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We study the effect of inhomogeneity of the pairing interaction or the background potential on the super-
conducting transition temperature, Tc. In the weak coupling BCS regime, we find that inhomogeneity, which is
incommensurate with the Fermi surface nesting vectors, enhances Tc relative to its value for the uniform
system. For a fixed modulation strength we find that the highest Tc is reached when the characteristic modu-
lation length scale is of the order of the superconducting coherence length.
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Many strongly correlated superconductors, and in particu-
lar high-temperature superconducting �HTSC� cuprates, ex-
hibit inhomogeneous electronic and/or structural phases at
the nanoscale.1–3 The coexistence of HTSC and inhomoge-
neity suggests that the underlying inhomogeneities could be
at least partially responsible for the high value of the super-
conducting transition temperature. Emery and Kivelson pro-
posed that HTSC is related to frustrated electronic phase
separation, commonly expected in strongly correlated
systems.4 These ideas for inhomogeneous superconductivity
have been further developed in the context of stripes.5,6 It is
important to distinguish these and related scenarios for su-
perconductivity creation or enhancement by inhomogeneity
from the conventional weak-coupling coexistence of super-
conductivity and various density waves.7–10 In the latter case,
the density-wave order inevitably suppresses superconduc-
tivity due to the competition for the Fermi surface electrons.

It is therefore important to understand the nature of the
interplay between superconductivity and inhomogeneities. A
complete description of the interplay is clearly impossible.
However, in the case in which the characteristic energy scale
responsible for the formation of the inhomogeneity is much
larger than the superconducting energy scale �the gap ��, and
where the residual interactions are weak, a description based
on the BCS theory should be reliable. The purpose of this
paper is to study the effect of such imposed inhomogeneity
on superconductivity within the BCS framework. The origin
of the inhomogeneity could be either electronic, as in the
frustrated phase separation scenario, or structural, that is,
caused by local lattice distortions or nonuniform carrier con-
centration due to doping irregularities. We will assume that
these structures do not cause Fermi surface nesting either due
to the lack of periodicity �e.g., random doping profile� or due
to the periodicity being incommensurate with the nested mo-
mentum transfers �e.g., frustrated phase separation, or
stripes�. Under these conditions we generically find that in-
homogeneity enhances the global superconducting transition
temperature, Tc. At the mean-field level, the maximum Tc is
achieved when the characteristic length scale of the inhomo-
geneities, L, is large, in which case the transition temperature
is that of the regions with the highest local Tc. Upon includ-
ing the effects of phase fluctuations, we find that Tc is maxi-
mized when L is comparable to the superconducting coher-

ence length ��vF /Tc. The increase of the transition
temperature occurs at the expense of the superfluid density,
which is reduced in inhomogeneous superconductors relative
to their homogeneous counterparts.

Inhomogeneous pairing: mean-field treatment. As a first
example we consider a Hubbard model with an inhomoge-
neous attractive potential U�r��0,

H = H0 + HU

H0 = �
k�

�kc†
k�ck�

�1�
HU = − �

r
U�r�n↑�r�n↓�r� ,

where �k=�k−� and n��r�=c†
��r�c��r� is the occupation

number of electrons of spin � at position r. Within this
model, our goal is to understand whether for a fixed average
pairing strength U�r�, a uniform or nonuniform U�r� yields a
higher transition temperature, Tc. In the weak-coupling limit,
we can derive the BCS condition for the onset of supercon-
ductivity from the Hamiltonian �1�,

�q =� ddp

�2��dU�q − p�K�p��p, �2�

where �q=�k pU�k��cq/2−k/2+p↑cq/2−k/2−p↓�, U�k� is the Fou-
rier transform of the pairing interaction, and K�p� is the pair-
ing kernel. The pairing kernel depends on temperature T and
the mean-field �MF� superconducting transition is defined by
the temperature at which the integral equation has a non-
trivial solution. The kernel can be calculated from the normal
state electron Green functions11

K�p� � Nf ln	 2�	D

�
T2 + �v fp�2�
�	D − �v fp�� , �3�

where Nf is the density of states at the Fermi surface, v f is
the Fermi velocity, T is temperature, and ln ��0.577 is Eu-
ler’s constant. Here we also introduced an explicit high-
energy cutoff for the attraction, 	D. For T�v fp this expres-
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sion reduces to the well-known homogeneous result,
K�Nf ln
2�	D / ��T��.

The modulation of the pairing interaction leads to the
mixing between Cooper pairs with different center-of-mass
momenta. For simplicity we first assume a harmonic modu-

lation �Q�2� /L� of the pairing, U�r�= Ū+UQ cos�Q ·r�. In
this case the integral equation �2� reduces to a system of

linear equations �n= ŪKn�n+ �UQ /2�
Kn−1�n−1+Kn+1�n+1�
�Mnm�m, where �n���nQ+q0� and Kn�K�nQ+q0�. The
“parent” momentum q0 defines the minimal momentum of a
Cooper pair in the connected family ��nQ+q0�.

The paring instability occurs at the temperature Tc, such
that the largest eigenvalue of matrix M is equal to 1. In the

uniform case, UQ=0, this condition is ŪK�0�=1. We will
now prove that the mean-field transition temperature is
greater than in the uniform case, UQ=0. Consider the q0=0
family and without loss of generality, take UQ�0. Since all
of the matrix elements of M are non-negative, by Perron’s
theorem,12 the maximal eigenvalue is a positive number that

is larger than any diagonal matrix element, including ŪK�0�.
Thus, generically, the superconducting onset temperature Tc
is increased whenever UQ�0.

This result can be understood from an analogy with a
quantum mechanical particle in a tight-binding chain. Defin-

ing a variable �n= ŪKn�n, the BCS condition takes a simple

symmetric form, �n= �1/ ŪKn��n− �UQ /2Ū���n+1+�n−1�.
The “hopping” term delocalizes the particle and thus reduces

the “energy” below its minimal on-site value �1/ ŪK0�.
Clearly, this leads to a relative increase of Tc, even in the
case of multi-Q modulation.

Large Q limit. In this limit, the quickly oscillating cou-
pling is ineffective at mixing different modes, so that the
off-diagonal terms in M are rapidly decaying with n. We are
then justified in keeping only a small portion of the matrix
surrounding the n=0 term. The lowest order correction to the
homogeneous result is obtained by considering couplings be-
tween �0 and �±1. The largest eigenvalue in this case is


max =
Ū

2 	K0 + K1 +
�K0 − K1�2 +
2K0K1UQ

2

Ū2 � .

Given the separation of energy scales, Tc�v fQ�	D, we ob-
tain Tc by solving 
max=1,

Tc =
2�

�
	D exp
− 1/Nf�Ū + ��� , �4�

where �=UQ
2K1 / 
2�1− ŪK1��. While � is positive, and

since K1� ln
	D /v fQ� decreases with increasing Q, so does
�. For vFQ�	D, Cooper pairs can no longer scatter off the
quickly oscillating coupling landscape, and we recover the
critical temperature for the homogeneous case.

Small Q limit. In the limit Q��1, the global MF
transition temperature is determined by the regions with the

strongest pairing interaction, Tc��2� /��	D exp
−1/Nf�Ū
+ �UQ���. The deviations from this result due to finite Q and
the effects of the phase fluctuations are discussed below.

Electron density modulation. Before going further, let us
in parallel consider the case of homogeneous coupling

U�r�= Ū, with inhomogeneity caused by a background po-
tential variation. In the simplest case of the harmonic modu-
lation, the additional contribution to the Hamiltonian �1� is

H� = ��
i�

c†
i�ci� cos Q · ri. �5�

It is easy to see that for particle-hole symmetric density of
states �DOS�, the linear in � contributions to the BCS insta-
bility condition equations vanish identically. For small values
of Q, the modulation acts as a slowly varying shift in the
local chemical potential with the amplitude proportional to
���. Thus, we only get a linear in � contribution for asymmet-
ric DOS, N���=Nf +N���−�F�. We then find that the BCS
equations are identical to the case of inhomogeneous pairing
interaction with the modulation strength

UQ
eff = − Ū

N��

Nf
. �6�

Ginzburg-Landau analysis �Q��1�. We now consider the
general case of slow variation of the pairing strength and/or
background potential. The Ginzburg-Landau free energy
functional in the presence of inhomogeneity is

F = −� dr dr�K�r − r����r���r�� +� dr
��r�2

U�r�

+ �� dr��r���r�2 +
�

2
� dr��r�4. �7�

Here we assumed that the order parameter remains real even
in the presence of inhomogeneity. We include both the cou-
pling of the superconducting order parameter to a density
wave, as well as the inhomogeneity of the pairing interac-
tion. For small amplitude modulation of the pairing interac-

tion, U�r�= Ū+�U�r� with ��U�r��� Ū, the two mechanisms
are formally equivalent. For particle-hole asymmetric DOS,

from the above considerations, �=−ŪN� /Nf. For simplicity,
we only consider the inhomogeneous U�r� case here. The
pair susceptibility kernel is given by Eq. �3�. In the long
wave length limit,

K�r − r�� = ��r − r��Nf	ln
2�	D

�T
+ �2�2� , �8�

where �=vF /T. Computing the variation of Eq. �7� with re-
spect to the order parameter, we find the equation for a sta-
tionary solution ��r�,

− �2�2��r� + g�r���r� +
�

Nf
��r�3 = 0,

g�r� =
1

NfU�r�
− ln

2�	D

�T
. �9�

As a first step, we determine the inhomogeneous mean-
field �MF� transition temperature for the pairing interaction

U�r�= Ū+UQ cos�Q ·r�, with Q��1. Close to the MF tran-
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sition, the cubic terms in Eq. �9� can be neglected. Expand-

ing in UQ / Ū, and transforming Eq. �9� to Fourier space, we
obtain a system of equations connecting ��k� and ��k±Q�.
For small Q, ��k±Q����k�, and after expanding up to the
second order in Q, we obtain

− gmax��k� = ��k�2��k� −
1

2
A2Q2�k

2��k� . �10�

Here gmax denotes g�r� evaluated at U�r�= Ū+ �UQ�
and A = 
UQ / �NfŪ

2� �note that there is no explicit
constraint on the value of parameter A since it is a ratio
of two small numbers�. The MF transition temperature is
determined by the smallest eigenvalue of the differential
operator on the right-hand side. This eigenvalue corresponds
to the “ground-state energy” of a harmonic oscillator,
�QA /
2. The corresponding transition temperature
Tc

MF=Tmax
MF exp�−�QA /
2�, is only slightly less than the tran-

sition temperature, Tmax
MF for a system with a homogeneous

pairing interaction Umax= Ū+ �UQ�. More importantly, it is
easy to see that in the limit of small Q�, the order parameter
is exponentially suppressed in the region of smaller pairing
interaction relative to its value at the peak,

�min � �max exp�− A��Q�−1� , �11�

This, in turn, implies that phase fluctuations, which we dis-
cuss below, can reduce the global phase coherence tempera-
ture significantly below Tc

MF.
The expression of Eq. �11� is only valid at the MF transi-

tion temperature, where � is infinitesimal. To determine �
below Tc

MF we need to solve the nonlinear Eq. �9�. In a
d-dimensional superconductor, with an arbitrary smooth
variation of U�r�, the boundary of the “classically forbidden”
region, g�r��0, is a �d−1�-dimensional surface. Hence,
near the boundary the problem is essentially one-
dimensional, and in the g�r��0 region we can apply the
standard WKB approximation to solve the linearized Eq. �9�.
The prefactor is fixed by matching the WKB solution to the
intermediate asymptotic at the boundary x0, which can be
obtained by solving the full Eq. �9� in a linear potential
g�x�=g��x0��x−x0�. We then find that in the particular case of
harmonic modulation discussed above, the order parameter
distance d away from the boundary is approximately

��d� � T
AQ� exp
− A
Q��d/��3/2� . �12�

This expression is obtained assuming g��x0��A2Q, and
therefore valid only for the temperatures sufficiently below
Tc

MF�Tmax
MF . So long as T�Tmin

MF �Tmin
MF is the uniform Tc of a

system with pairing strength Ū− �UQ��, the distance from the
turning point to the minimum point of � is d�L. Notice that
this expression depends on temperature not only explicitly,
but also through �=v f /T.

Phase fluctuation effects (still with Q��1�. A conse-
quence of the large spatial variations in the mean-field ��r�
is that fluctuation effects are severe where ��r� is small. Of
these, the most important are the thermal fluctuations in
the phase of the order parameter, i.e., such that

��r�= ��MF�r��ei� where �MF�r� is the solution of Eq. �9�,
and ��r� is a slowly varying function of r. The free
energy cost of such phase fluctuations is
F�=�drJ�r�����2, with the local superfluid stiffness
J�r�=Nf�

2��MF�r��2. In general, the phase-ordering tempera-
ture estimated using this as the effective Hamiltonian is re-
duced from the mean-field transition temperature 
i.e., the
temperature at which J�r� vanishes�, but by an amount that
depends on dimensionality, and on the spatial arrangement of
the regions of suppressed stiffness.

For concreteness, we consider the case of a two-
dimensional �2D� superconductor. At finite temperature, no
true long-range order is possible.13 However, at T�TKT,
binding of topological excitations into vortex-antivortex
pairs leads to a state with quasi-long-range order, which has
a nonzero superfluid stiffness.14 While for homogeneous
BCS superconductors in 2D, the difference between MF and
the Kosterlitz-Thouless �KT� transition temperatures is tiny,
�Tc

MF−TKT� /Tc
MF�Tc

MF/TF �where TF is the Fermi tempera-
ture�, for inhomogeneous superconductors, the suppression
of TKT, is generally much larger. For a smooth random dis-
tribution of J�r�, an estimate of TKT can be made based on
the effective superfluid density,

TKT � 
J�r�
1/J�r��−1 � 
JminJmax. �13�

This expression has a particularly transparent meaning for
the unidiretional “stripedlike” variation of U�r� that we
treated explicitly when solving the mean-field equations
above. There, Jmax corresponds to the stiffness along the
stripes and Jmin perpendicular to the stripes. The correspond-
ing anisotropic XY model directly leads to the result Eq. �13�.
In this case, we find

FIG. 1. Critical temperature for the inhomogeneous negative U

Hubbard model with coupling U�x�= Ū+UQ cos�Qx�. The thick line

denotes the mean-field result, where Tc,a= �2� /��	D exp
−1/NfŪ�
and Tc,h= �2� /��	D exp
−1/Nf�Ū+ �UQ���. The dashed line shows
the critical temperature once phase fluctuations of the order param-
eter are included. For Q��1, the superconductivity is first estab-
lished locally in regions where U�x� is large, but macroscopic phase
coherence is achieved at a lower temperature, bounded from below

by Tc,l= �2� /��	D exp
−1/Nf�Ū− �UQ���.
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TKT �
Tf

TKT
2 Tc

MF�min�TKT� .

Together with Eq. �12� for �min�TKT����L ,TKT�, this equa-
tion implicitly defines TKT. With logarithmic accuracy we
find that TKT�min�Tc

MF,v fQ /A�.
In any case, barring certain artificial geometries, it is clear

that for a long wave length modulation, �Q�1, the
Kosterlitz-Thouless temperature TKT is exponentially lower
than the MF transition temperature; on the other hand, for
modulations with �Q�1, the phase fluctuation region is very
narrow and TKT�Tc

MF. In this regime, the mean-field super-
conducting temperature is still exponentially enhanced rela-
tive to its value in the uniform state with the same average

paring interaction strength, Ū. For even faster modulation,
�Q�1, the MF transition temperature drops since the pair-
ings interaction modulation averages out on the length scale
of �. This trend is presented qualitatively in Fig. 1.

For a “dirty” superconductor with a mean free path
shorter than the clean coherence length, �=vF���, the effect
of phase fluctuations can be estimated in the same way as in
the clean limit, with minor changes in prefactors but with the
coherence length redefined as �d=
��.

Summary. We studied the effect of nanoscale inhomoge-
neity on the superconducting transition temperature, Tc. We
considered two possible kinds of inhomogeneity: the modu-
lations of the paring strength and of the background poten-

tial. In the weak coupling BCS regime, we find that inhomo-
geneity, which is incommensurate with the Fermi surface
nesting vectors, enhances Tc relative to its value for the uni-
form zero center-of-mass momentum pairing. For a fixed
modulation depth we find that the highest Tc is reached when
the modulation wavelength is of the order of the supercon-
ducting coherence length. For shorter wavelengths, the su-
perconductor cannot take advantage of the locally favorable
conditions, while for the longer wavelengths, the global su-
perconductivity is suppressed due to the phase fluctuations
on the weak links. Similar results also apply to unconven-
tional superconductors in the presence of smooth �on the
1/kf length scale� inhomogeneities. Clearly oversimplified,
the presented picture bears resemblance to the high-
temperature superconducting cuprates, where considerable
experimental evidence15 indicates that the maximum Tc oc-
curs at a crossover between a regime where Tc is controlled
by the pairing scale and where it is a phase-ordering transi-
tion. Evidence for inhomogeneous superconductivity has
also been found in several other materials, including
Ba1−xKxBiO3, WO3, and Pt.16
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