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Based on a molecular mechanics model, analytical solutions are obtained for the critical buckling strain of
multiwalled carbon nanotubes �MWNT’s� under axial compression and bending. We show that only part of the
outer layers buckles first while the remaining inner part remains stable in a very thick MWNT, which is quite
different from the initial buckling mode of a relatively thin MWNT in which all individual tubes buckle
simultaneously. Such a difference in the initial buckling modes results in quite different size effects on the
critical buckling strain of thin and thick MWNT’s. For instance, inserting more inner individual tubes may
increase the critical buckling strain of a thin MWNT, but cannot increase the critical buckling strain of a thick
tube. The effects of tube size on the initial buckling wavelength are also examined, and it is shown that the
initial buckling wavelength is weakly dependent on the thickness of the MWNT.
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I. INTRODUCTION

Carbon nanotubes �CNT’s� have been proposed as prom-
ising materials for superstrong bulk composites and nano-
electromechanical systems1–5 �NEMS’s� partly due to their
amazing mechanical properties such as exceptional high
stiffness and tensile strength and remarkable flexibility and
resilience. However, direct measurement of mechanical
properties of CNT’s remains a challenge, and indirect meth-
ods were frequently used. As summarized by Pantano et
al.,6,7 most experimental measurements impose some form of
bending of the CNT’s and a beam theory is often used to
reduce the data to an elastic modulus. For example, the elas-
tic modulus was calculated by the measured vibration fre-
quency or force-displacement relation of CNT’s via beam
models.8–11 Buckling �often referred to as wrinkling or rip-
pling� is often developed on the compressive side of the
bend, particularly in a multiwalled nanotube �MWNT�. The
MWNT may be driven into nonlinear response by rippling,
which results in a remarkable reduction of the measured ef-
fective bending modulus.6,7,9,12–15 Some other physical prop-
erties such as conductance of CNT’s may also be signifi-
cantly changed by the occurrence of buckling.2,16–18

Meanwhile, experimental investigations8,9,19 have shown evi-
dently that the buckling deformation of CNT’s is completely
reversible even under large strain �more than a few percent�.
These facts provide potential applications of the buckling of
CNT’s as a critical point of reversible elements in NEMS’s
to realize the bistate functions. It is, therefore, of significant
importance to efficiently determine the critical buckling con-
ditions of CNT’s.

Both numerical simulations and analytical models have
been widely used investigate buckling behavior of CNT’s
since it was observed experimentally.9,20–23 Most of numeri-
cal simulations are based on molecular dynamics �MD�.
Iijima et al.21 simulated buckling of single-walled carbon
nanotubes �SWNT’s� and MWNT’s under bending and gave

a quantitative explanation of their experimental observations.
Yakobson et al.24 studied buckling of SWNT’s under axial
compression, bending, and torsion and showed that the buck-
ling behavior of a SWNT can be well predicted by a con-
tinuum shell model which provides very concise expressions
for the critical buckling conditions of SWNT’s. Srivastava
and Barnard25 calculated axial buckling of a �10, 10� SWNT
and a �5n ,5n�n=4–7 MWNT’s by large-scale MD simulations.
Garg et al.26 studied the buckling behavior of the nanotube as
a probe tip of the atomic force microscope �AFM�, and the
effects of tube length and surface type on the mechanisms of
the interaction of tubes with surfaces were investigated. Re-
cently, the effects of tube size, chirality, temperature, and
intertube van der Waals �vdW� interactions on the buckling
of CNT’s were studied.16,27–30 MD simulations may, in prin-
ciple, be used to investigate any atomic system if the inter-
actions between atoms could be determined. Nevertheless,
direct simulation of systems with a large number of atoms,
such as large thick MWNT’s, seems prohibitive for the de-
manded computational cost. To our knowledge, no direct
MD simulation for the mechanical behavior of MWNT’s
with layers more than 5 is reported in the literature. As an
alternative, two- and three-dimensional finite-element analy-
ses of bent MWNT’s were conducted12,31 to investigate the
effect of rippling on the effective bending modulus of the
thick MWNT’s. The results showed that the critical buckling
strain �here referred to the strain on the inner arc of the bend
at buckling� is a constant independent of the tube outer di-
ameter, which is, however, in contradiction with the results
from molecular dynamics simulations by Liew et al.30 Re-
cently, many novel numerical approaches have been pro-
posed to investigate the mechanical behavior of relatively
thick MWNT’s, especially under bending.7,14,32,33

Compared to the numerical methods, analytical models
usually give explicit solutions to the problems considered.
The continuum shell model has been proven to be able to
give a good approximation to the critical buckling strain of
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SWNT’s once the model parameters were properly
chosen.24,29,34,35 However, the single-shell model could not
be directly applied to MWNT’s due to the presence of inter-
wall van der Waals interactions. To study the buckling be-
havior of MWNT’s, Ru36,37 developed a multishell model in
which the interwall van der Waals interaction was modeled
by a linear function of the jump in deflection of adjacent
walls due to buckling. The model has been used to study the
buckling of MWNT’s under axial compression without and
with the combination of radial pressure37,38 and buckling of
double-walled nanotubes �DWNT’s� embedded in an elastic
medium under axial compression36 and torsion.39 Post-
buckling behavior of DWNT’s under hydrostatic pressure
was studied by Shen40 with consideration of transverse shear
deformations in the shell model. Curvature effects of van der
Waals forces on the axial compressed buckling of a DWNT
was investigated by Qian et al.41 In a recent work by He
et al.,42 a new multishell model which takes the van der
Waals interaction between any two layers into account was
developed, and the effects of the tube radius and thickness on
the critical buckling load of a MWNT were reevaluated. For
the applicability and limitations of shell models, the reader is
referred to the paper by Wang et al.43 Another powerful tool
to analytically investigate mechanical behavior of CNT’s is
the molecular mechanics model.44,45 Chang et al.35 obtained
explicit solutions for the critical buckling strain of SWNT’s
via a molecular mechanics model in which the effect of tube
chirality was taken into account. Despite these extensive ana-
lytical studies, no analytical solution has, however, so far
been available for the critical buckling strain of MWNT’s
under bending.

In this paper, we present theoretical solutions to the criti-
cal buckling strain of MWNT’s under both bending and axial
compression using the molecular mechanics approach. We
find that the buckling behavior of a very thick �solid�
MWNT is quite different from that of a thin MWNT, which
takes unconventional size effects on the critical buckling
strain. The present solution can make efficient predictions
compared with the existing results. Empirical explicit ex-
pressions for the critical buckling strains are also presented,
and the critical buckling strain of a MWNT with arbitrary
size can be simply calculated by these expressions.

II. MOLECULAR MECHANICS MODEL FOR CNT’s

In the empirical force-field method of molecular mechan-
ics, the total potential energy Et can be expressed as a sum of
several individual energy contributions:

Et = U� + U� + U� + U� + UvdW + Ues, �1�

where U�, U�, U�, and U� are energies associated with bond
stretching, bond angle variation, bond inversion, and torsion,
respectively; UvdW and Ues are associated with van der Waals
and electrostatic interactions,44–46 respectively. Various func-
tional forms may be used for these energy terms depending
on the particular materials and loading conditions consid-
ered.

In some cases, such as the present problem of buckling of
carbon nanotubes, it can be expected that only bond stretch-

ing �U��, bond angle variation �U��, bond inversion �U��,
and interlayer van der Waals �UvdW� terms are significant in
the total system potential energy. Hooke’s law is often em-
ployed to characterize the interactions between bound atoms
in the system, which has been proven to be efficient and
accurate enough to describe the behavior of atoms under
small deformation.46 That is,

U� = � 1

2
K��dr�2, U� = � 1

2
C��d��2, U� = � 1

2
C����2,

�2�

where dr is the bond elongation, d� the bond angle variance,
and � the average inversion angle �whose definition can be
found in Ref. 35�. Force constants may be taken as K�

=742 nN/nm, C�=1.42 nN nm �obtained by Chang and
Gao45 from physical data of graphite�, and C�=3.27 nN nm
�calculated by 24D0, where D0=0.85 eV is the bending stiff-
ness of graphene sheets24�.

The van der Waals force between any two atoms can be
well described by the Lennard-Jones �LJ� model.47,48 Follow-
ing Ru’s multishell model,36 in view of the linearized fea-
tures of the infinitesimal buckling analysis, the total van der
Waals force exerted on any atom due to all atoms of the
interacting adjacent tube may be a linear function of the
jump in deflection at the atomic position. This means

UvdW = � 1

2
KvdW�ds�2, �3�

where ds is the jump in deflection at the atomic position. It
should be noted that the value of KvdW is dependent on the
ratio of the diameter of the tube interacting with the atom.
For example, He et al.42 have clearly shown that the van der
Waals force is dependent on the tube diameter and the
change of the KvdW value is higher than 10% due to the
variation of tube diameter.

In fact, an atom interacts with not only the nearest-
neighboring layers, but also the non-nearest-neighboring lay-
ers via van der Waals forces. It is no doubt that the model
with consideration of the van der Waals interaction between
any two layers may give a more accurate analysis of the
buckling of MWNT’s than the model accounting only for the
van der Waals interaction from the nearest-neighboring lay-
ers. He et al.,42 using a novel multishell model, have inves-
tigated the axial buckling of MWNT’s with consideration of
van der Waals interactions between any two layers. However,
they showed that the van der Waals interaction coefficients
for the two nonadjacent layers is at least 50 times lower than
those for the two adjacent layers,42 which means that the van
der Waals interaction from the non-nearest-neighboring lay-
ers is not significant compared to that from the nearest-
neighboring layers.

On the other hand, numerical results by Pantano et al.15

have indicated that, even if the van der Waals strength is
reduced to 50%, the change of the critical buckling strain �or
load� of a nine-walled CNT is not more than 5%, and its
initial buckling wavelength remains unchanged. The results
actually imply that a small variation of the van der Waals
interaction coefficients has little effect on the critical buck-
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ling parameters of a MWNT. Hence it seems acceptable to
ignore the van der Waals interaction from non-nearest-
neighboring layers and the effect of tube diameter on KvdW
during the investigation of the critical buckling behavior of
MWNT’s, as in Ru’s multishell model.36 Such simplicity will
slightly change the quantity of the critical buckling strain �or
load� of a MWNT because of the reduction of the lateral
constraint of individual tubes, but it is believed that it will
not bring a qualitative change of the critical buckling behav-
ior of a MWNT.

In this paper, similar to Ru’s multishell model,36 we only
consider the van der Waals interactions from the nearest-
neighboring layers and simply take KvdW=Kv=1.62 nN/nm,
which is in fact the value for an atom interacting with a
graphene sheet to which the distance from the atom is about
0.34 nm. Typical results from the present model will be com-
pared with the corresponding ones from the model of He
et al.,42 as well as those from Ru’s model,36 to verify the
model’s efficiency �see Table II, where the maximum error is
less than 4%�.

In terms of Eqs. �2� and �3�, the system energy of the
present problem can be written as

Et =
1

2�
i

1

2
K��

p=1

3

�drip�2 + �
i

1

2
C��

p=1

3

�d�ip�2 + �
i

1

2
C����2

+
1

2�
i

1

2
Kv��d�i

+�2 + �d�i
−�2� , �4�

where the coefficient 1 /2 of the first and fourth terms is to
ensure that the energies are considered only once; p=1–3 in
the first and second terms is due to the fact that there are
three bond lengths and three bond angles associated with
atom i; wi is the radial displacement of atom i, and dw+

�dw−� represents the jump in the deflection between the wall
on which atom i located and its inner �outer� adjacent wall. It
should be noted that dw+ �dw−� should be set to be zero for
the innermost �outermost� wall.

The critical buckling strain of an axial compressive or
bending CNT will be determined by an energy approach as
follows. The system free energy �, which is the difference of
system strain energies before �dE� and after buckling ��E�,
can be related to the buckling strain and buckling mode. The
equilibrium equation in the normal direction for each atom is
then obtained via the requirement of a minimum of the sys-
tem free energy. The nontrivial solution of the buckling de-
flections needs the determinant of the coefficient matrix of
the equilibrium equations being zero, which consequently
leads to an N-order equation for the buckling strain whose
minimum value gives the critical buckling strain.

III. BUCKLING OF SWNT’s UNDER AXIAL
COMPRESSION

A single-walled carbon nanotube, which can be viewed as
a graphene sheet rolled into a tube, is usually indexed by a
pair of integers �n1 ,n2� to represent its helicity.49 A molecu-
lar mechanics model for axisymmetrical buckling of
SWNT’s �i.e., which deform into a ring pattern at the critical

buckling� has been established by Chang et al.35 In this sec-
tion, we briefly outline the main results from the model and
then extend the model to MWNT’s in the subsequent sec-
tions.

Let 	 be the compressive strain and 	0 the buckling strain,
and assume that a �n ,n� SWNT �often referred to an arm-
chair tube� buckles into a ring pattern which can be described
by a cosine function. The system free energy can be written
as35

� = dE − �E , �5�

where dE and �E can be related to the compressive strain
and buckling mode via Eq. �4�.35 The extremum condition of
� leads to

��

�
i
=

��dE − �E�
�
i

= 0, �6�

where 
i is the radial displacement of the atom i. Equation
�6� consequently gives the equilibrium equation for each
atom as35

�f1 + g1	0�z1 = 0, �7�

where z1 is the buckling amplitude.
Nontrivial solution of the buckling amplitude leads to the

characteristic equation35

f1 + g1	0 = 0. �8�

The parameters f1 and g1 for armchair tubes in Eqs. �7�
and �8� are calculated by35

f1 =
C�

9r0
2 pT +

K�r0
2

64R2 pY −
2C��A

�3r0
2

pG, �9�

g1 =
3K�

3 + �A�K�r0
2/C��

pD +
2C�

�3r0
2
�
A1pG + 
A3pS� , �10�

where R is the tube radius and r0 is the reference C-C bond
length. The other parameters are35

pT = 16 sin4��/2� , �11�

pS = 4�4 sin4��/2� − sin2��/2�� , �12�

pG = 4 sin2��/2� , �13�

pD = − 4 sin2��/2� , �14�

pY = 2�17 + cos �� , �15�

�A =
7 − cos��/n�

34 + 2 cos��/n�
, �16�


A1 =
3�2�A�K�r0

2/C��
3 + �A�K�r0

2/C��
1

�7 − cos��/n�
cos

�

2n
, �17�


A3 =
2�3�A�K�r0

2/C��
3 + �A�K�r0

2/C��
, �18�
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�A =
�

3
− arccos �1

2
cos

�

2n
� , �19�

� =
�3m�r0

2L
, �20�

where L is the tube length and m the number of half waves in
the axial direction. The critical buckling strain 	c is deter-
mined as the minimum value of the buckling strain 	0 in Eq.
�8�. For more details of the procedure, the reader is referred
to the paper by Chang et al.35

Here we should emphasize that an equation from the con-
tinuum shell theory would underestimate the critical buck-
ling strain of a SWNT especially when the tube diameter is
small �Fig. 1�.35 The reason is partly due to the size-
dependent elastic modulus of SWNT’s and partly due to the
fact that a small SWNT may behave as a thick tube rather
than a thin one �because all SWNT’s have the same “thick-
ness” in the concepts of continuum theory�.

Based on a detailed analysis on the data shown in Fig. 1,
we find that the critical buckling strain for an axial com-
pressed �n ,n� SWNT can be well approximated by an em-
pirical equation

	c =
4

d
�D0

Et
�1 +

t

d
�; �21�

i.e., the equation obtained from continuum mechanics is
modified by multiplying a factor of �1+ t /d�. Here t
=0.339 nm is the effective wall thickness, d the diameter, D0
the bending stiffness, and Et the in-plane stiffness of the
SWNT. Comparisons of the results from the molecular me-
chanics model with the continuum equation and the modified
equation are shown in Fig. 1, where D0=0.85 eV and Et
=360 J /m2 as obtained by Yakobson et al.24 are used.

IV. BUCKLING OF MWNT’s UNDER AXIAL
COMPRESSION

For an N-walled CNT, although a diamondlike mode can
be observed at the final buckling stage, MD simulations have
shown that the initial buckling mode of a MWNT is in a ring
pattern.30 Thus the above approach is particular useful to
determine the critical buckling strain of MWNT’s. The sys-
tem free energy for a MWNT is the summation of the in-
tratube energies, dEintra−�Eintra, and the intertube van der
Waals interactions, dEinter−�Einter,

� = �dEintra − �Eintra� + �dEinter − �Einter�

= �
k=1

N

�dE�k� − �E�k�� + �
k=1

N−1

�dEvdW
�k,k+1� − �EvdW

�k,k+1�� , �22�

where the superscript k is the wall index numbered from the
outermost tube to the innermost tube, dE�k� and �E�k� are the
intratube strain energies for the kth wall of the MWNT, and
dEvdW

�k,k+1� and �EvdW
�k,k+1� represent the intertube van der Waals

interaction potentials between the kth and �k+1�th individual
tubes.

We seek the radial displacement of atom i located on the
kth wall due to axisymmetric buckling as


i = 
�k��xi� = z�k� cos
m�xi

L
+ z0

�k�, �23�

where L is the length of nanotube, m the half wave numbers
along the tube axis direction, xi the longitudinal coordinate
of atom i, and z�k� the bucking amplitude and z0

�k� the radial
extension of the nanotube before buckling.

The extremum condition of � leads to

��

�
i
=

��dE�k� − �E�k��
�
i

+
KvdW

2

�

�
i
	�
�k+1��xi� − 
�k��xi��2

+ �
�k��xi� − 
�k−1��xi��2
 = 0. �24�

Here we should note that for an N-walled nanotube,

�N+1��x�=
�0��x�=0. Equation �24� in fact gives the radial
equilibrium equation of atom i. When the van der Waals
interaction is absent, Eq. �24� can be simplified to Eq. �6� for
a SWNT. With use of Eq. �23�, to keep Eq. �24� a permanent
equation, it needs two constraint equations. One of them may
be used to calculate z0

�k� and will not be discussed here be-
cause it has no contributions to the problem we considered.
The other for z�k� can be written as

�fk + gk	0�z�k� − Kv�z�k+1� − 2z�k� + z�k−1�� = 0, �25�

with z�N+1�=z�0�=0 for an N-walled nanotube. Comparing Eq.
�25� to Eq. �7�, as can be expected, the characteristic equa-
tions for a MWNT are coupled by the intertube van der
Waals interactions. The parameters fk and gk for armchair
tubes are calculated by

fk =
C�

9r0
2 pT +

K�r0
2

64Rk
2 pY −

2C0�A
�k�

�3r0
2

pG, �26�

FIG. 1. Critical buckling strain for axial compressed SWNT’s
from different methods.
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gk =
3K�

3 + �A
�k��K�r0

2/C0�
pD +

2C�

�3r0
2
�
A1

�k�pG + 
A3
�k�pS� , �27�

where the superscript k indicates that the parameters, which
can be calculated by Eqs. �11�–�20�, are related to the kth
wall.

We rewrite Eq. �25� in a matrix form as

�M�	z
 = 0, �28�

where the coefficient matrix

�M� = �
f1 + g1	0 + Kv − Kv 0 ¯ 0 0

− Kv f2 + g2	0 + 2Kv − Kv ¯ 0 0

0 − Kv f3 + g3	0 + 2Kv ¯ 0 0

¯ ¯ ¯ ¯ ¯ ¯

0 0 0 ¯ fN−1 + gN−1	0 + 2Kv − Kv

0 0 0 ¯ − Kv fN + gN	0 + Kv

� , �29�

and the vector z represents the buckling amplitude of each
individual tube:

	z
 = 	z�1�,z�2�z�3�, . . . ,z�N�
T. �30�

Nontrivial solution of z need the determinant of matrix M
to be zero—i.e.,

Det�M� = 0, �31�

which consequently yields an N-order equation of 	0. The
buckling strain 	0 corresponding to a given buckling mode
for any N-walled tubes, in principle, can be obtained from
such an N-order equation, and the critical buckling strain 	c
should be the minimum value of 	0. The buckling wave-
length is then calculated by � associated with 	c:

l = �3�r0/� , �32�

where � is defined in Eq. �20�.
Because the tube chirality has no essential effect on the

critical buckling strain of CNT’s,35 the present discussions
are focused only on the buckling of armchair tubes. Without
loss of generality, only the buckling of MWNT’s that are
constructed of nested �5n ,5n� tubes is discussed in this pa-
per.

V. BUCKLING OF MWNT’s UNDER BENDING

The critical buckling strain of a bent MWNT can be ob-
tained by applying the above approach to the local compres-
sive strain, as suggested by Yakobson et al.24 in calculating
the critical buckling strain of a SWNT, only if the propor-
tional distribution of the compressive strain along the radial
direction in the bending plane is taken into account. A similar
analysis leads to the same characteristic equations such as
those shown in Sec. III, except that Eq. �27� should be modi-
fied as

gk = �� 3K�

3 + �A
�k��K�r0

2/C��
pD +

2C�

�3r0
2
�
A1

�k�pG + 
A3
�k�pS�� ,

�33�

in which

� = 
1 under axial compression,

dk/do under bending,
� �34�

where dk is the diameter of the kth wall and do=d1 the di-
ameter of the outermost wall.

VI. DISCUSSIONS OF THE RESULTS

The critical buckling of a MWNT under axial compres-
sion or bending can be determined from Eq. �31�. For any
given buckling mode parameter � �which is defined in Eq.
�20��, there exist N solutions of Eq. �31�. With the variation
of � from 0 to � /2, there is a minimum value among these
solutions which is the critical buckling strain of the problem.

A. Classification of MWNT’s

Once the critical buckling strain of the problem is deter-
mined from Eq. �31�, one can substitute the value of 	c as
well as the corresponding � into Eq. �28� to obtain an equa-
tion set about the buckling amplitude of each individual tube.
The equation set cannot be directly solve because the deter-
mination of the coefficient matrix M is zero �see Eq. �31�,
which is used to determine 	c�. It is, nevertheless, easy to
find that the relative value of the initial buckling amplitude
z�k� /z�1� could be determined from Eq. �28� as

z̄�1� = 1,

z̄�2� =
f1 + g1	c

Kv
+ 1,
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z̄�k� = � fk−1 + gk−1	c

Kv
+ 1�z̄�k−1� − z̄�k−2� �for k � 2� ,

�35�

where z̄�k�=z�k� /z�1� is the normalized initial buckling ampli-
tude.

Figures 2�a� and 2�b� show the normalized initial buckling
amplitudes of individual tubes of 14-walled and 3-walled
CNT’s under axial compression and bending, respectively. It
is seen clearly that the buckling modes of thin and thick
tubes are quite different. The buckling amplitudes of all in-

dividual tubes in very thin tubes are nearly the same, while
in thick tubes, the buckling amplitude of the outermost tube
is much larger than that of the innermost one. In particular,
we find that the buckling amplitudes of some inner indi-
vidual tubes of a very thick MWNT are almost zero. For
example, the buckling amplitude of the outer layer is about
10 times larger than that of the middle layer and about 400
times larger than that of the inner layer of a bent 3-walled
�5n ,5n�n=1–3 tube �Fig. 2�b��. In other words, only part of the
outer walls buckles first while the rest inner part remains
stable. This finding gives a theoretical confirmation of the
recent observation in molecular dynamics simulations of
CNT buckling by Liew et al.30 They found that only the
outer layer of a 3-walled �5n ,5n�n=1–3 tube buckles first at
	=0.0484, while the middle and inner layers remain stable.
This special buckling mode has been denoted as mode-I
buckling, while the buckling mode of all individual tubes
buckling together is named mode-II buckling in our previous
paper.35 A solid �very thick� MWNT may now be defined as
the MWNT corresponding to mode-I buckling.

According to our further analysis �results will be shown in
the following sections, especially in Fig. 7�, we defines thin
and thick MWNT’s as that shown in Table I. However, it
should be noted that the transition point of thin-to-thick tubes
is dependent upon the load conditions added to the
MWNT’s.

B. Critical buckling strain of solid MWNT’s

The critical buckling strain of �5n ,5n�n=1–N MWNT’s
�which can be viewed as solid MWNT’s when N�2� is
shown in Fig. 3. We can see that the critical buckling strain
decreases with increasing layers of the MWNT �i.e., increas-
ing outer diameter of the MWNT� under both load condi-
tions. This phenomenon is quite different from that of a con-
tinuum shell due to the fact that the intertube van der Waals
interaction is much weaker than the intratube binding inter-
action, which makes the MWNT’s highly anisotropic. Fur-
ther analysis shows that the critical buckling strain for a solid
MWNT can be well represented by 0.0985 nm/do for axial
compression and 0.111 nm/ �do+ t� for bending, where do is
the outer diameter and t=0.339 nm is the interlayer spacing
of the MWNT. Namely, the critical buckling strain of an
axial compressed solid MWNT is in reverse proportion to its
outer diameter do, while the critical buckling strain of a bent
solid MWNT is in reverse proportion to �do+ t�.

Some existing results from molecular dynamics
simulations,30 the modified finite-element method,6,15 quasi-
continuum mechanics calculations,14 and an experimental

TABLE I. Classification of MWNT’s under axial compression and bending.

Thin MWNT’s

Thick MWNT’s

General Solid �very thick�

Compression Bending Compression Bending Compression Bending

di /do �0.62 �0.75 �0.62 �0.75 �0.35 �0.41

FIG. 2. Normalized initial buckling amplitudes of MWNT’s ver-
sus index number of outermost tubes under �a� axial compression
and �b� bending.
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test9 are also shown in the figures for comparison. The agree-
ment is found to be very good in both load conditions.

C. Size effects on the critical buckling strain of MWNT’s

In this section, the size effects on the critical buckling
strain of the MWNT will be discussed in detail. There are
three ways to make a thin MWNT into a thicker one: �1�
inserting inner tubes, �2� wrapping outer tubes, and �3� in-
serting and wrapping simultaneously. As the present analysis
is confined to the MWNT’s constructed of nested �5n ,5n�
tubes, so the difference of the index number of every two
neighboring individual tubes is kept 5 while inserting and
wrapping.

1. Inserting effects

Figure 4 shows how the critical buckling strain varies

with the increasing number of tube walls in the case of the
tube outer diameter do remaining unchanged. It is seen that
the critical buckling strain for thinner MWNT’s can be in-
creased by inserting inner tubes. However, with the tube
thickness increasing to some critical value �which indicates
the thin-to-thick transition�, the critical buckling strain be-
comes stable. The insensitivity to further insertion of the
critical buckling strain of a thick MWNT can be explained
by the phenomenon we observed in Sec. IV A; i.e., the in-
serted inner tubes may not be involved into critical buckling
of a very thick �solid� MWNT. We note here again that the
points of thin-to-thick transition may shift with loading con-
ditions.

For an axial compressive thin MWNT �N�16 in Fig. 4�,
its critical buckling strain can be well represented by
	codo /dm, where 	co is the critical buckling strain for a
SWNT with the same diameter as the outer diameter of the
MWNT and dm the mean diameter �i.e., �di+do� /2� of the
MWNT. The value of 	codo /dm is in fact approximately
equal to the critical buckling strain of a SWNT with a diam-
eter of dm �for convenience, we denote it as 	cm�. This means
that the critical buckling strain of an axial compressed thin
MWNT can be approximated by that of a SWNT with the
diameter equal to the mean diameter of the MWNT. This
finding agrees with that given by Ru using a multishell
model.37 For an axial compressive thick MWNT, because it
is insensitive to the tube inner diameter, the critical buckling
strain can be approximated by the above mentioned fitting
function for solid tubes with a �5,5� tube as the innermost
tube, 0.0985 nm/do.

With respect to bent MWNT’s, the critical buckling strain
of a thick tube �N�12 in Fig. 4� is also insensitive to its
inner diameter and can similarly be fitted by 0.111 nm/ �do

+ t�, while the critical buckling strain of a thin tube is ap-
proximately equal to 	co�do /dm�2. Thus we have the critical
buckling curvature 
c=	c /Ro= �	codo /dm� /Rm�	cm /Rm

=
cm. This means that the critical buckling curvature of a
bent thin MWNT can be approximated by that of a SWNT
with the diameter equal to the mean diameter of the MWNT.

FIG. 3. Critical buckling strain of solid MWNT’s versus number
of tube walls �tube outer diameter� under �a� axial compression and
�b� bending.

FIG. 4. Thickness effects on the critical buckling strain of
MWNT’s when the tube outer diameter is kept constant.
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This is a very important conclusion which can be used to
estimate the critical buckling condition of a bent thin
MWNT.

2. Wrapping effects

In Fig. 5 we show wrapping effect on the critical buckling
strain where the tube inner diameter is remained as that of a
�100,100� SWNT—i.e., di=d�100,100�. The same trend as
shown in Fig. 3 can be seen in Fig. 5; i.e., wrapping more
individual tubes will decrease the buckling strain of a
MWNT. Compared with empirical expressions to thin and
thick tubes, we can find clearly the thin-to-thick transition
points under both loading conditions.

3. Inserting and wrapping

It means that the tube mean diameter remains unchanged
if the same number of individual SWNTs is wrapped on as is
inserted in an existing MWNT. How the critical buckling
strain varies with the tube thickness in this case is dependent
on the competition of the effect resulting from the inserting
tube and the wrapping tube. We can see from Fig. 6 that,
with increasing tube thickness, the critical buckling strain of
a thin MWNT remains almost constant under axial compres-

sion, but it significantly increases under bending. This im-
plies that the inserting effect is almost equal to the wrapping
effect for a thin MWNT under axial compression, while for a
bent thin MWNT, the inserting effect is much stronger than
the wrapping effect. As can be expected, the critical buckling
strain of a thick MWNT under both loading conditions will
be decreased by the wrapping tube as the inserting tube has
almost no effect on it �because it may not be involved in the
buckling�. Again, the effective predictions of the fitting func-
tions are shown in Fig. 6, where 	cm is the critical buckling
strain of a SWNT with a diameter equal to the mean diam-
eter of the MWNT’s.

Finally, we show in Table II the comparison of the present
results with some other existing results for both thin and
thick tubes besides those presented in Fig. 3. Good agree-
ment is found again �with errors less than 4%�.

D. Correlation of the critical buckling strain

Shown in Fig. 7 is the normalized critical buckling strain
versus tube thickness parameter Nt /dm. The critical buckling
strain of each tube is normalized by that of the corresponding
solid MWNT �whose innermost tube is �5, 5�� with the same
outermost diameter. Surprisingly, we find that all data points

TABLE II. Comparison of the present predictions of the critical buckling strain for MWNT’s under axial compression with existing
results.

Thin MWNT’s Thick MWNT’s

di �nm� 17.36 36.34 11.87 11.87 11.87 11.87 5.70 13.28 1.36 2.71

do �nm� 20.07 41.08 12.20 13.22 14.92 17.30 10.44 23.46 6.10 4.75

N 5 8 2 5 10 17 8 16 8 4

Previous �%� 0.423a 0.206a 0.322b 0.309b 0.290b 0.264b 0.935a 0.421a 1.54a �2c

Present �%� 0.428 0.206 0.331 0.318 0.299 0.273 0.943 0.419 1.61 2.06

aWang et al. �Ref. 38� from a multishell model in which only the vdW interaction between adjacent two layers is considered.
bHe et al. �Ref. 42� using a multishell model in which the vdW interaction between any two layers is considered.
cSrivastava and Barnard �Ref. 25� by molecular dynamics simulations.

FIG. 5. Thickness effects on the critical buckling strain of
MWNT’s when the tube inner diameter is kept constant.

FIG. 6. Thickness effects on the critical buckling strain of
MWNT’s when the tube mean diameter is kept constant.

CHANG, GUO, AND GUO PHYSICAL REVIEW B 72, 064101 �2005�

064101-8



fall onto a unique curve in each loading condition, which
means the critical buckling strain of a MWNT with arbitrary
size can be described by a unified function in each loading
condition.

We can find clearly from Fig. 7 that the maximum en-
hancement of the critical buckling strain of a SWNT �or
MWNT� by inserting inner tubes �while remaining interwall
spacing as 0.339 nm� is about 26% under axial compression
and 42% under bending, respectively. The thin-to-thick tran-
sition points can be seen clearly also, which indeed gave the

definitions of the thin and thick tubes under both load con-
ditions as shown in Table I.

The two curves shown in Fig. 7 can be well fitted by

	̄c = 1 −
�

1 + �
f��� , �36�

where the thickness parameter � equals to Nt /dm and the
maximum inserting effect � and switching function f��� are
given by


� = 0.26, f��� = �1 + ��−1�1 − ��3/�1 − ��3
under axial compression,

� = 0.42, f��� = �1 + ��−1�1 − ��4/�1 − ��4
under bending.

� �37�

Together with the two fitting functions shown in Fig. 3 for
the critical buckling strain of a solid MWNT under axial
compression and bending, Eqs. �36� and �37� could give the
approximate critical buckling strain of a MWNT with arbi-
trary size.

E. Initial buckling wavelength of MWNT’s

The initial buckling wavelength, which is an important
parameter in description of the buckling deformation of
MWNT’s, can be determined by Eq. �32� in which � is asso-
ciated with the critical buckling strain 	c. Shown in Fig. 8 is
the initial buckling wavelength versus �Roh�1/2 for two series
of MWNT’s with constant di=d�5,5� and constant do

=d�200,200�, respectively, where Ro are the outer radius of the
MWNT and h=Nt. It is shown that the initial buckling wave-
length for axial compression is approximately the same as
that for bending. Therefore, we will not distinguish them in
the following discussion. The results for MWNT’s with con-

stant di=d�5,5� given by Pantano et al.6 from a modified
finite-element �FE� method are also shown in the figure for
comparison and good agreement can be found �note here we
take t=0.339 nm other than 0.075 nm used in their plot�.

To our surprise, the present results indicate that the initial
buckling wavelength is weakly dependent upon the tube
thickness �see the curve for MWNT’s with constant do
=d�200,200��. This important finding seems quite different from
the conclusions from single-shell theory.

Thin-shell theory predicts that the initial buckling wave-
length for a cylindrical shell under axial compression can be
written as34,50

l = 2�� D

Eh
�1/4

�Ro =
2�

12�1 − �2�
�Roh , �38�

where D=Eh3 /12�1−�2� is the bending stiffness, E the elas-
tic modulus, and � the Poisson ratio. A ratio of l / �Roh�1/2 is
found to be 3.4 if the Poisson ratio is taken as 0.19. The

FIG. 7. Correlation of the critical buckling strain of MWNT’s
with arbitrary size.

FIG. 8. Comparison of predictions from different approaches for
the initial buckling wavelength of MWNT’s.
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experimental investigation by Bower et al.23 showed a simi-
lar trend of the buckling wavelength in proportion to
�Roh�1/2, but with a ratio of about 1. The difference was
attributed to two facts. First, the MWNT’s observed in the
experiment are thick tubes.23 Second, MWNT’s possess a
multiwalled structure other than a single shell.7 Both of these
two facts would make the single-shell model unsuitable to be
directly applied to MWNT’s. However, it is proven that a
multishell model is suitable for studying the buckling of a
MWNT.37 In the study on the axial buckling of MWNT, Ru37

has concluded that the effective bending modulus of a thin
MWNT �which is defined by the ratio of the inner-to-outer
diameter larger than 0.75 in their work� is approximately N
times of the SWNT �which is 25N2 times lower than that
predicted by the single-shell model�. This means that the
initial buckling wavelength of a MWNT could not be cor-
rectly predicted by Eq. �38�, but could be calculated by the
effective bending modulus

l = 2�� D

Eh
�1/4

�Ro = 2��ND0

ENt
�1/4

�Ro = 2��D0

Et
�1/4

�Ro

� �0.77 nm Ro, �39�

where D0=0.85 eV and Et=360 J /m2 are used.24 The results
from Eq. �39� are also shown in Fig. 8. We can see that the
prediction of the multishell model is very close to the present
results even for thick MWNT’s. The right-hand side of Eq.
�39� is actually equal to the initial buckling wavelength of a
SWNT with a radius of Ro. This means that the initial buck-
ling wavelength of a MWNT is approximately equal to the
initial buckling wavelength of a SWNT with the same diam-
eter as the MWNT.

It should be pointed out that the present model only pre-
dicts the initial buckling wavelength, while an experiment
almost always measures the final buckling wavelength far
away from the critical buckling state. Numerical simulations
have shown that the final buckling wavelength is much larger
than the initial buckling wavelength.6 Therefore, it is not
suitable to directly compare the present results with the ex-
perimental data and there need further analytic studies on the
post-buckling of MWNT’s.

VII. CONCLUSIONS

In summary, we present theoretical solutions to calculate
the critical buckling strain of MWNT’s under axial compres-
sion and bending. The results indicate that the initial buck-
ling mode of a very thick tube is quite different from that of
a thin tube. In a very thick MWNT, only part of outer layers

buckles first while the remaining inner part remains stable,
while in a relatively thin MWNT, all individual tubes buckle
simultaneously. Such a difference in the initial buckling
mode takes unconventional size effects on the critical buck-
ling strain �or curvature� of MWNT’s. For a thin MWNT
under bending �axial compression�, the critical buckling cur-
vature �strain� can be approximated by that of a SWNT with
a diameter same as the mean diameter of the MWNT. How-
ever, the critical buckling strain of a thick MWNT is insen-
sitive to its thickness and only a function of its outer diam-
eter under both loading conditions. We also show the
wrapping and inserting effects on the critical buckling strain
of MWNT’s. Wrapping more outer individual tubes will de-
crease the critical buckling strain of an existing MWNT. In-
serting more inner individual tubes may increase the critical
buckling strain of a thin MWNT, but cannot increase the
critical buckling strain of thick tube. The maximum enhance-
ment of insertion is shown to be not more than 26% under
axial compression and 42% under bending, respectively.
When normalized by the corresponding value for a very
thick �solid� MWNT with the same outer diameter, the criti-
cal buckling strain of the MWNT’s with arbitrary size would
fall onto a unique curve in each load condition. This finding
is very helpful in predicting the critical buckling strain of the
MWNT’s. The size effects on the initial buckling wavelength
are also investigated. It is shown that the initial buckling
wavelength is weakly dependent on the thickness of the
MWNT and approximately equal to the initial buckling
wavelength of a SWNT with the same diameter as the
MWNT.

The present results are in good agreement with those
given by molecular dynamics simulations and experimental
observation. Comparisons with the existing results from con-
tinuum mechanics models, such as the modified finite-
element method and the multishell models, show that a con-
tinuum mechanics model can give quite reasonable
description to the buckling behavior of MWNT’s if the key
features of the MWNT’s were well captured and the physical
parameters were properly defined in the model.
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