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Using the nonequilibrium theory of superconductivity with the tunnel Hamiltonian, we consider a meso-
scopic NISINISIN heterostructure, i.e., a structure consisting of five intermittent normal-metal �N� and super-
conducting �S� islands separated by insulating tunnel barriers �I�. Applying the bias voltage between the outer
normal electrodes one can drive the central N island very far from equilibrium. Depending on the resistance
ratio of outer and inner tunnel junctions, one can realize either effective electron cooling in the central N island
or create highly nonequilibrium energy distributions of electrons in both S and N islands. These distributions
exhibit multiple peaks at a distance of integer multiples of the superconducting chemical potential. In the latter
case the superconducting gap in the S islands is strongly suppressed as compared to its equilibrium value.
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I. INTRODUCTION

Mesoscopic electronic applications typically rely on phe-
nomena which show best when the electrons in small wires
are cooled to very low temperatures, ideally to the range of
10 mK. In this regime the crystal lattice is very weakly
coupled to the electron system, and electron cooling via the
lattice becomes difficult. An alternative approach is then to
directly cool the electrons. This can be achieved by placing
superconducting �S� contacts via insulating �I� barriers to the
normal-metal �N� or superconducting �S�� wire whose elec-
trons are to be cooled.1–3 By applying a voltage over such
SINIS/SIS�IS coolers, it has been shown that one can cool
electrons well below 100 mK with these structures,4 even
when the lattice remains at a few hundred mK, or to enhance
the superconductivity in the middle S� island.5–7 Optimally,
such cooling should take the electron temperature to a few
mK, a limit which is hardly reached in mesoscopic systems
via other known means.

With this type of nonequilibrium cooling, the concept of
the electron temperature is not always well defined,4 but one
has to rather describe the full electron energy distribution
function.8,9 In this case cooling corresponds to the sharpen-
ing of this distribution function, essentially removing the
high-energy excitations.

One of the features limiting the performance of such
SINIS coolers is the fact that the poor heat conductivity of
the superconductors makes them inefficient reservoirs.10 An
additional pair of normal-metal electrodes attached to super-
conducting electrodes of a SINIS cooler can improve the
relaxation and enhance the cooling characteristics of the
device.3 In this paper, we consider the effects of extra N
electrodes of this type attached to a generic SINIS structure.
The superconducting pieces are now assumed small enough
so that they can be driven out of equilibrium by applying a
bias voltage between the two normal electrodes. It is this
arrangement of a NISIN�ISIN multiple heterostructure which
is the subject of the present study. Its novel feature as com-
pared to the traditional SINIS structure with bulk S elec-

trodes is that nonequilibrium is now induced in all inner
islands of the structure, which, in turn, strongly enhances
nonequilibrium effects both in the central N and in the adja-
cent S islands. The resulting distributions in each island can
be inspected by transverse probe tunnel junctions.4,8

The microscopic nonequilibrium theory of double-barrier
SINIS junctions is based on time-dependent Keldysh Green
function formalism �see Ref. 11 and references therein�. In
the present paper we extend the theory such that nonequilib-
rium distributions in superconducting islands are also al-
lowed. The major modification is that the chemical potentials
of the two superconducting islands cannot be chosen zero
simultaneously since these islands have different potentials
determined by the bias voltage. This is equivalent to a time
dependence of the order parameters imposed by different
time-dependent order-parameter phases. We restrict our-
selves to a tunneling Hamiltonian approximation which ef-
fectively makes the problem spatially independent within
each superconducting or normal island.

II. MODEL

The system we study is shown in Fig. 1. We use the tunnel
Hamiltonian approach and neglect the proximity effects in
both normal and superconducting islands. In nonequilibrium,
each of the islands has a separate energy distribution. Ac-
cording to the tunnel Hamiltonian model, they should be

FIG. 1. NISINISIN structure: The central normal island �N� is
placed between two superconducting islands �S� which are con-
nected to two outer N electrodes serving as external leads. Each
connection is realized through a tunnel contact with a resistance Rik.
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independent of both coordinates and directions of the mo-
menta. This implies that each island is in a diffusive regime
when the momentum direction dependence is averaged out
within the first approximation in � /L where � is the impurity
mean free path and L is the length of the contacting island. In
addition, one has to assume that the intrinsic normal-state
resistance r of each island is much smaller than any of the
tunnel resistances R to satisfy the condition that the potential
variation inside each island is smaller than its drop across the
tunnel barrier.

A characteristic rate for tunneling from island 2 into is-
land 1 to be defined later is �12= �4�1e2�1R�−1, where �1 is
the normal-state density of states �DOS� at the Fermi level in
island 1 and �1 is the volume of conductor 1. Competing
with the inelastic relaxation, this rate determines whether the
injection of new quasiparticles into the system is fast enough
to drive the system out of equilibrium. The inelastic pro-
cesses which uphold the thermal Fermi distribution can be
neglected if ��1/�inel which is equivalent to

�e2�R/�inel � �L�/�inel
2 �� 	 1 �1�

where �= �NmR /RQ��Ā /A�. Here Ā stands for the average
cross-section area of the conductor, L is its length such that

�= ĀL, A is the area of the junction, �inel=�D�inel, and D
=vF� /3 is the diffusion coefficient. We also introduce the
quantum resistance RQ=
� /2e2, and the number of conduct-
ing modes Nm� pF

2A /�2 in the area of the junction.
In our work, we assume that the electron energy distribu-

tion within each island is homogeneous, which also implies a
homogeneous potential and a constant effective temperature.
Analysis of kinetic equations shows that this is achieved if

r	R or �Ā /L��De2Ā /L�1/R, which gives

DL−2� ��e2R��−1 � � .

This puts a restriction L	��. The limit �	L holds if �
�1. Our model is thus applicable provided 1	L /�	�.
Condition �1� of small inelastic interaction reads �inel

2 ��L�.

III. FORMALISM

A. Transport equation

We use the standard Keldysh Green function formalism
�see for example Refs. 12 and 13�. We denote the Nambu-
space matrix operator

Ĝ−1 = �̂3
�

��
−

�2

2m
−  + Ĥ, Ĥ = � 0 − �

�* 0
� .

It acts on matrix Green functions

Ĝ = � G F

− F†
Ḡ
� ,

where Ĝ stands for either retarded �advanced�, ĜR�A�, or

Keldysh, ĜK, Green function.
Introducing the total self-energy that contains tunneling

self-energy together with both elastic and inelastic processes
we can write equations for the retarded, advanced, and
Keldysh Green functions in each island:

�Ĝ−1 − �̂R�A�� � ĜR�A� = 1̂��x1 − x2� ,

�Ĝ−1 − �̂R� � ĜK − �̂K � ĜA = 0.

The product �̂K � ĜA is a convolution over frequencies and
momenta of the type

�̂K � ĜA =� �̂�1,�
K Ĝ�,�2

A d�

2

.

The transport-like equations can be obtained in a standard

way by applying the inverse operator to ĜR�A� and ĜK from
the right and subtracting the obtained equations from the
equations above. Next we average the transport equations for

the Green functions Ĝ�p+k /2 ,p−k /2� over the directions
of the momentum p keeping in mind that, in the tunnel ap-
proximation discussed in Sec. II, the Green functions are
isotropic with respect to p and are independent of the center-
of-mass coordinate, i.e., they only have a component with
k=0. Therefore, the transport-like equations become

− �1�̂3Ĝ�1,�2
K + Ĝ�1,�2

K �2�̂3 + Ĥ � ĜK − ĜK � Ĥ = Î�1,�2
K , �2�

− �1�̂3Ĝ�1,�2
R�A� + Ĝ�1,�2

R�A��2�̂3 + Ĥ � ĜR�A� − ĜR�A� � Ĥ = Î�1,�2
R�A� .

�3�

Now Ĝ stands for the function averaged over directions of p.
The collision integrals in each island are

Î�1,�2
K = �̂R � ĜK − ĜK � �̂A − ĜR � �̂K + �̂K � ĜA,

Î�1,�2
R�A� = �̂R�A� � ĜR�A� − ĜR�A� � �̂R�A�.

The elastic processes drop out after averaging over momen-
tum directions.

For tunneling between two superconductors �or normal

metals� 1 and 2, the self-energy in island 1 is �̂T�1�
= i�12ĝ�2� where the quasiclassical Green functions inte-
grated over the energy �p= p2 /2m−EF are

ĝ =� d�p


i
Ĝ .

The quasiclassical functions satisfy the Eliashberg and
Usadel equations that can be obtained from Eqs. �2� and �3�,
respectively, after integration over d�p. The tunneling rate is
defined as

�12 = 
�2�1
−1�	Tp,q	2
 = �4�1e2�1R12�−1. �4�

Here Tp,q is the tunnel matrix element and R12 is the tunnel
resistance of the contact between islands 1 and 2. Note that

the self-energy in island 2 is �̂T�2�= i�21ĝ�1� where �21

=
�1�2
−1�	Tp,q	2
= �4�2e2�2R12�−1. If island 1 has tunnel

contacts to two other islands 2 and 3, the self-energy is a sum

�̂T�1� = i�12ĝ�2� + i�13ĝ�3�

where �12= �4�1e2�1R12�−1 and �13= �4�1e2�1R13�−1.
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We define

Î�1,�2
K � � I1 I2

− I2
†

Ī1
� =� d�p


i
Î�1,�2

K .

The tunnel collision integral for island 1 in contact with is-
land 2 takes the form

ÎT
K�1� = i�12�ĝR�2� � ĝK�1� − ĝR�1� � ĝK�2� + ĝK�2� � ĝA�1�

− ĝK�1� � ĝA�2� . �5�

If the distribution function is time independent, the
Keldysh Green function has the form

ĝ�1,�2
K = ĝ�1,�2

R �f1,�2
+ �̂3f2,�2

� − �f1,�1
+ �̂3f2,�1

�ĝ�1,�2
A �6�

where the odd- and even-in-� distribution functions f1 and f2
are defined such that

f1,� = − n��� + n�− ��, f2,� = 1 − n�− �� − n��� .

The actual quasiparticle energy distribution function n satis-
fies f1,�+ f2,�=1−2n���.

After integrating Eq. �2� over d�p we obtain two kinetic
equations for diagonal in � components

Tr�M̂�,�� = Tr„Î�,�
K − �Î�,�

R − Î�,�
A �f1,�… , �7�

Tr��̂3M̂�,�� = Tr„�̂3�Î�,�
K − �Î�,�

R − Î�,�
A �f1,�… . �8�

The collision integrals here account for tunnel and inelastic

processes Î= ÎT+ Îinel, where inelastic relaxation is due to

electron-phonon and electron-electron interactions, Îinel

= Îe−ph+ Îe−e. The matrix M̂ is

M̂ = �Ĥ � ĝK − ĝK � Ĥ� − �Ĥ � ĝR − ĝR � Ĥ�f1

+ f1�Ĥ � ĝA − ĝA � Ĥ� .

B. Charge and energy tunnel currents

After taking the trace and integrating over energy, Eq. �2�
in island 1 yields

i���1� d�

2
� d�1


i
TrĜ�+,�−

K � = − i�1� d�

2
Tr��̂3Î�+,�−

K �

where �±=�±� /2. This is the conservation of charge Q�1�
=eN�1��1 in the volume �1 of island 1:

�Q�1�
�t

= I�1� . �9�

Here N�1� is the particle density in island 1. The current that
flows into island 1 is

I�1� = − ie�1�1� d�

4
Tr„�̂3ÎT

K�1�… . �10�

The inelastic collision integral drops out because it conserves
the particle number.

Multiplying Eq. �2� by � and taking the trace of it one can
obtain the balance of the energy E=�E in the form

�E�1�
�t

= IE�1� .

Here the energy density is

E = −� �Tr��̂3Ĝ�+,�−
K �

d�

4
i

d3p

�2
�3 +
	�	2

	g	
− Ne�

where � is the electric potential of the island. The energy
current into island 1 is

IE�1� = − i�1�1� d�

4
Tr„�� − e�1�̂3�ÎK�1�… . �11�

The collision integral in Eq. �11� contains only tunnel and
electron-phonon contributions, IK�1�= Ie−ph

K �1�+ IT
K�1�. The

electron-electron interactions drop out because of the energy
conservation. The energy flow into island 1 can thus be sepa-
rated into two parts. One part containing Ie−ph

K is the energy
exchange with the heat bath �phonons�. The other part con-
tains the tunnel contribution IT

K�1� and is the energy current
into island 1 through the tunnel contact.

IV. KINETIC EQUATIONS IN HYBRID STRUCTURES

A. Nonzero superconducting chemical potential

If a hybrid structure containing more than one supercon-
ducting island is voltage biased, at least one of the supercon-
ductors will have a nonzero chemical potential S with a
time-dependent phase of the order parameter. If the external
voltage is constant and the resulting state is stationary, the
phase is linear in time, �=2St, while the magnitude of the
order parameter is time independent. Consider two sets of
regular Green functions. One set of functions ĝR�A� is taken in
the basis where the order parameter phase varies in time. The
other set belongs to the same order parameter magnitude but
has a phase constant in time �zero for simplicity�. However,
the energies of the Green functions gR�A�, ḡR�A�, fR�A�, and
f†R�A� are shifted by different amounts proportional to the
chemical potential in the previous representation. The rela-
tions between these two sets, the Green functions g

�,��
R�A� and

f
�,��
R�A� and the steady-state functions with shifted energies, can

be established from the spatially homogeneous Usadel equa-
tions, i.e., Eq. �3� integrated over d�p. Since �= 	�	e+i2St,
i.e.,

�� = 	�	2
��� + 2S�, ��
* = 	�	2
��� − 2S� ,

one observes that the Usadel equations are satisfied by

g�,��
R�A� = g�+S

R�A� 2
��� − ���, ḡ�,��
R�A� = ḡ�−S

R�A� 2
��� − ���

�12�

and

f�,��
†R�A� = f�−S

†R�A�2
��� − �� − 2S� ,
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f�,��
R�A� = f�+S

R�A� 2
��� − �� + 2S� . �13�

The functions g�
R�A�=−ḡ�

R�A� and f�
R�A�= f�

†R�A� satisfy the
steady-state Usadel equation

− 2�f�
R�A� + 2	�	g�

R�A� = I2,�
R�A� �14�

supplemented with the normalization

�g�
R�A��2 − �f�

R�A��2 = 1. �15�

Therefore, we find from Eq. �6� for a nonzero chemical
potential

g�,��
K = �g�+s

R − g�+s

A ��f1,� + f2,��2
��� − ��� , �16�

− ḡ�,��
K = �g�−s

R − g�−s

A ��f1,� − f2,��2
��� − ��� . �17�

The off-diagonal Keldysh Green functions in Eq. �6� become

f�,�−�
K = �f�+S

R �f1,�+2S
− f2,�+2S

� − �f1,� + f2,��f�+S

A 

�2
��� + 2s� . �18�

f�,�−�
†K = �f�−S

†R �f1,�−2S
+ f2,�−2S

� − �f1,� − f2,��f�−S

†A 

�2
��� − 2s� . �19�

B. Tunnel collision integrals

Assume that island 1 is a superconductor and island 2 is a
normal metal. With Eqs. �12�, �16�, and �17�, the matrix el-
ements of the tunnel collision integral Eq. �5� in the super-
conducting island S give

Tr„ÎT
K�S�… = 4i�SN��g�+S

�S� + g�−S
�S��f1,��S� − f1,��N�

+ �g�+S
�S� − g�−S

�S��f2,��S� − f2,��N�� , �20�

Tr„�̂3ÎT
K�S�… = 4i�SN��g�+S

�S� − g�−S
�S��f1,��S� − f1,��N�

+ �g�+S
�S� + g�−S

�S��f2,��S� − f2,��N�� .

�21�

Components of the retarded and advanced tunnel collision

integrals ÎR�A� are

I2
R�A��S� = ± i�SNfR�A��S� ,

− I2
†R�A��S� = ± i�SNf†R�A��S� ,

I1
R�A��S� = Ī1

R�A��S� = 0.

Both Keldysh and R�A� tunnel collision integrals in the nor-
mal island N are coupled to those in the island S by
�SNI�N�=−�NSI�S�.

Using Eqs. �13� and �18�, we find

Tr�M̂�,�� = 2	�	F�+S
�f1,� − f1,�+2S

+ f2,� + f2,�+2S
�

− 2	�	F�−S
�f1,�−2S

− f1,� + f2,� + f2,�−2S
� ,

�22�

Tr��̂3M̂�,�� = 2	�	F�+S
�f1,� − f1,�+2S

+ f2,� + f2,�+2S
�

+ 2	�	F�−S
�f1,�−2S

− f1,� + f2,� + f2,�−2S
� .

�23�

After inserting Eqs. �20�–�23� into Eqs. �7� and �8� they yield
the final kinetic equations to be solved for the distribution
functions in the absence of inelastic scattering.

In the equations above, we introduce g�= �g�
R−g�

A� /2
�Re g�

R and also F�= �f�
R+ f�

A� /2� i Im f�
R. The functions g�

and F� are even in �. With the account of tunnel and
electron-phonon interactions, they can be found from the
steady-state Usadel equations �14� and �15�. These equations
can be more easily solved when the inelastic interaction is
small. If island 2 is normal, one finds

g�
R�A� = ±

� ± i�

��� ± i��2 − 	�	2
, f�

R�A� =
	�	
� ± i�

g�
R�A�, �24�

where �=�SN.
For a N1IS1INIS2IN2 structure, each conductor S1, N, or

S2 has tunnel contacts with two other conductors, thus the
tunnel integrals are sums of the contributions from two is-
lands. For example, if the inelastic interaction is small, the
depairing rate in Eq. �24� is ��Si�=�SiN

+�SiNi
.

C. Current conservation

For a NS junction, the tunnel current Eq. �10� into the
superconductor S from a normal island N or N1,2 is

I�N → S� =
1

4eRSN
�

−�

�

d�g��S��f1,�−S
�S� − f1,�+S

�S�

− f1,�−S
�N� + f1,�+S

�N� + f2,�−S
�S� + f2,�+S

�S�

− f2,�−S
�N� − f2,�+S

�N� . �25�

Electric currents through both junctions are balanced when
I�N→Si�+ I�Ni→Si�=0.

The energy current flowing into the superconducting is-
land through each junction has the form

IE�N → S� =
1

4e2RNS
�

−�

�

d��g��S���f1,�−S
�S� + f1,�+S

�S�

− f1,�−S
�N� − f1,�+S

�N� + �f2,�−S
�S�

− f2,�+S
�S� − f2,�−S

�N� + f2,�+S
�N��

− I�N → S��S/e + �S . �26�

The energy conservation follows from the kinetic equations
and is therefore an abundant condition. However, in the
quasi-equilibrium limit, when the electron-electron interac-
tion in each island dominates over the tunnel injection, the
distribution functions are nearly thermal with certain tem-
peratures specific for each island. In this case, the kinetic
equations do not need to be solved explicitly, but the tem-
peratures are found by requiring the conservation of the en-
ergy current.
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The energy current IE�S→N� flowing into the central nor-
mal island through each junction is obtained from Eq. �26�
by changing the sign and replacing �S with �N so that the
difference between the energy currents from N to S and from
S to N is IE�N→S�+ IE�S→N�= I�N→S�VNS, where VNS

=�N−�S is the voltage across the junction. This difference of
energy currents is compensated by the work produced by the
voltage source and does not lead to the change in the energy
of the superconductor.

D. Self-consistency equation and charge neutrality

The magnitude of the order parameter is found from Eq.
�18�. It is a real quantity, therefore,

	�	
�

= �
−Ec

Ec

�Re f�
R��f1,�+S

+ f1,�−S
− f2,�+S

+ f2,�−S
�
d�

4
,

�27�

where Ec is the BCS cutoff energy. The self-consistency of
the order parameter requires vanishing of its imaginary part:

�
−�

�

F��f1,�+S
− f1,�−S

− f2,�+S
− f2,�−S

�d� = 0, �28�

which results in

� TrM̂d� =� Tr��̂3M̂�d� = 0. �29�

Equation �28� or the second condition in Eq. �29� together
with the kinetic equation Eq. �8� is equivalent to

�Tr��̂3ÎK�d�=0. Since the integrals over the inelastic
electron-phonon and electron-electron collision integrals
vanish, this is the condition of current conservation:

� Tr��̂3ÎT
K�d� = 0, �30�

which implies through Eq. �10� that the sum of currents
flowing into an island is zero.

Charge density can be obtained by calculating Tr ĝK from
Eqs. �16� and �17�. Making shift of � in the integral we
obtain

N = N0 − 2��e� + S�

+ ��
−�

�

g��f1,�+S
− f1,�−S

− f2,�+S
− f2,�−S

�
d�

2
.

Here we take into account the divergence of the integral for
large �. Charge neutrality requires that N=N0, i.e., the charge
density in the superconducting state equals that in the normal
state. The electric potential �S of a superconductor is thus
coupled to the chemical potential through

e� = �
−�

�

g��f1,�+S
− f1,�−S

− f2,�+S
− f2,�−S

�
d�

4
, �31�

where e�=S+e�S.
To summarize, for a system of n superconducting and m

=n+1 normal pieces we have n+m pairs of the distribution

functions f1 and f2 and n parameters S. For these un-
knowns, we have 2�n+m� functional kinetic equations �Eqs.
�7� and �8� and n conditions �Eq. �30� of current conserva-
tion for each superconducting island. Note that the current
balance of the type of Eq. �30� in each normal island is
satisfied automatically due to the kinetic equations that have

M̂ �0 in any normal conductor.

V. RESULTS

To further simplify our model, we limit the discussion to a
case symmetric with respect to the central normal island, i.e.,
RN1S1

=RN2S2
�Rout, RNS1

=RNS2
�Rin, 	�1	= 	�2	��, and

�N1
=−�N2

, S1
=−S2

�S. Therefore f1�N1�= f1�N2� and
f2�N1�=−f2�N2�. Moreover, when applied to kinetic equa-
tions in the normal island N, the symmetry yields f2�S1�=
−f2�S2�� f2�S�, f1�S1�= f1�S2�� f1�S�, and f2�N�=0. The sys-
tem is biased by voltage V applied between the outermost
normal electrodes N1 and N2.

A. Nonequilibrium state

1. Distribution functions

Under the conditions formulated in Sec. II when the in-
elastic relaxation can be neglected, ���e−e

−1 , the kinetic equa-
tions �7� and �8� were solved numerically for nonequilibrium
distributions in both normal and superconducting islands.
Throughout numerical computations we use the value of the
pair-breaking parameter � /�=1000. For nonequilibrium
states, the bath temperature was fixed at a value much lower
than the gap, Tbath= �0.1/1.764��. This corresponds to T

FIG. 2. �a� Chemical and electrostatic potentials of the super-
conducting island as a function of bias voltage. �b� I-V curves for
different �. For clarity, in the case �=1000 the potentials have been
multiplied by the factor 100 and the currents by the factor 1000.

FIG. 3. Nonequilibrium normal-island distributions for �
=1000. We use v�eV /� here and in Figs. 4–7 below.
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=0.1Tc if the gap coincides with the zero-temperature BCS
value �0=1.764Tc.

The distribution functions in both N and S islands are in
turn determined by the chemical potential of superconduct-
ing islands S which was calculated self-consistently using
the current conservation as discussed in the previous section.
Chemical potential and the current-voltage curves are shown
in Fig. 2.

We find three qualitatively distinct cases characterized by
the ratio ��Rout /Rin. For the ratio as large as �=1000, the
distribution in the normal island, nN, is shown in Fig. 3 for
several values of V. Under biasing V, the distribution is
driven into nonequilibrium. At first, this is seen only as a
slight deviation from the Fermi function nF but for voltages
eV /��1, the distribution nN assumes the characteristic step-
like profile. This behavior of nN can be explained as follows.
For very high ratios �, the superconducting chemical poten-
tial is small: S /eV	1 �compare with Fig. 2�a�. The kinetic
equations �7� and �8� yield then f1�N�� f1�S�� f1�N1�. Since
f2�N�=0, one has 2nN=1− f1�N�=1− f1�N1�. The external
leads N1 and N2 are in equilibrium such that f1�N1�=−nF��
−eV /2�+nF�−�−eV /2�. Thus, nN= �nF��−eV /2�+nF��
+eV /2� /2. Since f2�S� is small due to the high resistivity
ratio, one has also nS�nN for the superconducting island.

The distributions for the ratios �=1 and �=1/1000 are
shown in Figs. 4 and 5. They also change their shape
strongly above a certain voltage. The changes correspond to
the sharp rise in the electric current through the junction
�Fig. 2�b�. The origin of this behavior is discussed in con-
nection with the charge imbalance �see next subsection�. The
distribution functions of the N island show a cooling behav-
ior: The distribution becomes very steep, thus corresponding
to a low effective electron temperature at such bias voltages

when the chemical potential difference across the
superconductor/normal-island junction is 	S	��. One can
define an effective temperature through4

kBTeff =
�6



��

0

�

�1 − f1,��N��d� , �32�

keeping in mind that f2�N�=0 for the center N island. This
definition gives the actual electron temperature in �quasi�-
equilibrium. The effective temperatures have minima for �
�1 as seen in Fig. 6.

For a good contact between the outer normal electrodes
and the superconductors S, i.e., when �=1/1000, there is
essentially no difference between the superconductor distri-
bution function nS and that in the normal reservoir, a Fermi
function with �N1

=V /2. This suggests that, for small �, the
considered structure is similar to a SINIS system with super-
conducting reservoirs. The distribution in the central N is-
land for low � is shown in Fig. 5. It resembles the distribu-
tion found for a SINIS structure.9

When the ratio � increases, the distribution in the super-
conductors, nS, deviates from the Fermi function as shown in
Fig. 7. Nonequilibrium distribution in the superconducting
islands on both sides of the central normal island drives the
state in the N island yet further from equilibrium �see Fig. 4�.
For larger � the cooling behavior becomes less pronounced
and finally disappears �see Fig. 6�.

For low and intermediate values of �, we observe novel
features of highly nonequilibrium distributions both in the
central normal and in the side superconducting islands. For
small �=1/1000, peaks in the energy distribution appear at

FIG. 4. Nonequilibrium normal metal distributions for �=1.

FIG. 5. Nonequilibrium normal metal distributions for �
=1/1000.

FIG. 6. Effective temperature Teff of Eq. �32�.

FIG. 7. Nonequilibrium superconductor distributions for various
bias voltages when �=1.
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energies ±�=�+S �see Fig. 5�. In addition to these, new
peaks appear in Fig. 4 for larger �=1 at energies ±�=−�
+S, for voltages considerably exceeding � /e. Both sets of
peaks come as a result of recursion from singularities in g�
and F� at �= ±� in the kinetic equations. The new peaks at
±�=−�+S are present as long as the distribution functions
of the two reservoirs differ at the corresponding energies and
appear as a result of suppression of the distribution function
due to a large factor �� /��F�±S

in the subgap region in Eqs.
�22� and �23�. Thus, the requirement of the new peaks is
roughly �−S�eV /2 which can be fulfilled if S�−eV /2
as is the case for intermediate values of �.

2. Charge imbalance

As mentioned above, the distribution function of the cen-
ter N island suffers a drastic change above a certain voltage.
This change coincides with the upturn of the current as a
function of the applied voltage in Fig. 2�b� and is accompa-
nied by a deviation of the chemical potential S from the
electric potential −e�S in the adjacent superconductor as de-
termined by Eq. �31�. In equilibrium, their difference �=0.
In nonequilibrium, a difference between S and −e�S ap-
pears according to Fig. 2�a�. The singularities appear when
the chemical potential difference between the superconductor
and one of the contacting normal conductors approaches �.
This corresponds to eV�2� for a large mismatch between
Rin and Rout or to eV /2�2� for Rin=Rout. To measure po-
tentials �S, a capacitive connection would be required, in
addition to the usual resistive connection only capable of
detecting S.

For a good contact between the outer normal electrodes
and the superconductors S, i.e., when �=1/1000, there is no
deviation between −e�S and S. This can be understood by
considering the function nS, which coincides essentially with
a Fermi function shifted by S�−e�N1

=−eV /2. For a Fermi
function, n�=1−n−�, and the term in the brackets in Eq. �31�
vanishes.

3. Gap instability

In a nonequilibrium state, the gap function � has to be
calculated self-consistently using Eq. �27�. Employing the
equation for the critical temperature Tc,

1

�
= �

0

Ec

tanh
�

2Tc

d�

�
, �33�

one can exclude the interaction constant in favor of Tc. For a
low resistance ratio �=1/1000, the gap does not change con-
siderably, ���0 for all V, �0=1.764Tc being the zero-
temperature BCS gap. However, for a higher resistance ratio,
the nonequilibrium energy gap is modified dramatically as
shown in Fig. 8�a�. One observes a drastic change in the gap
for voltages coinciding with those where the change in the
distribution is seen. The energy gap becomes a multi-valued
function which implies hysteretic behavior accompanied by
jumps of � at the corresponding voltages. For a very poor
contact between the superconducting islands and the outer
normal reservoirs, i.e., for high � when deviation from equi-

librium is the largest, the gap function jumps down to very
small values and superconductivity is nearly destroyed. For a
lower tunnel resistance ratio �, the gap decrease is not so
huge and superconductivity is less suppressed. Note that with
respect to the order parameter magnitude, the bath tempera-
ture chosen for our calculations can be considered as zero.
Indeed, the temperature was set much lower than � while the
relevant energy scales for the distribution function are deter-
mined by the applied voltage and by � itself. Thus the ther-
mal effects on the gap are negligible.

The predicted suppression of superconductivity in a non-
equilibrium superconductor placed into a tunnel contact with
a nonequilibrium normal-metal electrode contrasts to the su-
perconductivity enhancement observed in tunnel SISIS
structures5–7 where the nonequilibrium superconductor is in
contact with equilibrium superconducting electrodes.

Note that since in our calculations we normalize all the
values with the dimensions of energy �like voltage, excita-
tion energy, and temperature� to the real gap magnitude �,
we need to rescale the real voltage to its relative magnitude.
Conversion between the relative, eV /�, and the real voltage
normalized to the BCS gap, eV /�0, is provided by Fig. 8�b�
where the graphs are given for �=1000 and �=1. As seen
from Fig. 8�b�, for �=1 high relative voltages eV /� can be
achieved for comparatively low absolute voltage values
eV /�0.

4. Visualization

The peaks in the distribution of N and S islands can be
monitored by measuring the differential conductance of a

FIG. 8. �a� Gap � as a function of bias voltage for two resis-
tance ratios �=1000 �dashed line� and �=1 �solid line�. Both quan-
tities are normalized to zero-temperature BCS gap �0. �b� Conver-
sion between eV /� and eV /�0 for �=1000 �dashed line� and �=1
�solid line�.

FIG. 9. Differential conductance for �a� the probe junction and
�b� the corresponding quasiparticle energy distribution in the
normal-metal island when �=1, eV /�=10.
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probe tunnel SINIS or SIS’IS junction attached to the island
in question. Let us consider a SINIS probe junction attached
to the central N island as in Ref. 4. The distribution function
in the N island is not modified by the measuring current if
the tunnel resistance of the probe junction satisfies RSPN

�Rin+Rout. The current through the probe junction is

I�N → SP� = −
1

eRSPN
�

−�

�

g��SP�

��nF��� − nN�� + eVP/2�d� ,

where the bulk superconducting probe electrode SP is as-
sumed to be in equilibrium with a potential �P so that SP
=−e�P=−eVP /2 where VP is the voltage between the two
probe electrodes. The energy gap �P in the probe electrodes
is assumed to have the magnitude corresponding to the BCS
value for T=Tbath. As Tbath�0.1Tc, the gap �P is very close
to �0. In addition, we set �P=� for the depairing rate in the
probe electrodes. The differential conductance becomes

dI

dVP
=

1

2RSPN
�

−�

�

g��SP�
dnN�� + eVP/2�

d�
d� . �34�

Due to the peaks in g��SP� at �= ±�P, the differential con-
ductance should reproduce the peaks in the distribution func-
tion nN at the probe voltages satisfying �±�P=eVP /2.

The differential conductance dI�N→SP� /dVP together
with the corresponding distributions in the central normal
island for eV /�=10 are shown in Fig. 9 for the ratio �=1.
The peaks in the distribution in Fig. 9�b� are located at �
= ±�−S, i.e., �=2.89� and �=4.89�. Two more are located
at �= ±�−3S or �=10.7� and �=12.7� �out of scale in Fig
9�b�. Comparing these to the locations of the larger peaks in

Fig. 9�a� and using the �-vs-�0 conversion curve of Fig. 8�a�
we see that the peaks in the distribution are indeed repro-
duced at the probe voltage eVP /�=2� /�±2�P /�. The
smaller peaks in Fig. 9�a� refer to the less pronounced struc-
ture in the distribution not well resolved in Fig. 9�b�.

B. Quasi-equilibrium

As discussed in Sec. II, the condition for full nonequilib-
rium is ���inel

−1 , where � is defined according to Eq. �4�. The
inelastic relaxation may be further separated to relaxation
caused by electron-electron and electron-phonon interactions
with collision rates �e−e

−1 and �e−ph
−1 , respectively. The experi-

mental situation in nanoscale heterostructures4 corresponds
often to the case �e−e

−1 ��e−ph
−1 . In particular, the limit of low

coupling to the heat bath in S and/or N islands is frequently
realized when the tunnel injection rate is intermediate be-
tween the electron-phonon and electron-electron relaxation
rates, �e−ph

−1 	�	�e−e
−1 . We refer to this case as quasi-

equilibrium. While the near absence of electron-phonon in-
teractions prohibits the quasiparticles from coupling to the
lattice, the rate of electron-electron scattering is high enough
for the quasiparticles to assume a Fermi distribution with
certain electron temperature. We have studied the cooling
performance of our NISINISIN heterostructure in the quasi-
equilibrium limit looking at the electron temperature of the
central N island.

We note that the simple expressions for the regular Green
functions of the form of Eq. �24� are not applicable in the
strict sense when the inelastic relaxation dominates. To find
the exact expressions for the regular Green functions one has
to solve Eqs. �14� and �15� with the proper inelastic collision
integrals. However, to simplify our problem, we model the
pair-breaking effects of inelastic relaxation by an effective
pair-breaking rate � in Eq. �24� in the same way as for the
tunnel limit described in the previous sections. This approxi-
mation is frequently used in practical calculations. Here we
put � /�=1000 as above.

Applying the tunneling model shows that depending on
the configuration of the quasiparticle traps, i.e., the ratio of
outer and inner junction resistances �, effective cooling of
the normal-metal island can be achieved as demonstrated
also in Ref. 4. The temperatures of the central N island and
of the contacting S island are shown in Figs. 10 and 11,
respectively. The temperature of the N island indeed displays
a minimum below bath temperature when the ratio � is small.

FIG. 10. Temperature in the normal-metal island as a function of
bias voltage for bath temperatures �a� 0.05� and �b� 0.2� when the
system is in quasiequilibrium.

FIG. 11. Temperature in the superconductor as a function of bias
voltage for bath temperatures �a� 0.05� and �b� 0.2� when the
system is in quasiequilibrium.

FIG. 12. Chemical potential of the superconductor as a function
of bias voltage for bath temperatures �a� 0.05� and �b� 0.2� when
the system is in quasiequilibrium.
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However, for large �, the temperature monotonously rises
above the bath temperature with an increasing voltage. As
can be deduced from Figs. 10 and 11, the cooling effect is
not attributed to the presence of two additional normal metal
reservoirs. On the contrary, smallest ratio �, which corre-
sponds to the strongest cooling, is seen to lead to almost
constant TS=Tbath as it would be the case for pure supercon-
ducting reservoirs. Another remark concerns the cooling ef-
ficiency of a NISINISIN configuration as Tbath is lowered.
Indeed, for Tbath=0.2� the temperature minimum for the de-
pairing parameter �=� /1000 used for our calculations is
roughly 0.063� while the minimum is Tmin=0.024� for
Tbath=0.15�, and it is Tmin�0.013� for Tbath 0.1�. From
the numerical results in the case 1���� /�, we find that the
minimum achieved temperature follows Tmin/Tc�0.24�!

where !�0.5. For smaller Rout, the minimum temperature
Tmin is determined by the inverse proximity effect described
by the depairing parameter � �see Ref. 4�. Combining both
the superconductor heating due to a finite Rout and the effects
of depairing, we can write an approximate formula for the
minimum temperature for relatively low bath temperatures,

Tmin/Tc = 2.5��/��2/3 + 0.24�1/2. �35�

For �	1, the depairing rate � is limited by Rout, i.e., �
=1/ �4�Se2�SRout�= �rS /2Rout�ET, where ET=D /L2 is the
Thouless energy in the superconducting island with length L
and rS is its resistance. Substituting this into Eq. �35�, we find
that the minimum temperature is optimized with

�� 6.4��ET/���rS/Rin�4/7. �36�

Note, however, that Eq. �36� is valid provided rS /Rin	�
	1.

The sharp rise in TN and TS occurs generally around eV
=2� but for larger values of �, when also Tbath→Tmin, the
upturn shifts towards higher voltages V. This is because the
upturn is determined by the condition −S�� rather than
eV /2=� as can be seen by comparing Figs. 10 and 11 to Fig.
12. For increasing bath temperature, though, this trend is
smeared and disappears. The voltages corresponding to the
temperature rise are also seen in the IV curves in Fig. 13 and
in the differential conductance �Fig. 14�.

VI. DISCUSSION

A. Electron cooling

According to our results, the electron cooling is the most
effective when the outer resistance is low, �	1. In fact, both
the effective temperature and the distribution function in the
superconducting island almost coincide with those in the
bath for such voltages that yield 	s	�� especially for very
low ratios of �. When the ratio � is low, a good contact
between the inner superconducting island and the outer elec-
trode makes the distributions in these two islands not so
much different from each other, thus decreasing the role of
the extra junction. This conclusion is valid only within the
tunneling approximation. When the contact between the
outer electrodes and superconducting islands are more trans-
parent, cooling properties of the device are affected by the
inverse proximity effect from the external normal leads.

For larger ratios �, the extra junction prevents the state of
the superconducting island from reaching equilibrium, thus
reducing the cooling power of the entire structure. Moreover,
this limit has another disadvantage as far as the cooling per-
formance is concerned: For larger voltages when eV ap-
proaches 2�, one expects a suppression of superconductivity
in the S islands down to lower values of � and thus the
cooler would become even less effective. This suggests that
the cooling performance of an NISINISIN structure cannot
be improved essentially by an extra tunnel junction as com-
pared to that of a simple SINIS structure. However, the pres-
ence of the quasiparticle traps helps to practically realize the
superconducting reservoirs by thermalizing them quickly to
an object with a high thermal conductance.

B. Nonequilibrium distribution

Nonequilibrium distribution formed in the superconduct-
ing islands for high values of � results in yet stronger devia-
tion from equilibrium in the central normal island. As seen
from Figs. 4 and 5, the distribution function in the N island is
characterized by peaks at energies ±�=�±s, and also ±�
=�±3s, etc., for voltages considerably exceeding � /e.
These peaks are clearly visible in the differential conduc-
tance of a probe tunnel SINIS junction made at the central
normal island �Fig. 9�. Simultaneously, nonequilibrium states
in the superconducting island follow the gap which is
strongly reduced as compared to its equilibrium BCS value
�0. The transition into a nonequilibrium state is accompanied

FIG. 13. Electric current between S and N islands as a function
of bias voltage for bath temperatures �a� 0.05� and �b� 0.2� when
the system is in quasiequilibrium.

FIG. 14. Differential conductance as a function of bias voltage
for bath temperatures �a� 0.05� and �b� 0.2� when the system is in
quasiequilibrium.
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by a jump in the gap magnitude which leads to the jump in
the relative voltage: high values of eV /� can be reached
already for not very large absolute values of voltage eV /�0.
This makes observation of the nonequilibrium states in N
and S islands more easily accessible in experiments.

ACKNOWLEDGMENTS

We are thankful to J. P. Pekola for stimulating discus-
sions. T.T.H. acknowledges funding by the Academy of Fin-
land and the NCCR Nanoscience.

1 M. Nahum, T. M. Eiles, and J. M. Martinis, Appl. Phys. Lett. 65,
3123 �1994�.

2 M. M. Leivo, J. P. Pekola, and D. V. Averin, Appl. Phys. Lett. 68,
1996 �1996�.

3 D. Golubev and A. Vasenko, in International Workshop on Super-
conducting Nano-electronics Devices, edited by J. Pekola, B.
Ruggiero, and P. Silvestrini �Kluwer Academic/Plenum Publish-
ers, New York, 2002�, p. 165.

4 J. P. Pekola, T. T. Heikkilä, A. M. Savin, J. T. Flyktman, F. Gia-
zotto, and F. W. J. Hekking, Phys. Rev. Lett. 92, 056804 �2004�.

5 D. R. Heslinga and T. M. Klapwijk, Phys. Rev. B 47, 5157
�1993�.

6 V. M. Dmitriev, V. N. Gubankov, and F. Y. Nad’, in Nonequilib-
rium Superconductivity, edited by D. N. Langenberg and A. I.
Larkin �North Holland, Amsterdam, 1986�, p. 163; G. M. Eliash-
berg and B. I. Ivlev, in ibid.211.

7 M. G. Blamire, E. C. G. Kirk, J. E. Evetts, and T. M. Klapwijk,
Phys. Rev. Lett. 66, 220 �1991�.

8 H. Pothier, S. Guéron, N. O. Birge, D. Esteve, and M. H. Devoret,
Phys. Rev. Lett. 79, 3490 �1997�.

9 F. Giazotto, T. T. Heikkilä, F. Taddei, R. Fazio, J. P. Pekola, and F.
Beltram, Phys. Rev. Lett. 92, 137001 �2004�.

10 J. P. Pekola, D. V. Anghel, T. I. Suppula, J. K. Suoknuuti, A. J.
Manninen, and M. Manninen, Appl. Phys. Lett. 76, 2782
�2000�.

11 A. Brinkman, A. A. Golubov, H. Rogalla, F. K. Wilhelm, and M.
Yu. Kupriyanov, Phys. Rev. B 68, 224513 �2003�.

12 A. I. Larkin and Yu. N. Ovchinnikov, in Nonequilibrium Super-
conductivity, edited by D. N. Langenberg and A. I. Larkin
�North Holland, Amsterdam, 1986�, p. 493.

13 N. B. Kopnin, Theory of Nonequilibrium Superconductivity �Clar-
endon, Oxford, 2001�.

VOUTILAINEN, HEIKKILÄ, AND KOPNIN PHYSICAL REVIEW B 72, 054505 �2005�

054505-10


