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We present results from a Monte Carlo simulation of noncompact lattice QED in three dimensions on a 163

lattice in which an explicit anisotropy between x and y hopping terms has been introduced into the action. This
formulation is inspired by recent formulations of anisotropic QED3 as an effective theory of the non-
superconducting portion of the cuprate phase diagram, with relativistic fermion degrees of freedom defined
near the nodes of the gap function on the Fermi surface, the anisotropy encapsulating the different Fermi and
Gap velocities at the node, and the massless photon degrees of freedom reproducing the dynamics of the phase
disorder of the superconducting order parameter. Using a parameter set corresponding in the isotropic limit to
broken chiral symmetry �in field theory language� or a spin density wave �in condensed matter physics
language�, our results show that the renormalized anisotropy, defined in terms of the ratio of correlation lengths
of gauge invariant bound states in the x and y directions, exceeds the explicit anisotropy � introduced in the
lattice action, implying in contrast to recent analytic results that anisotropy is a relevant deformation of QED3.
There also appears to be a chiral symmetry restoring phase transition at �c�4.5, implying that the pseudogap
phase persists down to T=0 in the cuprate phase diagram.
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I. INTRODUCTION

The phase diagram of the superconducting cuprate com-
pounds in the �x ,T� plane, where x denotes the doping, or
fraction of holes per CuO2 unit, continues to be the object of
much study, both experimental and theoretical. A schematic
version is shown in Fig. 1.1 Around x�0.2, so-called optimal
doping, there is a d-wave superconducting �dSC� phase ex-
tending to temperatures as high as T�50 K. The supercon-
ductivity is believed to be an essentially two-dimensional
phenomenon, being confined to the CuO2 planes, and the gap
function ��k�� is characterized by d-wave symmetry, thus
having two pairs of nodes on the one-dimensional Fermi
surface. For x�0 the compound is an insulating antiferro-
magnet, and as x increases in this antiferromagnetic �AFM�
phase the order smoothly evolves into a spin-density wave

characterized by a wave vector K� whose magnitude de-
creases with x.

In some sense the “normal” phase is more strange. While
in the overdoped regime the behavior is that of a normal
metal, namely a conventional Fermi liquid, as x is decreased
unusual non-Fermi-liquid behavior manifests itself via non-
standard T scaling of transport coefficients such as resistivity
and themal conductivity. More mysterious still is the
“pseudogap” behavior observed in the underdoped region; as
one moves out of the dSC phase in the direction of increas-
ing T or decreasing x, studies of the spectral density distri-
bution function at fixed momentum show the quasiparticle
pole of the superconductor �correponding to a well-defined
excitation of energy � above the Fermi energy� diminish in
strength, but the magnitude of the energy gap ��� remain
nonzero even in the nonsuperconducting region. This spec-
tral depletion can persist up to T�150 K.2

It should be stressed that while AFM and dSC both have
well-defined order parameters, and hence are separated from
the rest of the phase diagram by solid lines in Fig. 1, the
status of the dashed lines separating the “normal” phase into

three regions is currently much less clear. Nonetheless, there
have been several attempts to formulate a theoretical descrip-
tion of the pseudogap region. A particularly interesting pro-
gramme, starting from established properties of the dSC
phase, derives an effective theory which resembles QED in
2+1 dimensions, but having spatial anisotropy in the cova-
riant derivatives.3,4 The starting point is the Bogoliubov-de
Gennes model for d-wave quasiparticles in the dSC phase,
which in Euclidean metric �corresponding to the imaginary
time formalism in many body theory� has the action

S = T �
k�,�,�n

��i�n − �k��c�
†�k�,�n�c��k�,�n�

−
�

2
	��k��c�

†�k�,�n�c−�
† �− k�,− �n�

− �†�k��c��k�,�n�c−��− k�,− �n�
� , �1�

FIG. 1. �Color online� Schematic phase diagram for cuprate
superconductors.
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where c† ,c are creation and annihilation operators for elec-
trons with spin �= ±1, and �n= �2n−1��T are the allowed
Matsubara frequencies. The function �k� is the energy of a
free quasiparticle, which thus vanishes for k� on the Fermi
surface, and ��k�� is the gap function, which can be thought
of as a self-consistent pairing field. The requirement of
d-wave symmetry implies that ��k��=0 at four special node

momenta k� = ±K� 1 , ±K� 2 with K� 1 ·K� 2=0. If we choose axes

such that K� 1 � x̂ ,K� 2 � ŷ, and write k� =K� i+q� , then in the vicinity
of the “1” nodes it is possible to linearize as

�k� = vFqx + O�q2�, ��k�� = v�qy + O�q2� �2�

and near the “2” nodes as

�k� = vFqy + O�q2�, ��k�� = v�qx + O�q2� , �3�

where the parameters vF and v� are the Fermi and gap ve-
locities, respectively.

The next stage is to define a four-spinor �i at the node i:

�i
tr�q� ,�� = �c+�k�,��,c−

†�− k�,− ��,c+�k� − 2K� i,��,

c−
†�− k� + 2K� i,− ��� . �4�

The association of different spinor components with different
points in k space is well known to workers in lattice QCD
familiar with the staggered fermion formulation.5 It is now
possible to recast the low-energy limit of the kinetic term of
Eq. �1� in relativistic garb:

S = d2r
0

	

dt�̄1	
0�t + vF
1�x + v�
2�y
�1

+ �̄2	
0�t + vF
1�y + v�
2�x
�2 + O��2,�4� , �5�

where 	�T−1 ,�̄=�†
0, and the 4�4 traceless hermitian
Dirac 
 matrices obey �
� ,
�=2��. It is important to stress
that there is no reason a priori for the anisotropy encapsu-
lated in the ratio vF /v��� to be negligble in real cuprates; a
value as high as �10 is reported in Ref. 6. In addition, �
increases with doping fraction x.7

To give the nodal fermions interactions, it is necessary to
discuss the reason for the loss of superconducting order. The
hypothesis is that the gap function can be written as �

=�0�k��ei��r��, where �0 is real, and that superconductivity is
destroyed because the phase field � becomes disordered. In
two spatial dimensions nontrivial phase disorder arises
through the accumulation of vortices, that is, point disloca-

tions around which ��� ·d�� =2n�.8 The dSC → pseudogap
transition is thus supposedly driven by vortex condensation,
which preserves �����0 but ensures �ei��=0. Now, it is pos-
sible to exploit the gauge symmetry of Eq. �1� to absorb
phase fluctuations of � into the phases of c , c†, and hence
�. We would thus seek a theory of phase fluctuations for the
� fields. However, since � represents a doubly charged Coo-
per pair field, it is impossible to do thus while maintaining
single valuedness, since the phase of � would change by
only � on circling a vortex. The solution proposed by Franz
and Tešanović9 is to partition the vortices of any particular

configuration ��� into two groups A and B, and then to asso-
ciate the phase �A�r�� associated with A vortices exclusively
with the spin-up electrons, and that of the B to spin down. It
can then be shown3,4 that the relativistic � fields of Eq. �5�
couple minimally to the vector-valued difference field a�

= 1
2����A−�B�, which thus acts as an effective “photon” in

the gauge-invariant action which results from replacing �� in
Eq. �5� by the covariant derivative D�=��+ ia�.

It immediately follows from gauge invariance, which im-
plies that the vacuum polarization tensor correcting
�a��p�a�−p�� has the transverse form �p2��− p�p���p�,
that the a� excitations do not receive a mass due to quantum
corrections from the � fields. Further arguments have been
advanced3,4 to suggest that fluctuations in the a� field are
themselves governed by the action of �2+1�-dimensional
	�2+1� D
 electrodynamics

Sphot =
1

2g2  d2r
0

	

dt���a − �a��2, �6�

with the coupling g related to the diamagnetic susceptibility
� via g��−1/2, or in field theoretic terms to the dual order

parameter �̃ for vortex condensation via g���̃�.
One way of understanding this is that in the absence of

magnetic monopoles, which in �2+1�D are instantons, acting
as a source or sink of flux, vorticity is a topologically con-

served charge. When the ground state is such that ��̃��0,
the U�1� global symmetry for which vorticity is a Noether
charge, i.e., the timelike component of a conserved current

Ṽ�, is spontaneously broken, resulting in a massless boson in
the spectrum via Goldstone’s theorem. However, in �2
+1�D this Goldstone boson is kinematically equivalent to the
photon, as can be seen via, e.g., the PCAC-like relation10

�0�Ṽ��1 photon,p�� � p�. �7�

As a result of these considerations, it is natural to unite
Eqs. �5� and �6� and postulate a relativistic field theory,
QED3 with Nf =2 flavors of nodal fermion �, as the appro-
priate effective action for low energy long wavelength exci-
tations in the pseudogap phase—the photons a� interacting
with the � with effective electric charge g.

QED3 is an asymptotically free theory, which means that
it becomes more strongly interacting as energy scales de-
crease, i.e., as length scales grow. The infrared behaviour of
QED3 has long been a challenge to theory �see Ref. 11 for a
brief review�; in brief, the issue is whether the chiral sym-

metry ��ei�
5� ,�̄��̄ei�
5 of Eq. �5� �with 
5
�
0
1
2
3� is spontaneously broken by a parity-invariant

fermion-antifermion condensate ��̄���0. This is believed
to happen if the number of flavors Nf is smaller than some
critical value Nfc, which has been variously estimated as tak-
ing values in the range �

3
2 to �5. The consequence is a

dynamically generated fermion mass �; the determination of
the exact value of Nfc, and the dynamically generated ratios

� /g2 and ��̄�� /g4 remain outstanding problems in nonper-
turbative field theory.
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To understand this issue in the context of cuprates it is
necessary to return to the original electron variables c ,c†. If
Nfc�2 then chiral symmetry is broken at T=0 in the long-
wavelength or continuum limit. This translates into a nonva-

nishing value for ���,i� cos�2K� i ·r��c�
†�r��c��r���, which is

nothing but the order parameter for spin density waves char-

acterized by wave vectors 2K� i.
4 This implies that for suffi-

ciently small T there is a direct passage from AFM to dSC
without going through an intermediate strip of the pseudogap
phase, and a corresponding triple point at the intersection of
AFM, dSC, and normal phases for some T�0. If, on the
other hand, Nfc�2, then we expect the pseudogap phase to
persist all the way down to T=0, as sketched in Fig. 1. In
either case, it may be possible to explain the non-Fermi-
liquid properties in terms of a nonperturbatively large
anomalous scaling dimension for � in the chirally symmet-
ric phase of QED3.3

The above discussion ignores the effects of the anisotropy
vF /v����1. This has been justified by analytic treatments
performed for small departures from isotropy in the limit of
large Nf,

12,13 where it is shown anisotropy is irrelevant in the
renormalization group �RG� sense. Specifically, Ref. 12 uses
a Schwinger-Dyson approach in the large-Nf limit to study
the behavior of � under RG flow, finding

d�ren

ds
= −

32

5�2Nf
��ren − 1� , �8�

where s is the logarithm of the ratio of UV cutoff to physical
momentum scales. This implies that for weak anisotropy ��
�1��ren is driven to 1 under RG flow and hence �ren−1 is an
irrelevant parameter, i.e., ��ren−1� / ��−1��1. Hence, it is
argued, predictions from isotropic QED3 can be applied di-
rectly to cuprates.

The purpose of the current paper is to examine this claim
for arbitrary � and the “physical” case Nf =2. The theoretical
tool we use is lattice simulation of so-called noncompact
QED, modeling the Fermi degrees of freedom as staggered
lattice fermions. The lattice method is fully nonperturbative,
with systematically improvable errors due to a finite UV cut-
off �the inverse lattice spacing a−1�, and a nonzero IR cutoff
�the inverse lattice size L−1� of a completely different nature
to other approaches. The noncompact nature of the model, to
be defined more fully in Sec. II below, has the effect of
suppressing monopoles �which appear as point singularities
in the phase field a��, thus maintaining the masslessness of
the photon.14,15 Lattice simulations of isotropic QED3 have
in the past been applied to the issue of Nfc: such attempts
have been hampered by large finite volume effects in the
continuum limit due to the massless photon, and to date the
results are only able to suggest Nfc�1.11,16 In this study we
work away from the continuum limit at a coupling g suffi-
ciently strong that we are confident chiral symmetry is bro-
ken at �=1, and then systematically increase �. Further de-
tails of the lattice model and our simulation are given in Sec.
II. In Sec. III we present numerical results, and in particular
present evidence first for a restoration of chiral symmetry at
some critical �c, and secondly for the renormalized aniso-
tropy �ren�����, where �ren is defined in terms of certain

correlation lengths in differing directions, implying in con-
trast to the analytic results that anisotropy is a relevant de-
formation of QED3. Implications for cuprate superconductiv-
ity are discussed in Sec. IV.

II. THE MODEL AND SIMULATION

The lattice formulation of QED with noncompact gauge
fields and staggered lattice fermions is described in detail in
Ref. 16. The following is an N flavor staggered fermion ac-
tion for QED3 with explicit x-y anisotropy:

S = �
i=1

N

�
x,x�

a3�̄i�x�Mx,x��i�x�� +
	

2 �
x,��

a3��
2 �x� . �9�

The fermion matrix Mx,x� is defined as follows:

Mx,x� =
1

2a
�
�=1

3

���x�	�x�,x+�̂Ux� − �x�,x−�̂Ux��
† 
 + m��

�10�

with �� given by

���x� = �����x� �11�

and ���x�= �−1�x1+¯+x�−1, where x1=x ,x2=y and x3= t, is the
Kawomoto-Smit phase of the staggered fermion field. The
�� are anisotropy factors, to which we assign the following
values: �x=�−1/2 ,�y =�1/2 ,�t=1. The purpose of the phase
factors is to ensure that in the isotropic limit �=1 the action
describes relativistic covariant fermions.5

If the photonlike degree of freedom ���x� is defined on
the link connecting site x to site x+ �̂, then Ux�
�exp�ia�x�� in Eq. �10� is the parallel transporter defining
the gauge interaction with the fermions, and we have a non-
compact gauge action given by

���x� =
1

a
	��

+��x� − �
+���x�
 . �12�

The dimensionless parameter 	 is given in terms of the QED
coupling constant �i.e., the “electron charge”� via 	�1/g2a,
where a is the lattice spacing. It is convenient to work wher-
ever possible in units such that a=1. As discussed above, we
use a noncompact formulation of the gauge fields because
flux symmetry is not preserved in compact U�1� formulations
due to instanton formation, which causes the photon in such
formulations to be massive.14,15

If we restrict our attention to that portion of the action
involving the fermion fields, then we see that the introduc-
tion of the �� factors has the effect, at least at tree level, of
rescaling the lattice spacing in the various directions as ax

=��a ,ay =a /�� ,at=a. In orthodox lattice QCD similar
anisotropies are often introduced for technical convenience;
e.g., spectroscopy of highly excited states such as glueballs
is considerably more efficient if at�ax ,ay ,az.

17 In this case
to ensure Lorentz covariance of the continuum limit it is
important to check that all terms in the lattice action are
formulated with the same anisotropy, which results in a fine-
tuning problem once quantum corrections are introduced.
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For instance, implementing this programme for the action �9�
would require the introduction of separate gauge coupling
constants 	xt ,	yt, and 	xy, with a nontrivial constraint result-
ing from the physical requirement that, e.g., the speed of
light for photons is the same as that for fermions. In the case
at hand, though, the plaquette coupling 	 is defined the same
in all three planes. It is important to stress that in this case
the x-y anisotropy is physical, and that, e.g., the resulting
ratio ax /ay is an observable to be determined empirically. At
tree level ax /ay =�; in what follows �see Sec. III C 2� we
define this ratio as the renormalized anisotropy �ren and es-
timate it from the spatial decay of a mesonic correlation
function. Rather than keep track of the various lattice spac-
ings, we prefer to think of � as a parameter of the model
which can be renormalized through quantum corrections.
This approach was pioneered in Ref. 12, where it was shown
using large-Nf arguments that �ren�� �note that in Ref. 12
the equivalent parameter is called �, and that our model sets
their parameter � to 1�.

We set N=1, which yields Nf =2 fermion species in the
continuum limit. An algebraic transformation exists relating
the single component staggered fields � , �̄ to four-
component continuum spinors �,18 and in particular the chi-

ral condensates are related via ��̄��=�i��̄i�i�. However, we
note that in the simulations presented in this paper we are
working at a strong coupling �	=0.2�, far from the con-
tinuum limit; this was done so that we could be reasonably
confident that chiral symmetry is broken,16 allowing us to
examine the effects of anisotropy on the model’s phase stuc-
ture starting from the putative AFM phase. A certain amount
of caution is mandated in applying our results to the con-
densed matter-inspired QED3 model �5� and �6�, which is
derived and justified in continuum terms. Further caution is
warranted as the flavor structure of Eq. �10� does not entirely
capture the theory of Refs. 3 and 4; in the condensed matter-
inspired theory �5� the second flavor has a vF
1 term in the y
direction and a v�
2 term in the x direction so the two flavors
have opposite anisotropies, reflecting the fact that there is no
physical anisotropy in the original crystal: in our model by

contrast, following the transformation to � ,�̄ variables the
the velocity-
 matrix structure of the first flavor would be
repeated in the second, so that there is an overall anisotropy.
We expect, however, that enough similarities between Eq. �9�
and the cuprate-inspired model persist for us to make reason-
able conjectures as to the behavior of the latter system. The
point will be discussed further below.

In order to aquire our results, we utilized a hybrid Monte
Carlo simulation of the action �9� with even-odd partitioning
on a 163 lattice at 	=0.2, simulating for anisotropies 1��
�10 at bare masses of 0.01�m�0.05. Further details can
be found in Ref. 16; here it suffices to note that the algorithm
generates representative configurations of ��� weighted ac-
cording to the action �9� in an exact, that is to say unbiased
manner. It is in principle possible to perform simulations
with a lattice action corresponding more closely to the aniso-
tropy structure of Eq. �5�, but in this case simulations would
have to be performed with a hybrid Molecular Dynamics
algorithm, and results would thus contain a systematic de-
pendence on the time step size used.16 This algorithm would

then approximate the “correct” model via a functional mea-
sure 	detM���M��−1�
1/2; however, away from the con-
tinuum limit it remains an unresolved issue whether the re-
sulting dynamics is that of a local Lagrangian field theory.

Around 1000 trajectories of mean length 1.0 were gener-
ated for each data point, and acceptance rates were generally
in the region of 70–80 % for 0.02�m�0.05 and 60–70 %
for m=0.01 �where simulations were less efficient� apart
from �=10.00, whose acceptance was over 80%.

III. NUMERICAL RESULTS

We performed measurements of the following parameters
in our simulation: the mean gauge action ��	 /2���

2 � sepa-
rately in each � plane, the chiral condensate ��̄��, the
longitudinal susceptibility �l����̄�� /�m, and the pion
correlator C� in each direction, from which we extracted
the pion mass �t direction� and the effective masses �also
known as inverse screening lengths� in both space directions
x and y.

A. Plaquettes

Figure 2 shows average gauge action values for � be-
tween 1 and 10 for bare fermion mass m=0.01 �a� and 0.05
�b�. This is an important observable in exposing dynamical
fermion effects: since the plaquette term ��2 in �9� is �
independent, any anisotropy effect must be due to the effects
of quantum corrections due to the fermion sector.

FIG. 2. �Color online� Plaquette action for �a� m=0.01 and �b�
m=0.05 as functions of anisotropy �
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The general upward trend of the x-t and y-t plaquette
values with � could plausibly be explained as a result of
reduced screening of bare charge due to quantum correc-
tions. In perturbation theory the dominant screening process

is known as vacuum polarization—virtual light ��̄ pairs
decrease the effective value of g and hence increase the ef-
fective 	; this implies that fluctuations ��2� are more
strongly suppressed by the dynamics of Eq. �9�. This can be
seen by comparing the m=0.05 and m=0.01 data at �=1.
The increase of ��2� with � would therefore suggest that

light ��̄ pairs become less important as anisotropy in-
creases. It will prove difficult, at first sight, to reconcile this
observation with results of Sec. III B.

That the value of the average x-t plaquette is consistently
less than that in the y-t plane can be explained as being due
to the overall x-y anisotropy of Eq. �9�; in the condensed
matter model �5� anisotropic effects should cancel between
the two flavors. Accordingly, we can interpret the �4% mis-
match between ��xt

2 � and ��yt
2 � in Fig. 2 as some measure of

the systematic error in our treatment.
However, the x-y plane plaquettes are markedly different.

First, the behavior is non-monotonic—we observe two re-
gimes, one for 1���1.5, and another for ��1.5. Within
the latter, we have behavior consistent with the other two
planes, but for small � the mean plaquette value decreases as
� is increased. Secondly, the relative splitting between x-y
and x-t ,y-t is much larger, O�10% �. In this case there is no
symmetry argument to suggest that this splitting should van-
ish for dynamics based on the condensed matter model �5�
and �6� and indeed, the approximately quadratic behaviour
for small � suggests that some residual anisotropy effect
should survive even in an x-y symmetrized model, in which
effects linear in � might be expected to cancel between the
two flavors.23

B. Restoration of chiral symmetry

The chiral condensate is defined in terms of the inverse
fermion matrix

��̄�� = −
1

V

� ln Z

�m
=

1

V
�trM−1� , �13�

and the longitudinal susceptibility as

�l =
���̄��
�m

=
1

V
	�trM−1trM−1� − �trM−1�2 − �trM−1M−1�
 .

�14�

Anisotropy effects observed within the fermion sector should
also be present in the symmetrized model �5�, although of
course with the roles of x and y reversed for the second
flavor.

Figures 3 and 4 depict ��̄�� and �l for bare masses be-
tween 0.01 and 0.05 for various �. Note first of all that for
��1��̄�� varies very little as m decreases, and certainly ex-
trapolates to a nonzero value as m→0, implying the sponta-
neous breaking of chiral symmetry in this limit. This is con-
sistent with the behavior observed at strong coupling in Ref.

11 and 16. Figures 3 and 4 both suggest a chiral symmetry
restoring phase transition as � is increased: a drop in the
value of the chiral condensate in Fig. 3 �most pronounced for
m=0.01� and, in Fig. 4, a peak in the susceptibility which
grows more prominent as the mass is decreased.

We performed a fit of the ��̄�� data to a hypothetical
equation of state of the form

m = A�� − �c���̄��� + B��̄���, �15�

which assumes a second order phase transition at m=0,�
=�c with conventionally defined critical exponents � and
	mag= ��−��−1.16 We chose to fit values of � from 1 to 7, as
there are too few points above �=7.00 to give a good defi-
nition of the curve. Fixing the values of the exponents � and
� to 1 and 3, respectively, gives us a mean-field approxima-
tion; we find A=0.0710�2� ,B=1.382�6�, and �c=5.018�7�
with a �2 /NDF of 72. If � and � are allowed to vary, we
obtain A=0.103�1� ,B=2.75�6� ,�c=4.35�2� ,�=1.297�9�,
and �=3.99�3� with a �2 /NDF value of 51. The latter fit is
plotted as solid lines in Fig. 3, with the dashed lines denoting
the equation of state in the chiral limit. Despite the large
values of �2, these curves seem to describe the data reason-
ably well; we conjecture that if a phase transition occurs, it
will do so at �c�4.5. A finite volume scaling study is needed
before the order of the phase transition, and hence the valid-

FIG. 3. �Color online� Chiral condensate ��̄�� versus �. Lines
denote fits to the equation of state �15�.

FIG. 4. �Color online� �l versus �.
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ity of Eq. �15� can be established unambiguously.
While Figs. 3 and 4 show clear evidence of a phase tran-

sition across which ���� decreases dramatically, it is too
early to draw conclusions regarding its precise nature. For a
second-order transition, �l should diverge at the critical an-
isotropy in the chiral limit m→0. However, without a com-
parison of data from different volumes a first order transition
cannot be excluded. In the current context the implications
are profound: a second-order transition would lead us to ex-
pect ��̄��=0 for m=0,���c, implying Nfc�2 in this re-
gime, whereas if the transition is first order it remains con-
ceivable that ��̄���0 is small but nonzero, and hence Nfc

�2. Caution is required because simulations of isotropic
QED3 with Nf =2 cannot exclude a very small dimensionless
condensate 	2��̄���10−4 in the continuum limit,11 invisible
on the scale of Fig. 3, but nonetheless perfectly consistent
with recent analytical estimates.19

C. Pion correlation functions and spectroscopy

In this subsection we focus on the correlation functions

C���x�� = �
��

�
x

��̄ ��0��̄ ��x�� , �16�

where the phase  �x���−1���x�. In the isotropic limit �=1
on a symmetric L3 lattice all the C�� coincide. When chiral
symmetry is spontaneously broken it can be shown that the
correlator is dominated by one of N2 pseudoscalar approxi-
mate Goldstone boson poles whose mass m�

2 �m. By analogy
with particle physics we refer to such states as “pions”; in
continuum notation they are interpolated by the operator

�̄
5�. Strictly speaking, in the continuum limit chiral sym-
metry is enlarged to U�2Nf� which spontaneously breaks to
U�Nf� � U�Nf� implying a total of 2Nf

2 Goldstones, some of
which are scalar;16 since we are far from the continuum limit
we ignore this complication. Now, in Euclidean quantum
field theory for sufficently large separation �x�� the correlator
can generally be fitted by the form

C���x�� = A�e−m��x� + e−m���L�−x��� , �17�

where L� is the extent of the lattice in the � direction. For
�= t the decay parameter m�t is the pion mass, i.e., the ex-
citation energy to create a pion at rest, whereas for �=x ,y
the corresponding quantities are identified as inverse screen-
ing lengths. Of course, on an isotropic symmetric lattice cor-
responding to T�0 all three coincide, but in our system with
explicit x−y anisotropy, m�x ,m�y, and m�t are all distinct.

1. Pion correlators in the time direction

Figure 5 shows the variation of m�t as � is increased.
These values were extracted from the timeslice pion propa-
gator �16� via least squares fitting to Eq. �17�. Some caveats
must be offered regarding this data: it is apparent that for the
very lightest pions the masses were too small for the lattice
size �i.e., L!m�

−1 is not satisfied�, meaning that we could not
use an effective mass plot in order to estimate the ideal fit-
ting window for each mass. Instead, we chose the fit window
that provided the best �2 value and that produced a curve that

passed through the error bars of as many of the propagator
data points as possible. Because of this, a table listing all the
data points, their �2 /NDF values and their fit windows is
given below �Table I�. Despite the uncertainty this procedure
yields in the absolute values of m�t, the trends found in the
data are not artifacts of the fit window chosen, coinciding for
masses where the fit window is more or less stable �m
=0.01� as well as those where it is less so �e.g., m=0.05�.

It is clear from Fig. 5 that m�t for all m increases with �
is increased, most dramatically for ��4, where the m
=0.01 data show a perceptible kink. It appears therefore that
in the chiral limit m→0 we have two regimes, one where
m�t is relatively insensitive to anisotropy, and one where m�t
increases approximately linearly with �. It is tempting to
identify the boundary between these two regimes with �c of
the last section—indeed, nonanalytic behavior across a phase
transition should be expected since the pion is a Goldstone
mode of the broken phase ���c. The linear behaviour of
m�t��� for all masses in the region 5���7 is not as yet
understood.

The behaviour of pions at low energies can be described
by the nonlinear � model:

SNLSM =
f�

2

2
 d3x���U�†���U� , �18�

where U�x��exp	i��x� / f�
 is a unitary matrix of the chiral
group G and the coupling f�, known as the the pion decay
constant, parametrizes the strength of pion self-interactions,
which become weak in the limit k→0.

We may calculate f� for various � by relating m� and
��̄�� using the Gell-Mann-Oakes-Renner relation20

m�
2 f�

2 = m��̄�� . �19�

The results are plotted in Fig. 6. They track the ��̄�� results
of Fig. 3 very closely; this is perhaps unsuprising, as the
chiral condensate was used in our calculation, and m�t varies
little for ���c.

2. Pion correlators in the x and y directions

Figure 7 summarises the variation in the effective pion
mass in the x and y directions, as obtained by fitting C�x,y

FIG. 5. �Color online� m�t as � increases.
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data to the form �17�. We were unable to fit for m�y beyond
�=3.00; the propagator took on a saw-tooth form consistent
with the pion correlation length being infinite for all practical
purposes, ie m�y�Ly

−1. Tables II and III give fit windows and
�2 /NDF for each point.

The data shows m�x increasing with �, and m�y decreas-
ing. This is not unexpected; naively restoring explicit factors
of lattice spacing we expect m��=M�a�=��

−1M�a, where
M� is the expected dimensionful pion mass assuming no
physical effect as a result of aniostropy. This implies that the
mass pole of the propagator is shifted by a factor of �1/2 in
the x direction and by �−1/2 in the y direction. Indeed, the
geometric mean �m�xm�y is approximately independent of �,
suggesting that the results can be explained entirely in terms
of equal and opposite anisotropies, i.e., axay =a2.

However, we should consider the possiblity that as a re-
sult of dynamical effects the physical anisotropy is not sim-
ply related to the “bare” anisotropy introduced in Eq. �9�. We
can then regard the ratio m�x /m�y as a measure of the physi-
cal or renormalized anisotropy �ren. �Strictly speaking, this
only refers to the effect of the anisotropy on the pion, a
Goldstone boson of the system. It remains to be seen if this is
true of other more generic states.�

Figure 8 plots the resulting �ren���; in fact �ren is approxi-
mately described by

�ren − 1

� − 1
� 2, �20�

a relation which appears remarkably insensitive to the fer-
mion mass m.

TABLE I. Pion mass m�t fitting data.

m � �2 /NDF

fit
window m � �2 /NDF

fit
window

0.01 1.00 1.395 1–15 0.02 1.00 1.156 1–15
1.25 0.633 1–15 1.25 1.095 3–13
1.50 1.118 1–15 1.50 0.900 1–15
1.75 0.753 1–15 1.75 0.652 5–11
2.00 1.041 3–13 2.00 1.021 2–14
2.50 1.011 1–15 2.50 1.341 1–15
3.00 1.332 1–15 3.00 1.167 3–13
3.50 0.901 1–15 3.50 1.373 2–14
4.00 1.318 1–15 4.00 1.170 4–12
4.50 1.587 1–15 4.50 1.783 1–15
5.00 1.197 1–15 5.00 3.112 3–13
5.50 1.341 2–14 5.50 1.126 1–15
6.00 1.045 2–14 6.00 0.476 2–14
6.50 1.502 1–15 6.50 1.044 2–14
7.00 1.592 2–14 7.00 1.090 2–14
10.00 1.634 5–11 10.00 1.005 1–15

0.03 1.00 1.080 2–14 0.04 1.00 1.008 5–11
1.50 1.014 4–12 1.50 0.855 2–14
2.00 0.961 1–15 2.00 1.064 2–14
2.50 1.298 3–13 2.50 0.811 4–12
3.00 1.065 1–15 3.00 1.271 1–15
3.50 1.058 3–13 3.50 0.882 1–15
4.00 1.112 5–11 4.00 1.562 1–15
4.50 1.684 2–14 4.50 1.045 1–15
5.00 1.202 1–15 5.00 0.999 1–15
5.50 1.301 1–15 5.50 0.858 3–13
6.00 0.804 1–15 6.00 1.413 1–15
6.50 1.166 1–15 6.50 1.076 3–13
7.00 1.071 1–15 7.00 1.101 1–15
10.00 1.128 4–12 10.00 0.599 1–15

0.05 1.00 0.963 3–13
1.50 1.368 4–12
2.00 1.521 1–15
2.50 1.385 4–12
3.00 0.914 5–11
3.50 0.938 4–12
4.00 0.716 3–13
4.50 1.544 4–12
5.00 1.218 2–14
5.50 1.018 5–11
6.00 1.003 5–11
6.50 0.951 1–15
7.00 0.705 2–14
10.00 1.893 2–14

FIG. 6. �Color online� f� as � increases.

FIG. 7. �Color online� Screening masses m�x �solid�, m�y �dot-
ted�, and the geometric mean �m�xm�y �dot-dashed�, versus �.
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Equation �20� implies that the physical anisotropy is
greater than that in the bare theory, in direct contradiction to
the analytic prediction of Lee and Herbut.12 Our results sug-
gest �ren−1 is relevant. Possible explanations for the discrep-
ancy are firstly that we are not necessarily simulating at a
small enough anisotropy, or sufficiently close to the con-
tinuum limit, where the results of 	12
 apply, and secondly,
as we have stressed in Sect. II, the model �9� does not quite
reproduce the theory examined there.

IV. DISCUSSION

In this paper we have presented simulation results for a
condensed matter-inspired version of lattice noncompact
QED3, with a physical number of fermion flavors Nf =2, in
which anisotropic fermion hopping in the spatial direction
has been explicitly introduced. Our main result is that the
renormalized anisotropy, which we define as the ratio of the
pion correlation length in the y direction to that in the x, is

greater than the bare anisotropy parameter �, and hence that
� is a relevant parameter in the renormalization group sense
as momentum scales flow towards the infrared. Since the
ratio vF /v� is known to depart from 1 for real compounds,
this result implies that apparently universal results for, e.g.,
Nfc obtained from QED3 in the isotropic limit �=1 must be
treated with caution when applied to superconducting cu-
prates.

Two caveats should be issued. first, as repeatedly stressed,
our model �9� has an overall physical x-y anisotropy,
whereas anisotropies in the nodal fermion action �5� cancel
between flavors 1 and 2. We have gone some way towards
quantifying this effect with our results in Fig. 2, which show
that the extra anisotropy effects introduced by our formula-
tion, as manifested by the difference between ��xt

2 � and
��yt

2 �, are significantly smaller than the splitting between
these observables and ��xy

2 �, which must persist in both mod-
els. As discussed in Sec. II, it is possible to formulate a
lattice model with symmetrised aniostropies to check this

TABLE II. Effective pion mass m�x in the x direction.

m � m�x �2 /NDF fit window

0.01 1.00 0.211�1� 1.073 2–14

1.25 0.251�1� 0.927 1–15

1.50 0.289�1� 0.636 1–15

1.75 0.319�1� 0.742 1–15

2.00 0.356�2� 1.214 1–15

2.50 0.423�2� 0.975 1–15

3.00 0.492�3� 1.735 3–13

0.02 1.00 0.298�1� 1.256 1–15

1.25 0.352�1� 0.812 1–15

1.50 0.400�1� 1.016 1–15

1.75 0.448�1� 1.397 2–14

2.00 0.498�2� 1.000 2–14

2.50 0.585�2� 1.313 2–14

3.00 0.673�2� 0.709 1–15

0.03 1.00 0.364�1� 1.124 1–15

1.50 0.486�1� 0.671 2–14

2.00 0.600�2� 0.914 4–12

2.50 0.710�2� 1.115 1–15

3.00 0.810�3� 1.074 5–11

0.04 1.00 0.467�1� 1.049 1–15

1.50 0.621�1� 0.960 4–12

2.00 0.765�3� 0.940 6–10

2.50 0.897�2� 1.044 1–15

3.00 1.024�4� 0.805 6–10

0.05 1.00 0.419�1� 1.583 3–13

1.50 0.558�1� 0.955 3–13

2.00 0.692�2� 0.892 3–13

2.50 0.812�2� 0.848 3–13

3.00 0.922�2� 0.967 1–15

TABLE III. Effective pion mass m�y in the y direction.

m � m�y �2 /NDF fit window

0.01 1.00 0.212�1� 1.258 1–15

1.25 0.179�2� 1.027 3–13

1.50 0.160�2� 0.554 3–13

1.75 0.139�1� 0.980 1–15

2.00 0.125�1� 1.027 2–14

2.50 0.105�5� 1.150 5–11

3.00 0.094�2� 0.487 2–14

0.02 1.00 0.298�1� 0.598 1–15

1.25 0.255�1� 1.419 3–13

1.50 0.219�1� 0.909 2–14

1.75 0.197�2� 0.677 4–12

2.00 0.178�1� 1.850 2–14

2.50 0.149�2� 0.957 3–13

3.00 0.129�2� 1.073 2–14

0.03 1.00 0.365�1� 1.648 1–15

1.50 0.268�1� 0.982 1–15

2.00 0.217�2� 0.895 4–12

2.50 0.180�6� 1.832 6–10

3.00 0.159�1� 1.146 4–12

0.04 1.00 0.421�2� 1.297 3–13

1.50 0.308�1� 1.038 3–13

2.00 0.249�1� 1.092 5–11

2.50 0.208�1� 2.117 4–12

3.00 0.184�1� 0.996 4–12

0.05 1.00 0.467�1� 1.034 3–13

1.50 0.347�1� 0.921 3–13

2.00 0.275�2� 0.779 5–11

2.50 0.233�2� 1.069 4–12

3.00 0.206�2� 1.089 4–12
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issue further, but at the cost of using an inexact simulation
algorithm. Secondly, since as a Goldstone boson the pion is a
distinguished particle, it is possible that definitions of �ren in
terms correlation lengths of other states may yield a different
answer. This will be explored in future work.

An interesting and to some extent unexpected result of
our study, encapsulated in Figs. 3 and 4, is that there appears
to be a chiral symmetry restoring phase transition at �c
�4.5. Strictly speaking, a finite volume scaling study on a
range of lattice volumes will be needed to elucidate the na-
ture of the phase transition, but if it proves to be second

order then it is difficult to avoid the conclusion that ��̄��
=0 for large anisotropies even for Nf =2, implying that Nfc is
a decreasing function of �, and that therefore the pseudogap
phase persists down to T=0 in cuprates. Physically, the phase
fluctuations hypothetically responsible for the destruction of
superconducting order must then arise as a result of quan-
tum, as opposed to thermal, effects.

We can estimate the range of values of � for which our
results might in fact be physically relevant. The empirical
equation for the boundary of the dSC region21

Tc

Tc
max = 1 − 82.6�p − 0.16�2, �21�

used for the cuprate YBCO, where p is the hole concentra-
tion, gives us a value of p�0.05 for Tc=0 in the underdoped
region. Sutherland et al. have measured � for four values of
the doping of this cuprate; from Fig. 4 of Ref. 7 one can
extrapolate by eye that 6���8 at the onset of the super-
conducting phase. This does seem to suggest that the QED
model predicts the occurence of a phase transition at a value
of � within the region of its validity; were �c�6 the phase
transition would occur after the onset of superconductivity,
which would be unphysical.

Finally, it is interesting to speculate on the nature of the
chirally symmetric high-� phase. Franz et al.3 have argued
that in the chirally symmetric phase the fermion propagator

���0��̄�x�� receives a large anomalous scaling dimension
from quantum corrections, which are calculable as a power
series in Nf

−1. We find it difficult to reconcile these ideas with
the plaquette data of Fig. 2 which show plaquette fluctua-
tions increasing with �, whereas massless fermions would be
expected to suppress such fluctuations through screening. A
plausible alternative is that chiral symmetry restoration in the

model is itself driven by fluctuations of the phase of �̄� as
the system dynamics becomes more and more two dimen-
sional with increasing �, but that fermion mass generation,

which depends on ���̄���, remains insensitive to �. Similar
effects have been observed in model simulations in which
phase fluctuations are thermally driven.22 In future work we
intend to explore this issue further with measurements of the
gauge-fixed fermion propagator.
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