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We have found an exact expression for the decoherence rate of a Josephson charge qubit coupled to
fluctuating background charges. At low temperatures T the decoherence rate � is linear in T while at high
temperatures it saturates in agreement with a known classical solution which, however, reached at surprisingly
high T. In contrast to the classical picture, impurity states spread in a wide interval of energies ��T� may
essentially contribute to �.
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Solid state nanoscale devices provide one of the most
promising routes to implementing a scalable set of control-
lable two-state quantum systems, qubits, based either on spin
degrees of freedom of electrons in quantum dots1 or on dis-
crete charge quantum states in Josephson junctions.2 An un-
avoidable coupling of each qubit to the environment leads to
decoherence. The loss of coherence before a sufficient
amount of quantum operations was performed would be the
major impediment in using solid-state qubits in quantum
computations.

Recent experiments on Josephson-junction �JJ� single
qubits3,4 have demonstrated the possibility of performing
hundreds of “quantum operations” �i.e., coherent oscillations
between the qubit states� before environmental decoherence
sets in. It is believed, however, that tens of thousands of such
operations are required for quantum computation to become
a reality5 so that much longer decoherence times should be
achieved experimentally. It necessitates a better theoretical
understanding of realistic mechanisms of decoherence.

The most conventional way to describe environmental de-
coherence is based on the spin-boson models �see Ref. 6 for
reviews� where the qubit interacts with environment repre-
sented as a set of harmonic oscillators with a given frequency
spectrum. An alternative approach is based on identifying the
dominant mechanism of decoherence in a real experimental
situation and formulating the adequate model. The results
obtained in such a model are not necessarily reducible to
those in the spin-boson models. This turns out to be the case
for decoherence in charge JJ qubits addressed in this paper.

It is widely believed that in charge qubits3 the main con-
tribution to decoherence comes from an inevitable coupling
to charge degrees of freedom, which is also responsible for
1 / f noise observed in such devices.7,8 As charge impurities
are spatially frozen as experimental temperatures T
�30÷50 mK,3,7,8 the most probable source of dynamical
electromagnetic fields is impurities recharging, e.g., due to
the hybridization of their electronic states with conduction
electrons �in the metallic electrodes, etc.� The appropriate
model similar to the conventional model of the spectral dif-
fusion in glasses9 is known as the spin-fluctuator model. It
has already been used 10–13 for a classical �“high-
temperature”� description of decoherence and noise in charge
JJ qubits. However, in such a description contributions from
impurities with energy levels outside a narrow �of order T�
strip around the Fermi level of conduction electrons are ex-

ponentially suppressed. Had this been the case, decoherence
from fluctuating charge impurities would hardly be seen in
experiments as it is rather unlikely to find such a fluctuator
coupled to the qubit in the energy strip so narrow compared
to the typical �atomic� scale over which impurity levels are
distributed.

In this paper we develop a complete quantum mechanical
description of decoherence due to charge fluctuators and ob-
tain an asymptotically exact expression for the decoherence
rate ��T� given by Eq. �12�. In the classical “high-T” regime
it goes over to the previously obtained result10,11 while in the
low-T regime ��T� decreases linearly with T, Eq. �15�, hav-
ing a nontrivial nonmonotonic dependence on the coupling
strength g. In particular, the exponential suppression of the
contributions of energetically remote impurities turns out to
be an artifact of the classical description. The hybridization
with the conduction electrons responsible for the dynamical
recharging leads also to a quantum broadening of the impu-
rity levels which results in the contribution of �inevitably
present� energetically remote impurities being suppressed
only as power law rather than exponentially, thus making it
detectable and eventually dominant.

We consider a model where a charge qubit is coupled to
impurities with charge states fluctuating due to hybridization
with the conduction band:
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Here �0 is the energy split and EJ is the Josephson coupling
of the two qubit states separated from the higher states by the
Coulomb blockade energy Ec�T; both �0 and EJ are tun-
able, which allows one to perform quantum operations on the
qubit. Each localized impurity state is characterized by its
coupling to the qubit vi �due to the dipole interaction�, its
energy �i �counted from the Fermi energy �F of the conduc-
tion electrons�, and its switching rate �i=2�	�ti�2 �	 is the
density of states at �F in the conduction band and �ti�2
=Vol· �tik�2�. All the parameters �i

0, �i, and vi, vary indepen-
dently in a wide interval of energies.

Solving the Heisenberg equation of motion for the full
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density matrix with separable initial conditions, 
̂B+Q�0�
= 
̂�0� � 
̂B, where 
̂�t� is the reduced density matrix of the

qubit and 
̂B=ZB
−1e−�ĤB is the equilibrium density matrix of

the bath, one writes 
̂�t� in the standard formal representation
�see, e.g., Ref. 11�:


̂�t� = 	 n�t� 
12�0�e−i�0tD�t�

21�0�ei�0tD*�t� 1 − n�t�


 �2�

For the charge qubit under consideration, the operational
condition is EJ��0.3 We are interested in decoherence only
so that we restrict considerations to the “pure dephasing”
regime,10 EJ=0. In the perturbative region, small EJ would
not lead to noticeable corrections to decoherence. Although
EJ could be tuned to a large value if an operation is per-
formed on the qubit, this should happen only for a short
period of time which gives only negligible corrections to
decoherence.

For EJ=0, the coupling contains only �zV̂, and the diag-
onal elements of 
̂ do not evolve while the time evolution of
the off-diagonal elements of 
̂ can be represented as

D�t� = �ei�ĤB+V̂�te−i�ĤB−V̂�t�B, �3�

where �. . .�B is the average with the Gibbs density matrix of
the bath, 
̂B. Expressions of this sort can be exactly calcu-
lated in certain problems, e.g., the orthogonality
catastrophe14 and full counting statistics15 in 1D, in tech-
niques which are always problem specific. In present consid-
erations, we employ the linked-cluster expansion within the
Keldysh formalism �similar to that used in Ref. 16 for
bosonic environment� to find the decoherence rate � defined
by

��T� = − lim
t→


t−1 ln�D�t�� . �4�

In order to calculate �, we represent D�t� in Eq. �3� as the
following functional integral over the Grassmann fields de-
fined on the standard Keldysh contour cK

17:
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 Dd̄DdDc̄Dc

Z
exp�i
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dt�	�
ij

Sij + �
k

Sk
� ,

where the action densities are given by

Sij = d̄j�t��	i�t� − � j
0 +

v j�t��
2


dj�t���ij ,

Sk = c̄k�t���i�t� − �k�ck�t�� − �
i

�tkic̄k�t��di�t�� + h.c.� .

�5�

The field v j�t��= ±v j for 0� t�� t, with “�” sign on the
upper and “�” sign on the lower branch of the Keldysh
contour, and vanishes for t��0 or t�� t. The normalization
Z is defined as the same functional integral but with v j �0.
The integration over the conduction electron fields c̄k, ck
reduces the action �5� to the impurity term Sij with the mass
operator

�ij�t�,t�� = �
k

tkitkj
* gk�t�,t�� , �6�

where gk�t� , t�� is the conduction electron Green function
obeying the equation �i�t�−�k�gk�t� , t��=��t� , t�� with the
delta function defined on the Keldysh contour. Now the in-

tegration over the fields d̄i and di reduces D�t�, Eq. �3�, to the
appropriate matrix determinant thus yielding the following
formal result for �, Eq. �4�:

��T� = − Relim
t→


t−1Tr ln�1 +
v̂
2

Ĝ� , �7�

where Ĝ obeys �i�t�− �̂0− �̂�Ĝ= Î, and Tr implies an integra-
tion over times along the Keldysh contour and a summation
over indices labelling the fluctuators. The dependence on the
running time t above is via v j�t� defined after Eq. �5�. The
long-t limit in Eq. �7� can be found by expanding Tr ln into

power series in v̂Ĝ. The nth order term of the expansion is a
multiple integral over n time variables, each running along
that part of cK where v�0. As usual,17 we represent each
integrand via the Keldysh matrices

Ĝ = 	ĜR ĜK

0 ĜA

 , �8�

thus reducing each integration over time to that from 0 to t
�with v→v�x, where �x is the Pauli matrix in the Keldysh

space�. Due to the time translation invariance, each Ĝ de-
pends only on the difference of its time arguments. Then the
nth order integrand depends on n−1 differences in times,
while the integration over the last time variable produces the
overall factor of t. The remaining integrals in time can be
extended to the entire axis as all the Green functions expo-
nentially decay in time with the time constants �i

−1 �or T−1

for the real part of the Keldysh component GK�. Then the
integral has a convolution structure in time and, upon a Fou-
rier transform, it finally reduces to the integral of t� 1

2 v̂G����n

over �. Since the coefficients of the expansion were not af-
fected by the Fourier transform, the re-summing of the series
restores the logarithm and Eq. �7� reduces to

� = − Re

−


+
 d�

2�
tr ln�1 +

v
2

ĜK −
v
2

ĜRv
2

ĜA� , �9�

where the trace of ln�1+ v̂ /2�xĜ���� in the space of matrices
�8� has been explicitly taken and tr refers only to the fluc-
tuator matrix indices.

It follows from Eq. �9� that �0���T=0� vanishes as ex-
pected. Indeed, at T=0 one uses17 GK���= �GR���
−GA����sgn � to find

�0 = − Re

−


+
 d�

2�
tr ln�	1 +

v̂
2

ĜR
	1 −
v̂
2

ĜA
� = 0,

�10�

since the first order of the expansion is imaginary, while the
higher orders vanish upon the integration as all the poles are
in the upper �lower� � half-plane.
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A further simplification is possible for a typical situation
when distances between the fluctuators are larger than the
Fermi wavelength kF

−1 so that the hybridization is local, tki
= tiV

−1/2eikri. Then Eq. �6� reduces to �ij = titj
*g�ri−r j , t�− t��.

Since g�r� �the Fourier transform of the conduction electron
Green function gk� oscillates at kF

−1, off-diagonal matrix ele-

ments of �̂ vanish upon the integration �neglecting small

interference corrections� making Ĝ in Eq. �7� diagonal in the

fluctuator indices, Ĝ=Gj�ij �such a diagonal form was as-
sumed in Ref. 10 by choosing independent conduction bands
for each impurity as in Ref. 18�. Here

Gj
R/A��� = 	� − � j ± i

� j

2

−1

, �11�

where � j �2Im � j j
R =2�	�tj�2 and � j =� j

0+Re � j j is the fluc-
tuator energy �counted from �F� renormalized by the hybrid-

ization. The Keldysh component of Ĝ is given by17 GK���
= �GR���−Gj

A�����1−2nF����, where nF��� is the Fermi fac-
tor with � counted from �F.

Then � in Eq. �4� reduces to a sum of the individual

fluctuator contributions, ��T�=� j� j�T�. Substituting Ĝj of
Eq. �11� into Eq. �9�, subtracting the identically zero expres-
sion �10� for �0 �to improve the integral convergency� and
taking the real part of the resulting expression, we obtain the
following contribution of a single fluctuator at energy � j
�� to the decoherence rate:

���T� = − 

−


+
 d�

4�
ln�1 −

4nF����1 − nF����

1 + ���
−1��� −

1

2
g�2� . �12�

Here we suppressed the index j and introduced dimension-
less coupling g�v /� of the qubit and the fluctuator with the
dimensionless density of states �������v	���� broadened
around the energy � by the hybridization:

	���� = −
1

�
Im G�

R��� =
1

2�

�

�� − ��2 + �2/4
. �13�

The temperature dependence of the decoherence rate �12�
is presented in Fig. 1 for the strong �g=100� and weak

�g=0.2� coupling to a single fluctuator with 	���� centered at
�̃�2� /�=3 �or �=0, insert�. In the high-T limit, � saturates
at the following �-independent value:

��
� =
�

2
�1 − ��1 − g��1 − g2� . �14�

Although it coincides with the results10,11 of the classical
high-T description, it follows from the exact expression �12�
only at T�max���±� ,��, where �±��± �1/2��v2−�2. Thus,
for a fluctuator with either relatively large � or large v �and
thus ��±��, the classical regime �14� is never reached. Then �
is described at any temperature by the low-T asymptotics

��T� =
T

�
arctan2	 2g

�̃2 − g2 + 1

 , �15�

which follows for any � from Eq. �12� either for T�� or for
T�min���±��. This means that the result �14� of the classical
description10,11 is applicable only for a fluctuator with 	����
centered near the Fermi level provided that T�max�v ,��.

Note that a crossover between the asymptotics �15� and
�14� is relatively sharp when A�max�g , �̃��1:��T�
changes exponentially fast,

��T� � �
 exp�− A�/2T� , �16�

in a logarithmically narrow interval, A / ln A�T /��A.
Although a linear in T behavior similar to that in Eq. �15�

would also follow from the spin-boson models with the
ohmic spectral function, only a full quantum treatment of a
microscopic model, like that in Eq. �1�, can result in a non-
trivial T dependence depicted in Fig. 1.

One specific and surprising feature of the model �1� is a
nonmonotonic dependence of the decoherence rate � on the
coupling strength g: at low T a contribution of weakly
coupled fluctuators can be orders of magnitude higher than
that of strongly coupled ones, as seen in Fig. 1. Such a non-
monotonic dependence is depicted in Fig. 2 for the fluctuator
centered at �̃=3. At any finite temperature � as a function of
g has a maximum with a cusp at g0= �1+ �̃2�1/2. Only at very

high T �T̃=100 in Fig. 2� the cusp is smeared out and �
practically saturates at ��
�=� /2 as in the classical limit,
Eq. �14�.

This surprising suppression is due to an effective split in
energy of fluctuators strongly coupled to the qubit. If the

FIG. 1. Dependence of the decoherence rate on a temperature,
Eq. �12�, for strong and weak coupling. The main picture shows a

fluctuator with 	���� centered at �̃=3, the insert shows �̃=0. T̃ , �̃ , �̃
are measured in units of � /2.

FIG. 2. Nonmonotonic dependence of the decoherence rate on
the coupling strength at different temperatures for �̃=3.
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qubit were in one of its eigenstates, the fluctuator energy in
the absence of the hybridization would be split as �±v /2,
Eq. �1�. Allowing for the hybridization, such a split to the
energies �±��± �1/2��v2−�2 occurs only for g�1, i.e.,
when the coupling v exceeds the width � of the hybridized
fluctuator Eq. �13�. Then the decoherence of the qubit in the
mixed state, Eq. �2�, is effectively contributed from two
peaks �± �indeed, the integrand in Eq. �12� has the two peaks
broadened by the hybridization at �=�±, besides the expo-
nentially narrow peak at �=0�. Thus, � increases with g at
�=0 until v reaches �; a further increase in g pushes the
peaks away from the Fermi energy, suppressing the hybrid-
ization and thus the switching rate, i.e., effectively freezing
the charge states. For the arbitrary �, the maximum in � is
reached when one of the peaks at �± coincides with the
Fermi energy.

The results described by Eqs. �12�–�15� and the subse-
quent discussion refer to the case when there are only a few
fluctuators, so that they can be considered separately and
their decoherence rates could be simply added. If the fluc-
tuators are dense, one needs to average over the relevant
parameters, which is their energies, coupling constants, and
switching rates. The averaging, e.g., over the energy posi-
tions � j, spread within an interval E, would lead to ��T�
�T as long as T�E. The reason is that the number of effec-

tive high-T fluctuators, whose contribution is described by
Eq. �14�, would be proportional to T while the contribution
of each of the low-T fluctuators would be linear in T,
Eq. �15�.

However, as the decoherence rates due to individual fluc-
tuators are hugely spread, as illustrated in Fig. 1, the effec-
tive fluctuators are hardly dense as requirements for the ef-
fectiveness are rather restrictive. Firstly, the fluctuator must
not be far from metallic electrodes to be hybridized with
conduction electrons. Secondly, the peaks at �± should be
within a few �’s around the Fermi energy. This brings further
geometrical restrictions, essentially reducing the number of
potentially relevant defects so that only relatively few fluc-
tuators are likely to contribute to decoherence in a typical
experimental setup.3
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