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Large electromechanical response in ZnQO and its microscopic origin
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The electromechanical coefficient d3; of wurtzite ZnO is determined by direct first-principles density func-
tional calculations which are performed for solids under finite electric fields. Our theoretical d3; value of
12.84 pC/N turns out to be in good agreement with experiment. This electromechanical response in ZnO
(which is the largest among the known tetrahedral semiconductors) is found to originate from the strong
coupling between strain and polarization, namely, a notably large B parameter. We further show that the
electromechanical response in wurtzite semiconductors bears a previously unknown resemblance to the polar-
ization rotation mechanism in ferroelectric Pb(ZnNb)O3-PbTiO; and Pb(MgNb)O5-PbTiO; single-crystal
solid solutions. Our results demonstrate that, different from what is commonly believed, the main effect of
electric fields in wurtzite semiconductors is not to elongate the polar chemical bonds, but to rotate those bonds
that are non-collinear with the polar axis. This finding also suggests that the electromechanical response in
wurtzite materials is governed mainly by the ease of bond bending, which may provide an useful scheme for

designing better piezoelectric semiconductors with enhanced performance.
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I. INTRODUCTION

Semiconductor ZnO is of growing technological impor-
tance due to its many favorable properties.! ZnO possesses
large band gap (~3.44 eV) and high electric conductivity
upon doping, often used as a candidate for transparent con-
ducting oxides.> This material also shows strong bond
strength, high melting temperature, large cohesive energy,
and large exciton binding energy. The stability of ZnO is
further ensured by its large shear modulus (~45 GPa). ZnO
is thus more resistant to radiation and/or high temperature
degradation, as compared to other semiconductors. More-
over, the drift mobility in ZnO saturates at higher fields and
at higher values than most semiconductors, making it suit-
able for devices operating at high frequency.” The inexpen-
sive availability of ZnO substrates is also an advantage.

Among the known tetrahedral semiconductors, ZnO has
another distinctive property, that is, it exhibits the largest
electromechanical response that is used in transducers of
converting electrical energy into mechanical energy. Along
with its preferable electronic properties as a semiconductor,
ZnO is thus an interesting candidate for functioning as a
multi-purpose material that combines superior electronic, op-
tical, electrical, and piezoelectric properties. Another pos-
sible example of similar type of multipurpose semiconductor
is the metastable ScN of a hexagonal structure as suggested
in Ref. 3, but this material has an indirect band gap that is
not appealing in optical applications. While the electronic
properties of ZnO have now been rather well studied,*~ its
electromechanical properties are nevertheless poorly
understood.”-® Previously, Dal Corso et al. studied the piezo-
electric constant e33 by computing the polarization response
to applied strain under zero field and revealed that the
clamped-ion contribution to the piezoelectric response
cancels the internal atomic-relaxation contribution at the
least degree in ZnO as compared to other semiconductors,
thus giving rise to larger piezoelectric response.” Hill and
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Waghmare studied (also at zero electric field) the interplay
between strain and electronic properties, showing that stress
can be used to effectively tune the piezoelectric coefficient
6‘33.8

Unlike the piezoelectric constants e;;, electromechanical
coefficients d;; are the response of strain to nonzero electric
field, and its determination requires the handling of finite
electric fields. This is challenging since infinite solids under
finite electric fields do not possess a ground state,’ and the
general approach of searching for the lowest energy configu-
ration using density-functional theory (DFT) thus cannot be
applied in a straightforward manner. Direct determination of
d; from first principles has been possible only recently.'%-!3
By constraining the polarization direction, Fu and Cohen cal-
culated the electromechanical response of BaTiO; to a non-
collinear electric field by using only the DFT total energy.'?
Sai et al. developed a systematic theory of “constrained po-
larization approach” by which the atomic structure and cell
shape—for a given constrained polarization (including both
direction and magnitude)—are determined using density-
functional linear response theory.!! Souza et al. formulated a
powerful “Bloch-theory approach” to determine both the
electronic and ionic responses to finite electric fields by
searching the metastable state of systems under finite electric
fields.'> More recently, Fu and Bellaiche presented a simple
and efficient “constrained-force approach” for determining
the ionic response of insulators to finite electric fields.'3

Nevertheless, the electromechanical response in ZnO re-
mains to be studied. First, determination of the dj; coeffi-
cient in wurtzite ZnO using accurate DFT theory has not
been done before and is of its own value itself. Furthermore,
little is known about how each individual atom may respond
to finite electric fields, and how the atomic displacement
couples with strain in wurtzite structure. Similarly, it is not
clear why electric fields are able to introduce large mechani-
cal response in ZnO, but not in other semiconductors. An-
other interesting question is whether it is possible to discover
a general mechanism that governs the electromechanical re-
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sponse in all tetrahedral semiconductors, in addition to ZnO
alone. This mechanism, if it exists, ought to be useful and
thus needed for guiding the design of new semiconductors
with enhanced electromechanical responses.

It is worth pointing out that another and very active field
of studying electromechanical response is, in fact, on ferro-
electric and piezoelectric perovskite oxides.'*!> A theory of
fundamental importance, namely the modern theory of polar-
ization, has been spectacularly developed.'®!” Experimen-
tally, single crystal Pb(MgNb)O;—PbTiO; (PMN-PT) and
Pb(ZnNb)O;—PbTiO; (PZN-PT) solid solutions were
found to exhibit an enormous piezoelectric response on the
order of ~2500 pC/N, which is ten times greater than in
traditional piezoelectric ceramics.'® This remarkable re-
sponse has been explained by polarization rotation, in which
the electric field—applied non-collinearly along the pseudo-
cubic [001] direction rather than the rhombohedral [111] di-
rection of spontaneous polarization—is able to cause the
polarization to rotate with much less energy, thus leading to
a large strain response.'®!® Despite the fact that a substantial
amount of knowledge has existed in the field of ferroelec-
trics, there has been little connection between the under-
standing of the electromechanical responses in tetrahedral
semiconductors and in ferroelectric perovskites. This con-
nection, at the present stage, is of value in bridging these two
fields.

The goals of this paper are (1) to determine the electro-
mechanical response ds; in ZnO using a direct DFT theory
and to understand what causes the large response in this par-
ticular semiconductor, and (2) to demonstrate that the two
seemingly unrelated electromechanical responses in ZnO and
in piezoelectric single crystals PMN-PT and PZN-PT have
the same microscopic origin—namely, polarization rotation,
thus connecting the studies of two different fields. However,
unlike the case of ferroelectrics, electric fields in wurtzite
semiconductors do not rotate the fotal net polarization; in-
stead they rotate the local polarization of individual polar
bonds. Based on our results, we also make some suggestions
that we hope to be useful for the design of the electrome-
chanical response in wurtzite semiconductors.

II. THEORETICAL METHODS
A. Structural optimization under finite electric fields

Our method that allows us to determine the cell shape and
atomic positions for solids under finite electric fields was
proposed and briefly described previously,'® based on the
fact that electromechanical response arises predominantly
from the ionic contribution. Here we give details of the
method for two purposes: first, to provide computational
techniques that may be useful for readers who are interested
in its implementation and, second, to facilitate the discus-
sions of our results on ZnO. To compute the electromechani-
cal response in infinite solids, we determine, for a given fi-
nite electric field &, the optimal strain {7;} (using Voigt
notation) by searching for the minimum of free energy
F(R, 7,E)=Uxs[R(E), 7(E)]-P(R, ,£)-£ as a function of
strain. The Kohn-Sham internal energy Uygg and the macro-
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scopic polarization P both depend on the atomic positions
{R} and the strain {7}, which are further implicitly dependent
on the field £. We should point out that £ in the expression of
free energy is the screened macroscopic (not external) elec-
tric field. For a given field &, we determine Ukg and P for a
series of chosen and prefixed strains {#}. For each strain,
atomic positions are fully relaxed so that the free energy
reaches its allowed subspace minimum under the specified
strain. This requires the total force—including the normal
Hellmann-Feynman (HF) force Qf{F arising from the first
term of the free energy and the electrostatic force arising
from the second term—to vanish. In other words, the HF
force Q. on atom i should thus satisfy

Ohp=-Z (R, 7,E)E, (1)

where Z; is the Born effective charge tensor of ion i. Nu-
merically, we search for the structure that satisfies the above
force constraint by first computing the normal HF force QhF
under zero field, which is then added to the electrostatic
force due to the applied electric field. The total force is then
minimized using the standard variable metric method of a
Hessian matrix. This approach is hereafter referred to as the
“force-constrained method.”

An alternative approach to determine the atomic geometry
that satisfies Eq. (1) is, as similarly proposed in Ref. 11, to
expand the HF force Qyp(R) at the field-induced position R
as a linear function of the atomic displacement, namely,
QLF(R)=QLF(RO)+D(R—RO), where R, is the zero-field
equilibrium position and D is the force-constant dynamic
matrix. The new atomic position under nonzero field can thus
be determined by a single step as R=R0—D‘IZf€. For ordi-
nary materials such as semiconductors or normal ferroelec-
trics, we find that this approach generally is as convenient as
the force-constrained method, provided that the force-
constant matrix is available by means of, for instance, the
density-functional linear response theory. On the other hand,
we also find that, for incipient ferroelectrics such as SrTiO3
in which a small electric field is able to drive very large
atomic displacements (i.e., D is near its singularity), the
force-constant approach within the linear approximation
yields qualitatively incorrect results, while the force-
constrained method still works robust.!”

With optimized atomic positions, we compute the internal
energy Ugs and polarization as a function of strain, for a
given electric field. For the purpose of determining ds3, we
need to consider only the polarization component P along
the field direction. At this stage, one may determine the op-
timal strain that yields the minimum free energy by numeri-
cally examining the free energy-versus-strain relationship.
However, we find that this numerical scheme tends to pro-
duce large fluctuation and error. Instead, we fit the strain
dependence of Ugg and P using analytical expressions
Uks(E, 773)=U0(8)+a17§ and P(E,73)=Py(E)+Bm;, where
U, and P are the respective values of the energy and polar-
ization at zero strain but under nonzero electric fields. These
analytical forms not only are convenient for determining the
minimum free energy, but also render transparent physical
meaning. More specifically, the o parameter is related to the
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elasticity of the material along the direction of the applied
field, while the 8 parameter is the piezoelectric coefficient
that describes the response of polarization to the strain. Mini-
mizing the free energy with respect to the #; strain for a
given electric field £ yields analytically

B

m=5 & 2)
and the electromechanical ds; coefficient is thus [B/2a.
Strictly speaking, the parameters o and 8 depend on the field
strength £. But we found that, over a wide range of field
strengths, these two parameters are nearly independent of the
applied field. Performing calculations for a single field
strength can thus determine the coefficient ds;. We suggest
that the field strength be chosen on the order of 0.02 V/A,
since smaller fields may cause unnecessary numerical uncer-
tainty.

B. Details of first-principles pseudopotential calculations

Total energy and atomic forces are calculated using our
first-principles pseudopotential code with a mixed-basis
set.?0 The local density approximation (LDA)?! is used to
describe electron exchange-correlation interaction. Core
electrons are replaced by orbital-dependent nonlocal pseudo-
potentials that are carefully generated following Troullier-
Martins’ scheme.?> We use ionic configuration 3d'%4s'4p?!
and pseudo/all-electron wave-function radii of Prd=20,
2.0, and 2.5 Bohr to generate Zn pseudopotentials. For oxy-
gen atom, we use 25*2p*3d° and r*?=1.5, 1.5 Bohr to gen-
erate its s and p pseudopotentials, and 2s*2p33d°? and ¢
=2.5 Bohr for its d pseudopotential. The d pseudopotential
of the O atom is generated separately because the d orbital in
neutral or negatively charged ionic configuration is very ex-
tended, and this pseudopotential needs to be generated using
a positively charged ionic configuration. The semi-core state
of Zn 3d is treated explicitly as a valence electron to ensure
accuracy. An energy cutoff of 884 eV (65 Ry) is used and is
found to be sufficient for convergence. To calculate electric
polarization, we have implemented the modern theory of
polarization'®!7 in our mixed-basis method using the geo-
metric phase of valence wave functions.?’ Effective charges
are calculated as the derivative of polarization with respect to
atomic displacement via finite difference. For systems under
electric field, atomic positions are relaxed until the total
force on each atom is less than 5X 107* eV/A.

III. RESULTS AND DISCUSSIONS

Zero-field equilibrium structure and Born effective
charge: Figure 1 shows schematically the crystal structure of
wurtzite ZnO. Our LDA calculations yield for ZnO at zero
field an equilibrium structure with an in-plane lattice con-
stant a=3.25 A, c/la=1.62, and a u parameter of 0.3781
(where c is the lattice constant along the polar axis, and u
denotes the ratio between the Zn;-O; bond length and the ¢
lattice constant). These results are in good agreement with
the experimental values of a=3.253 A, c/a=1.60, and u
=0.3820.23 The spontaneous polarization per unit cell in the
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FIG. 1. Crystal structure of wurtzite ZnO, with individual Zn;,
Zn,y, Oy, and O, atoms and the ¢ axis labeled. Angle 6 is between
the Zn,-O, bond and the ¢ axis.

LDA-predicted ZnO structure is determined to be 2.548 e- A.
The effective charges of Zn and O are calculated to be 2.20
and —2.20, compared to the experimental value of 2.10 (Ref.
24) and other theoretical values of 2.05 (Ref. 7, obtained
from LAPW method) and 2.07 (Ref. 8, obtained from plane-
wave pseudopotential method). We thus see that, unlike in
ferroelectric titanate perovskites, the effective charges in
semiconductor ZnO are close to the nominal values and do
not reveal any anomaly.

Determination of electromechanical coefficient ds;: Fig-
ure 2 shows the internal Kohn-Sham energy as a function of
the 7 strain for ZnO under an electric field of 0.02 V/A that
is applied along the ¢ axis. Here we find that a sufficient
energy cutoff is particularly important for obtaining a quan-
titatively accurate description of the small-scale energy
variation in Fig. 2. To ensure the accuracy of our calcula-
tions, we also present in Fig. 2 the results of a larger energy
cutoff (i.e., 984 eV) for comparison, showing that two calcu-
lations yield the same curvature (and thus the same « param-
eter). Analytically fitting our calculated internal energy Ugg
produces an « parameter of 31.66 eV.
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FIG. 2. Internal energy Ugs (relative to an energy base of
-3680 eV) as a function of the 73 strain in ZnO under a finite
electric field of 0.02 V A~'. Symbols are direct DFT calculation
results, and curves are analytical fitting. Results obtained using two
different cutoff energies are shown for comparison.
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FIG. 3. Total polarization as a function of the #»; strain in ZnO

under an electric field of 0.02 V A~!. The inset shows the electronic
and ionic contributions to the total polarization.

Figure 3 depicts the polarization as a function of the 3
strain, showing a linear dependence up to a strain of 1.2%,
which is the largest strain we consider. It should be pointed
out that, for each strain, the atomic geometry is fully relaxed
and recalculated, and so is the polarization. The perfect lin-
ear dependence produced by the direct DFT calculations is
thus not trivial as it may appear to be; it indicates that our
method of structural optimization under finite electric fields
indeed is robust. The polarization-strain slope (i.e., the B
parameter) is determined to be 8.13 eA. We further decom-
pose the polarization into ionic and electronic contributions,
as shown in the inset of Fig. 3. The ionic contribution is
found to increase with the increasing strain, whereas the
electronic contribution shows the opposite trend. The
polarization-vs.-strain slope of the ionic contribution turns
out to be larger than that of the electronic contribution, giv-
ing rise to a net increase of the polarization as the strain
increases.

Using Eq. (2) and the above « and B values obtained from
our direct first-principles calculations, the electromechanical
coefficient ds;3 is determined to be 12.84 pC/N. This value is
in excellent agreement with the experimental value of
12.4 pC/N. This level of agreement is obtained without ad-
justable inputs from experiments, demonstrating that the
first-principles DFT method under finite electric fields is able
to predict reliably the electromechanical properties.

Comparison with GaN and PbTiO5: One appealing aspect
of the analytical expression in Eq. (2) is its physical trans-
parency, revealing that a large electromechanical response
arises from either a small elasticity of the material (i.e., small
«) or a large polarization response to strain (i.e., large B). It
is interesting to compare the « and 8 quantities of ZnO with
those of GaN, which is also a semiconductor with the same
wurtzite structure—and with those of PbTiO;, which is a
ferroelectric with large electromechanical response. For
GaN, the o and g values are 67.14 eV and 2.12 eA, respec-
tively, while for PbTiO5 they are 4.36 eV and 11.22 eA (Ref.
13). These yield a d3; value of 1.58 pC/N for GaN and
128.8 pC/N for PbTiOs;.

Comparison between ZnO and GaN shows that the large
ds; response in ZnO is mainly due to its large polarization
response to the imposed strain, i.e., large 8 value. More spe-
cifically, this value is about four times greater in ZnO than in
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FIG. 4. Bond lengths of Zn;-O; (filled squares, using the left
vertical axis) and Zn,-O,; (empty squares, using the left vertical
axis), and the projected length AZ of the Zn,-O, bond along the ¢
axis (filled dots, using the right vertical axis) as a function of field
magnitude: (a) for positive fields applied along the ¢ axis and (b) for
negative fields applied opposite to the ¢ axis.

GaN. It should be pointed out that this difference cannot be
explained by the effective charge. In fact, the effective
charge of ZnO (for which the LDA value is 2.20) is smaller
than the corresponding LDA value of 2.77 for GaN. Instead,
the strong coupling between strain and atomic displacements
is the reason for the large B value in ZnO. The relatively
smaller a parameter in ZnO than in GaN also contributes to
the difference in their ds3 coefficients. Our calculated « val-
ues (31.66 eV in ZnO versus 67.14 eV in GaN) tell that ZnO
is more deformable along the polar ¢ axis. This result is
consistent with the fact that the elastic C;3 constant for ZnO
(2.1 Mbar, Ref. 25) is about half of the value for GaN
(~4.1 Mbar, Ref. 26). The contrast between ZnO and
PbTiO; shows that the exceptionally small « of lead
titanate—in other words, the very flat energy surface—is the
main cause for the drastic difference in electromechanical
response between ferroelectrics and semiconductors.
Microscopic mechanism for electromechanical response
in wurtzite semiconductors. To provide microscopic insight
as to how individual atoms in ZnO respond to electric fields,
we perform structural optimization under different field
strengths and decide to examine the lengths b for nonequiva-
lent Zn;-O; and Zn,-O; bonds as well as the projected
length AZ = b(Zn,0,)cos 6 of the second bond along the ¢
axis. Note that AZ characterizes the effect of the Zn,-O,
bond on altering the ¢ axis strain (see Fig. 1). The results are
depicted in Fig. 4(a) for electric fields applied along the po-
larization direction (abbreviated as positive fields hereafter)
and in Fig. 4(b) for electric fields applied opposite to the
polarization direction (abbreviated as negative fields). The

064116-4



LARGE ELECTROMECHANICAL RESPONSE IN ZnO AND...

branch of the spontaneous polarization is chosen in our cal-
culations to be along the positive ¢ axis of Fig. 1.

It has been commonly thought that the stretching or com-
pression of the Zn;-0O, bond that points collinearly with the
polar axis of wurtzite structure is the main force for driving
the c-axis length as a result of the coupling between atomic
displacement and strain. Our calculations, however, reveal
otherwise. Under the positive fields [Fig. 4(a)], the Zn,-0O,
bond indeed (and not surprisingly) is found to be com-
pressed, with a slope of field-induced length change deter-
mined to be 0.278 A?/V. Interestingly, the Zn,-O, length is
predicted to remain nearly constant as the field strength in-
creases. However, its projected length AZ is found to in-
crease sharply. The slope of the AZ curve is found to be
0.610 A?/ V, which is more than two times larger than that of
the Zn;-O; curve. These results thus demonstrate an impor-
tant conclusion, namely that the dominant effect of the elec-
tric fields in wurtzite semiconductors is not to elongate the
polar chemical bonds, but to rotate those bonds that are non-
collinear with the polar ¢ axis towards the direction of the
applied electric fields. A similar conclusion is also true for
the negative fields that are found in our calculations to dras-
tically decrease the projected length AZ as compared to the
slight increase of the Zn;-O, length, as shown in Fig. 4(b).
Once again, the length of the noncollinear Zn,-O; bond is
nearly unchanged.

According to the above observations, the electromechani-
cal response in wurtzite semiconductors becomes interest-
ingly similar to the polarization rotation mechanism as pre-
viously found in ferroelectric and piezoelectric single
crystals.!®1027.28 In the latter case, the polarization rotation
was shown to lead to much enhanced electromechanical re-
sponse, as compared to the collinear fields that are applied
along the direction of spontaneous polarization.'®?8 In both
circumstances, polarization rotation occurs because less en-
ergy is needed to alter the direction of polarization than to
enlarge its magnitude. However, there is a difference: unlike
the case of ferroelectric perovskites where the electric field
rotates the total polarization as a whole, the electric field in
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wurtzite crystals rotates “only” the chemical bonds (in a
loose sense, the local polarization) while the total polariza-
tion always points along the ¢ axis.

Revealing the bond rotation mechanism in wurtzite struc-
ture also provides useful knowledge on how electromechani-
cal response in semiconductors can be improved. We note
that the energy for rotating the noncollinear bonds in wurtz-
ite semiconductors is largely used for overcoming the bond
bending by reducing the related bond angles. Efficient semi-
conducting actuators with better electromechanical response
should thus have smaller bond bending energy to facilitate
the bond rotation. The bond-bending distortion energy, which
is described by, for instance, the Keating model,? can thus
be a useful quantity to guide the design of the electrome-
chanical performance in semiconductors. Our future work
will be to systematically compute the electromechanical re-
sponse and bond bending energy in different wurtzite semi-
conductors and to establish a quantitative correlation be-
tween these quantities.

In summary, we have determined the electromechanical
coefficient in wurtzite zinc oxide using a direct first-
principles density functional approach under finite electric
fields. Our theoretical ds; value of 12.84 pC/N is in good
agreement with the experimental measurement. We further
found that the dominant effect of electric fields in wurtzite
semiconductors is to rotate the noncollinear polar bonds to-
wards the ¢ axis, which consequently drives the strain. The
microscopic mechanism for governing the electromechanical
response in wurtzite semiconductors is thus rather similar to
the polarization rotation in piezoelectric single crystals
PZN-PT and PMN-PT. In addition, comparison of the elec-
tromechanical responses of ZnO, GaN, and PbTiO; reveals
that the main difference between ZnO and GaN is character-
ized by the piezoelectric polarization-vs.-strain response, and
the difference between wurtzite semiconductors and ferro-
electric perovskites lies in the energy-strain surface.

We thank I. Naumov and L. Bellaiche for discussions.
This work was supported by NSF (DMR-0116315) and ONR
(N00014-01-1-0366).

1Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001).

M. C. Tamargo, ed., II-VI Semiconductor Materials and Their
Applications (Taylor & Francis, New York, 2002).

3V, Ranjan, L. Bellaiche, and E. J. Walter, Phys. Rev. Lett. 90,
257602 (2003).

4 A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T. S.
Turner, G. Thorton, and N. M. Harrison, Phys. Rev. Lett. 86,
3811 (2001).

50. Dulub, U. Diebold, and G. Kresse, Phys. Rev. Lett. 90,
016102 (2003).

6S. Limpijumnong, S. B. Zhang, S.-H. Wei, and C. H. Park, Phys.
Rev. Lett. 92, 155504 (2004).

7A. Dal Corso, M. Posternak, R. Resta, and A. Baldereschi, Phys.
Rev. B 50, 10715 (1994).

8N. A. Hill and U. Waghmare, Phys. Rev. B 62, 8802 (2000).

9R. W. Nunes and D. Vanderbilt, Phys. Rev. Lett. 73, 712 (1994).

10H. Fu and R. E. Cohen, Nature (London) 403, 281 (2000).

IIN. Sai, K. M. Rabe, and D. Vanderbilt, Phys. Rev. B 66, 104108
(2002).

12]. Souza, J. Iniguez, and D. Vanderbilt, Phys. Rev. Lett. 89,
117602 (2002).

3H. Fu and L. Bellaiche, Phys. Rev. Lett. 91, 057601 (2003).

“M. E. Lines and A. M. Glass, Principles and Applications of
Ferroelectrics and Related Materials (Clarendon, Oxford,
1979).

I5R. E. Cohen, Nature (London) 358, 136 (1992).

6R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, R1651
(1993).

7R. Resta, Rev. Mod. Phys. 66, 899 (1994).

18S.-E. Park and T. R. Shrout, J. Appl. Phys. 82, 1804 (1997).

19T. Naumov and H. Fu, Preprint at cond-mat/0409330 (2004).

20H. Fu and O. Gulseren, Phys. Rev. B 66, 214114 (2002).

064116-5



D. KARANTH AND H. FU

2I'W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

22N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1993).

23H. Schulz and K. H. Thiemann, Solid State Commun. 32, 783
(1979).

X Flastic, Piezoelectric, Pyroelectric Constants and Nonlinear Di-
electric Susceptibilities of Crystals, Landolt-Bornstein New Se-
ries, Group III, Vol. 11 (Springer, Berlin, 1979).

PHYSICAL REVIEW B 72, 064116 (2005)

2T. B. Bateman, J. Appl. Phys. 33, 3309 (2005).

26].-M. Wagner and F. Bechstedt, Phys. Rev. B 66, 115202 (2002),
and references therein.

2T A. Garcia and D. Vanderbilt, Appl. Phys. Lett. 72, 2981 (1998).

28H. Fu and R. E. Cohen, in Fundamental Physics of Ferroelectrics,
edited by R. E. Cohen (AIP, New York, 2000), p 143.

2R. M. Martin, Phys. Rev. B 1, 4005 (1970).

064116-6



