���s	��2�
m

eik�·r�m
e−irm/c�k�,phot

�0,nuclrm/c
� . �56�

As has been explained in detail in Ref. 15, the holographic
information, from which the reconstruction to obtain the real
image will have to be made, is contained in the sum over m
in expression �56�.

If we compare this with the expression for the “direct”
term 
using expression �53��

�ck�,��S	
�0� �+ ���2 = �Kk�,nucl�2

�� 1

�k�,phot − �0,nucl + ���s� − ���s� + i
�

2
�

2

�����s	�e−ik�·u�0���s	��2, �57�

we see that the lattice part is exactly the same in both ex-
pressions. The ratio of the direct term and the interference
term is not zero for processes with recoil. This means that we
could have interference contributing to the holographic im-
age from processes with as well as without recoil.

It has to be pointed out that the structural part,

�
m

eik�·r�m
e−irm/c�k�·phot

�0,nuclrm/c
,

is the same for all k� values, this due to the fact that the
phonon energies are of the order of 0.01 eV and for rm not
larger than a few ångstroms. This means that the interference
patterns are the same for all relevant k� values.

The complete holographic image will be formed by an
incoherent superposition of images for each combination
��s	 , ��s	, all images having the same structural factor. The

lattice part ����s	�e−ik�·u�0���s	��2 will be the same for each
combination.

Let us examine the condition u�m=u�0. Let us recall the
definition of u�0 and u�m. They are the displacement vectors of
the source nucleus and nucleus m, respectively, with respect
to their equilibrium positions. The equilibrium position of
the source nucleus has been chosen as the origin of the co-
ordinate system and the equilibrium position of nucleus m is
at r�m. The displacement vectors can be developed in normal
modes27 as follows:

u�0 = �
j=1

3N � �

2M� jN
e� j�aj + aj

+� , �58�

u�m = �
j=1

3N � �

2M� jN
e� j�aje

iq� j·r�m + aj
+e−iq� j·r�m� . �59�

M is the mass of the nucleus, N the number of atoms in the
crystal, � j is the frequency associated to mode j, q� j is the
wave vector of the vibrational mode j. aj and aj

+ are, respec-
tively, the annihilation and creation operators of phonons as-
sociated to mode j. e� j is the polarization vector �unit vector�
associated to mode j. Because the equilibrium position of the
source nucleus is at the origin of the coordinate system, there
are no terms like e±iq� j·r�m in expression �58�.

The physical interpretation of the assumption u�m=u�0 is
that the source nucleus, situated at the origin, and absorber
nucleus m, situated at r�m, have the same displacement with
respect to their equilibrium positions. Using expressions �58�
and �59�, the function e−ik�0�u�m−u�0� present in expression �55�
can be written as
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e−ik�0�u�m−u�0� = e−ik�0· �
j=1

3N� �
2M�jN

e� j
aj�e
iq� j·r�m−1�+aj

+�e−iq� j·r�m−1��.

�60�

In terms of wave vectors associated to the vibrational modes,
the condition u�m=u�0 means that the magnitude of the rel-
evant wave vectors �q� j� is small compared to �r�m�−1, and this
for all m. This means that the wavelengths associated to the
relevant vibrational modes are large compared to the distance
of the absorber nuclei with respect to the source nucleus.
This could be interpreted by saying that the vibrational ef-
fects produced in the lattice by the recoil due to photon emis-
sion by the source nucleus is the same for all absorber nuclei
situated in the vicinity of the source nucleus. Heuristically,
one could say that the wave produced by the source nucleus
due to its recoil is such that all absorber nuclei experience
the same perturbation. If this correlated vibrational move-
ment of source and absorber nuclei could occur, it would
only be for an absorber nuclei close to the source nucleus,28

thus for those nuclei that are involved in the formation of the
holographic image. At the end of this section, more discus-
sions will be devoted to the influence of these correlated
effects.

For nuclei far from the source nucleus, the condition u�m
=u�0 is certainly not valid, and one has to consider expression
�55� rather than expression �56�. If expression �60� is inserted
into expression �55�, we have the factor

���s	�e−ik�0· �
j=1

3N� �
2M�jN

e� j
aj�e
iq� j·r�m−1�+aj

+�e−iq� j·r�m−1�����s	� .

If the magnitude of some of the relevant wave vectors �q� j� is
comparable or larger than �r�m�−1, then the nuclei m do not
move coherently with respect to the source nucleus and the
exponential terms will produce destructive interference. This
will have the effect that the processes with recoil will pro-
duce a negligible contribution in the interference term for
nuclei far from the source nucleus, i.e., we would have only
a contribution coming from the processes without recoil. If
the recoilless fraction goes to zero, in this case there would
not be any holographic image.

In order to be a bit more specific, we will give an estimate
of the influence of the correlated motion of the source
nucleus and the near-neighbor absorber nuclei for a single
crystal of 57Fe, where an excited 57Fe nucleus, at the center
of a cubic unit cell, is surrounded by eight nearest-neighbor
nuclei in the ground state. This will give us a quantitative
estimate of the holographic analogue of the Mössbauer-
Lamb factor for this case. We will use a model explained in
Ref. 28 �see also Refs. 29 and 30 for equivalent approaches�.
What needs to be calculated is in fact e−1/2k2�m

2
, where �m

2 is
the mean square relative displacement of nucleus m, situated
at a distance rm from the source nucleus, which is 2.4855 Å
for the case we considered above. In the case of uncorrelated
motion, this would result in the ordinary Mössbauer-Lamb
factor. For nearest-neighbor nuclei, the vibrational factors

e−1/2k2�m
2

are much closer to unity28 than would be the case
for uncorrelated motion. What is required now is a method
for calculating �m

2 using a correlated vibrational model. Us-
ing a simple correlated Debye model, it can be shown28 that

�m
2 =

3�2

2MkB�DqD
2 �qD

2 + 4
qD

2

�2��2

6
− �

n=1

� � 1

n2 +
�

n

e−�n�

−
2

rm
2 �1 − cos �m� + 4

qD

rm�
�
n=1

�
1

n2 +
�m

2

�2

��e−�n�n sin �m +
�m

�
cos �m
 −

�m

�
�� . �61�

M is the mass of 57Fe, kB is the Boltzmann constant, T the
temperature of the crystal, �D is the Debye temperature, and
qD is the Debye wave number of the crystal, �=�D /T and
�m=qDrm. For an iron crystal, we take a Debye temperature
of 440 K. The other constants31 are M =9.5�10−26 kg, kB
=1.38�10−23 JK−1, and qD=0.96�1010 m−1.

Figure 1 shows Fcor=e−1/2k2�m
2

as a function of �=�D /T
for rm=2.4855 Å �solid line� for the 57Fe configuration we
considered above. The ordinary Lamb-Mössbauer factor fLM
is also shown for comparison �dotted line�. Fcor is also shown
for the �hypothetical� case of rm=40 Å �dashed line�. It is
clearly seen that the effect of the correlated movement of the
absorber nuclei in the immediate surroundings of the source
nucleus drastically increases the value of the holographic
analogue of the Lamb-Mössbauer factor Fcor. As is well-
known, the ordinary Lamb-Mössbauer factor goes rather fast
to zero for temperatures above the Debye temperature, while
in the correlated model Fcor decreases much more slowly in
a fairly wide temperature range.

More information on correlated models as well as refine-
ments for the calculations can be found in, e.g., Ref. 28.

A final word should be said about the nonresonant pro-
cesses. A photon emitted by a nucleus inside a solid can also

FIG. 1. Holographic analog, Fcor=e−1/2k2�m, of the Lamb-
Mössbauer factor, as a function of �=�DT for rm=2.4855 Å �solid
line� for a source nucleus at the center of a unit cell of 57Fe, sur-
rounded by eight nearest-neighbor absorber nuclei in the ground
state. The ordinary Lamb-Mössbauer factor fLM is also shown for
comparison �dotted line�. The dashed line shows Fcor for the �hy-
pothetical� case of rm=40 Å.
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be scattered by atomic electrons, Thomson scattering, which
is a non-resonant process. This can also produce interference
patterns, which are of course different from the ones we have
considered in this article. These nonresonant interference
patterns have been entirely neglected in the present analysis.
The scattering cross section32 from atomic electrons in Fe is
of the order of 40 b/sr in the forward direction and an order
of magnitude less at 60°. The effective coherent cross section
per crystal site for resonant nuclear scattering is about
3�2103 b/sr for 57Fe, where � is the isotopic enrichment of
resonant nuclei in the sample. For enriched samples, the
nuclear cross section is orders of magnitude larger than that
of the Thomson scattering, so that the contribution of elec-
tronic scattering can be neglected in a first approximation. It
is well-known that the nuclear scattering cross section de-
creases with increasing energy. If the electronic interference
pattern would be dominant in non-enriched samples, it would
be required to use enriched samples if the nuclear cross sec-
tion is too small.

V. CONCLUSION

The quantum mechanical theory, based on perturbation
theory in frequency domain, of the formation of the interfer-
ence pattern in the concept of nuclear emission holography
using gamma radiation has been developed. Radiation emit-
ted by a radioactive nucleus incorporated in a solid state
lattice can go directly to a detector or it can scatter reso-
nantly by neighboring nuclei in the ground state, before go-
ing to the detector. The two types of radiation interfere,
which gives rise to oscillations, as a function of the emission
direction, in the intensity reaching the detector. These oscil-
lations contain information about the relative position of the
nuclei involved in the scattering processes. For nuclei at a
certain distance from the source nucleus, processes without
recoil, the so-called Mössbauer effect, have to be considered.
However, if the wavelengths associated to the relevant vibra-
tional modes, which are excited due to processes with recoil,
are large compared to the distance of the absorber nuclei
with respect to the source nucleus, then processes with recoil
can also give a contribution to the interference pattern. The
physical origin of this effect would be the correlated move-
ment of the source nucleus and the near-neighbor nuclei.
Preliminary calculations show that these processes can be
important for the holographic image. This would not only
open the possibility to use nuclear isomers having higher
transition energies then the ones used in Mössbauer spectros-
copy but also it would open the possibility to study interfer-
ence patterns using multiple energies within the same iso-
tope, which could be used to suppress twin image effects as
well as other aberrations and artifacts in reconstructed im-
ages. However, a final remark should be made here. The
nuclear resonant cross section for gamma excitation de-
creases with the inverse of the wavelength of the gamma
rays, which means that for small wavelengths, hence high
energies, the probability for resonant scattering will be very
small so that the probability for the formation of the holo-
graphic image will also be very small.

APPENDIX A

Let us calculate �k�1/�−�k� + i
�Kk�,nucl�2.
The sum over k� can be transformed into an integral24

�
k�

� →
V

�2��3 � � � d3k�� �A1�

It can be anticipated that the photon frequency �k�,phot will be
of the order of the nuclear transition energy, i.e., of the order
of 10 keV or more. The phonon energies are of the order of
meV, so that they can be safely neglected for the calculation
of the integral. Then it can be shown19 that 1 / ��−�k� + i
�
can be approximated by

1

� − �k�,phot + i

= P

1

� − �k�,phot
− i�
�� − �k�,phot� ,

�A2�

where P represents the principal part of the integral over k�.
Using Eqs. �A1� and �A2�, we can write

�
k�

1

� − �k� + i

�Kk�,nucl�2

= P
V

�2��3 � � � d3k�
1

� − �k�,phot
�Kk�,nucl�2

− i�
V

�2��3 � � � d3k��Kk�,nucl�2
�� − �k�,phot� .

�A3�

The principal part, which is a real number, is denoted ��0.
The imaginary part is denoted −i�R /2, where the real quan-
tity �R /2 is given by

�R

2
= �

V

�2��3 � � � d3k��Kk�,nucl�2
�� − �k�,phot� . �A4�

The integral in the right-hand side of expression �A4� can be
calculated and yields for �R

�R =
V

�c3 �Kk�,nucl����2�2. �A5�

A comprehensive analysis performed by Heitler19 shows that
in order to evaluate the width and the shift � can be replaced
by �0,nucl. This shows up only after going back to time do-
main for times such that t�1/�0,nucl. In the nuclear realm,
�0,nucl�1018 s−1 or larger, so that the condition would be t
�10−18 s. In all practical applications, the time scales in-
volved are much larger than this value, therefore the condi-
tion of constant width and shift is entirely justified. We then
can write

�R =
V

�c3 �Kk�,nucl��0,nucl��2�0,nucl
2, �A6�

which is expression �28�.
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APPENDIX B

If we consider expression �41� and go back to time do-
main, there will be two integrals. The first integral is given
by

ck�,��S	
�0� �t� = −

1

2�i
Kk�,nucl

* ���s	�e−ik�·u�0���s	�

��
−�

+� ei��k�−��t

�� − �0 + i
�R

2

�� − �0 + i
�

d� .

�B1�

This integral will be calculated using contour integration.
For t	0, the contour has to be closed by a semicircle in

the upper half plane, where there are no poles, giving
c

k�,��s	
�0� �t�=0.

For t�0, the contour has to be closed in the lower half
plane, where there are two poles. One has

�
−�

+� ei��k�−��t

�� − �0 + i
�R

2

�� − �0 + i
�

d�

= − 2�i�1 − ei��k�−�0+i�R/2�t

�k� − �0 + i
�R

2
� . �B2�

Substituting expression �B2� into expression �B1� and using
expressions �18� and �19�, we have

ck�,��S	
�0� �t� = Kk�,nucl

* ���s	�e−ik�·u�0���s	�

�
1 − ei��k�,phot−�0,nucl+���s�−���s�+i�R/2�t

�k�,phot − �0,nucl + ���s� − ���s� + i
�R

2

,

�B3�

which is expression �43�.
The second integral, if we go back time domain, is explic-

itly given by

ck�,��s	
�1� �t� =

1

4�i
�
m

Kk�,nucl
* e−ik�·r�m���s	�e−ik�·u�m���s	�

����s	�eik�0·�u�m−u�0����s	�

��
−�

+� �R

�� − �0 + i
�R

2

2

ei��k�−��t

�� − �k� + i
�

�
ei�rm/c

�rm/c
d� . �B4�

The relevant integral is

I = �
−�

+� �R

�� − �0 + i
�R

2

2

ei��k�−��t

�� − �k� + i
�
ei�rm/c

�rm/c
d� . �B5�

It has to be mentioned that �=0 is not a pole because �R
contains �2 in the numerator 
see expression �A5��.

The real and imaginary parts of 1 / 
��−�0+ i�R /2�2� are
strongly peaked functions of � concentrated around �=�0.
So we can put �R /�rm /c in front of the integral and evaluate
it for �=�0,nucl, since ���s���0,nucl. We then have

I =
�Rei�k�t

�0,nuclrm/c
�

−�

+� ei�rm/c−t��

�� − �0 + i
�R

2

2

�� − �k� + i
�
d� .

�B6�

This integral will be calculated again using contour integra-
tion.

For rm /c− t�0, the contour has to be closed by a semi-
circle in the upper half plane, where there are no poles, so
that the integral is zero in this case. This is again the prin-
ciple of causality that states here that it takes a certain time
before nucleus m, at distance rm from the source nucleus, can
be excited by radiation coming from the source nucleus.

For rm /c− t	0, the contour has to be closed by a semi-
circle in the lower half plane, where there are two poles, one
of first order and one of second order. Using the residue
formula, one obtains after some algebra

I = − 2�i
�R

�0,nuclrm/c� ei�k�rm/c

��k� − �0 + i
�R

2

2

+ �i��k� − �0 + i
�R

2

� rm

c
− t
 − 1� ei�rm/c−t���0−i�R/2�

�k� − �0 + i
�R

2
� .

�B7�

Substituting Eq. �B7� into expression �B4� finally gives

ck�,��s	
�1� �t� = −

�R

2 �
m

Kk�,nucl
* e−ik�·r�m���s	�e−k�·u�m���s	�

����s	�eik�0·�u�m−u�0����s	�

�
1

�0,nuclrm/c� ei�k�rm/c

��k� − �0 + i
�R

2

2

+ �i��k� − �0 + i
�R

2

� rm

c
− t
 − 1�

�
ei�rm/c−t���0−i�R/2�

�k� − �0 + i
�R

2
� . �B8�

This is expression �44�.
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