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We study numerically the ground-state phase diagram of the bilinear-biquadratic spin-1 chain near the
ferromagnetic instability point, where the existence of a gapped or gapless nondimerized quantum nematic
phase has been suggested. Our results, obtained by a highly accurate density-matrix renormalization-group
calculation, are consistent with the view that the order parameter characterizing the dimer phase vanishes only
at the point where the system becomes ferromagnetic, although the existence of a gapped or gapless nondimer-
ized phase in a very narrow parameter range between the ferromagnetic and the dimerized regimes cannot be
ruled out.
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I. INTRODUCTION

In the past two decades, a large number of papers was
devoted to the study of various properties of quantum spin
chains. This was inspired to a large extent by Haldane’s
conjecture,1 which states that isotropic antiferromagnetic
spin chains with half-odd-integer or integer spin values be-
have completely differently. While the excitation spectrum is
gapless in the first case, a gap, the so-called Haldane gap, is
generated in the other case.

The most general form of isotropic coupling for S=1/2
spins is the usual Heisenberg model. For higher spin values,
higher powers of the spins may appear in the Hamiltonian
and this gives rise to a richer phase diagram. For S=1 spins,
assuming the most general isotropic nearest-neighbor inter-
action, the Hamiltonian has bilinear and biquadratic terms in
the spin operators and it can be written in the form

H = �
i

Hi,i+1 = �
i

�cos ��Si · Si+1� + sin ��Si · Si+1�2� .

�1�

In this parametrization, �=0 corresponds to the antiferro-
magnetic model where the spectrum has a finite Haldane
gap, while at �= ±� the system is ferromagnetic. In fact,
both phases have a finite extension in the parameter space.
The massive Haldane phase is stable for −� /4���� /4,
while ferromagnetism exists for � /2���� and
−����−3� /4. The phase boundaries �= ±� /4, −3� /4,
and � /2 are in fact special points, where the model can be
solved exactly.2–5

The Haldane gap vanishes at �=� /4 and three soft modes
appear at k=0 and ±2� /3. The system remains critical
for � /4���� /2 with the soft modes remaining at
k=0, ±2� /3 �Refs. 6 and 7�. This gives rise to a power-law
decay of correlations with a 3a periodic oscillation, hence
the name “trimerized” phase, although the translation sym-
metry is not broken.

The gap vanishes also at the other end of the Haldane
phase, at −� /4, but it reopens for ��−� /4 and a massive
dimerized phase with spontaneously broken translational
symmetry is found. A possible definition of the dimer order
parameter D is

D = lim
N→�

�DN/2�; Di = �Hi−1,i� − �Hi,i+1� , �2�

where chains are considered with open boundary condition.
Dimerization is measured as the alternation in the bond en-
ergy in the middle of a long enough open chain.

The properties of this phase are best known for �=−� /2,
where a partial mapping8–10 to the nine-state quantum Potts
model allows to calculate exactly the ground-state energy,
the gap, the correlation length, and also the dimer order.11

While the properties and boundaries of the ferromagnetic,
Haldane, and critical “trimerized” phases have been well es-
tablished, there has been a long debate in the literature as for
the boundary of the dimerized phase and the eventual exis-
tence of another phase between this dimerized phase and the
ferromagnetic one near �=−3� /4, as seen in Fig. 1.

By studying fluctuation effects near the end point of the
ferromagnetic phase, Chubukov12 claimed that there should
be a gapped nondimerized nematic phase between the ferro-
magnetic and the dimerized phases. In fact, both ferromag-
netism and dimerization involves spontaneous symmetry
breaking: for ferromagnetism SU�2� is broken, whereas for
dimerization it is translation invariance. These symmetries
are largely unrelated, and there seems to be no a priori rea-

FIG. 1. Schematic plot of the phase diagram of the bilinear-
biquadratic S=1 model as a function of �.
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son why the two should be broken hand in hand in one single
transition.

According to Chubukov’s scenario the dimer order pa-
rameter is finite in the dimerized phase and vanishes together
with the gap at a �c close to, but definitely above, −3� /4.
The gap reopens for ���c and closes again at −3� /4, but
the dimer order parameter remains zero in this whole range
of �. In this extended region, the system would have a non-
degenerate singlet ground state and unbroken translational
symmetry. Since the higher-dimensional counterpart of Chu-
bukov’s phase would have quadrupolar order, this phase is
usually called the “spin-nematic” phase. The behavior of the
gap and the dimer order parameter according to this scenario
are shown schematically in Fig. 2�a�. Other field-theoretic
calculations based on a nonlinear �-model approach for the
director field also supported this scenario.13 Note, however,
that all these field-theoretic calculations assumed a transla-
tion invariant ground state and did not check its stability
against a possible spontaneous breaking of translation invari-
ance.

In our earlier numerical calculations,14,15 where the van-
ishing of the gap was studied, we found no evidence for a
closing and reopening gap. In these works both the gap and
the dimer order parameter, indicating broken translation in-
variance, were reported to vanish at �c=−3� /4 only. This
scenario, the absence of the nematic phase, is shown in Fig.
2�b�.

Recent quantum Monte Carlo16 and density-matrix
renormalization-group �DMRG� �Ref. 17� calculations
have indicated that although Chubukov’s proposal may not
be completely correct in a closing and reopening gap, an
exotic, critical phase with quadrupolar correlations may exist
between the ferromagnetic and dimerized phases for
−3� /4����c. The behavior of the gap and the dimer order
in this scenario is shown in Fig. 2�c�. Läuchli et al.17 esti-
mated the value of �c to be −0.67�.

The aim of the present paper is to find further numerical
evidence for the possible existence of this nondimerized
phase. For this purpose we have studied finite spin chains up
to 1000 lattice sites with open �OBC� and periodic boundary
conditions �PBC� for various � values using the DMRG
method.18 We have analyzed the behavior of the excitation
gap and the dimer order parameter given by Eq. �2�.

II. NUMERICAL PROCEDURE

The numerical calculations were performed using the
DMRG algorithm. Since the numerical accuracy is of crucial
importance in the present study, this section is devoted to the
problem of how the accuracy of our calculations could be
determined and controlled.

We have performed DMRG calculations both by using the
standard technique,18 i.e., by keeping the number of block
states fixed, and by using the dynamic block state selection
�DBSS� approach.19,20 All eigenstates of the model have been
targeted independently using two or three DMRG sweeps.

In the standard procedure M =500–1000 block states
have been used. It was found that for the largest systems
built up of N=500–1000 lattice sites the truncation error
varied in the range 10−8−10−9 for OBC and 10−5−10−7 for
PBC. The following numbers are indicative of the accuracy:
for OBC using M =300 or M =500 block states the ground-
state energies at �=−0.7� differ in the fifth digit,
�E�300,500��10−5, and the accuracy improved one order of
magnitude when M =1000 block states were kept,
�E�500,1000��10−6.

The DBSS approach19 allows for a more rigorous control
of numerical accuracy, and we set the threshold value of the
quantum information loss � to 10−8. The minimum number
of block states Mmin has been set to 256. The entropy sum
rule was checked for all finite chain lengths for each DMRG
sweep, and it was found that the sum rule was satisfied after
the second sweep already. The maximum number of block
states varied in the range 600–1400 for OBC and 1000–2500
for PBC, respectively.

After accomplishing the infinite lattice procedure and us-
ing White’s wave-function transformation method21 the larg-
est value of the fidelity error of the starting vector �stv,
�	�stv

=1− ��T ��stv� was of the order of 10−10, where �T is
the target state determined by the diagonalization of the su-
perblock Hamiltonian.

As another test of the accuracy we calculated the dimer
order profile Di using PBC. In theory, this should vanish
identically for all finite chain lengths. Using the DBSS ap-
proach with �=10−6, Mmin=256 for chains up to N=200
sites, in the parameter range −0.75�
�
−0.5�, the value

FIG. 2. Schematic plot of the excitation gap ��� and the dimer
order parameter D as a function of � around the phase boundary of
the ferromagnetic and dimerized phases. �a� Chubukov’s sugges-
tion; �b� the result of earlier numerical work; �c� the case of a
critical nondimerized phase.
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obtained for Di was less than 10−5 for all i=1, . . . ,N. The
ratio of the DMRG block energy and the number of bonds
within the block agreed up to five digits with the bond en-
ergy obtained between the two DMRG blocks. These results
indicate that the finite dimer order parameter calculated with
OBC is probably accurate at least up to four digits.

III. GAP VERSUS DIMER ORDER PARAMETER

In order to obtain the energy gap � and the dimer order
parameter D in the thermodynamic limit N→�, a finite-size
scaling analysis has to be performed. In this section, as a
benchmark case, we study in detail the exactly solvable point
�=−� /2. We demonstrate that for OBC, which is usually
preferred in DMRG, the dimer order parameter is a better
quantity to be analyzed, as it provides much more accurate
results. At the special point �=−� /2 most of the quantities
of special interest have been determined exactly.8–11 The gap
is �exact=0.173 178, the dimer order parameter reads
Dexact=1.124 378, and the coherence length is �exact=21.072.

A. Energy gap

In a noncritical model with PBC the gap ��N� is expected
to scale in leading order as

��N� = � + c
1

N1/2exp�− N/�� . �3�

For OBC, however, the corrections are algebraic, and ��N� is
expected to vary as

��N� = � + a/N2 + O�N−4� , �4�

where a is a suitable constant. A qualitative argument for this
scaling ansatz can be given as follows.22 The magnon disper-
sion is quadratic around its minimum, 	�k�=	�2+v2k2. Due
to the boundary condition, however, the magnon wave func-
tion should have nodes on the boundary, which constrains the
lowest possible magnon momentum to be k= ±� /N. Conse-
quently, the lowest possible excitation energy �the gap� is
��N�=	�2+v2�� /N�2
�+�2v2 /2�N2+O�N−4�, giving
Eq. �4�.

Since in the region of interest the ground state is a singlet
and the lowest-lying excited state is in the Stot=2 total spin
sector, the excitation gap is calculated from the energy dif-
ference between the lowest-lying levels of the Stot=2 and
Stot=0 sectors,

��N� = EStot=2
�0� �N� − EStot=0

�0� �N� . �5�

We used OBC and the DBSS approach with �=10−8,
Mmin=256. Our results for the gap as a function of 1/N up to
N=500 are shown in the first panel of Fig. 3. A quadratic
fit using the form in Eq. �4� for 250
N
500 yields
�=0.177 and a=2300. The gap is about 2% higher than the
exact result.

B. Dimer order

For finite open chains with an even number of lattice sites
the two typical valence-bond configurations of the dimerized
phase are shown in Fig. 4. Due to the boundary condition
these two singlet states are separated by a finite-energy gap

FIG. 3. The excitation gap ��� and dimer order parameter �D� at �=−0.5� as a function of 1/N2. The symbol  denotes the exact value.
The solid lines are least-square fits using the scaling forms discussed in the text.
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even in the thermodynamic limit. The ground state retains a
high overlap with the configuration depicted in Fig. 4�a� as
N→�. This allows us to measure the possible dimer order
by considering D�N� and take the limit N→�. Note that this
is only possible for OPB. For PBC the two possible dimer-
ized configurations mix up and restore translation invariance
for any finite N. In this case dimer order could only be mea-
sured by considering the dimer �four-point bond-bond� cor-
relation function. In fact, this was the quantity measured nu-
merically in Ref. 17. Since calculations with PBC give less
accurate results in DMRG than with OPB, we do not pursue
here this approach.

Accordingly, in our numerical calculations we used OBC
with ��10−8, Mmin=256, and determined D�N� as defined in
Eq. �2� at the center of the chain. Two DMRG sweeps were
taken and we checked that the entropy sum rule was satis-
fied. Our result is shown in the second panel of Fig. 3. The
upward curvature of the data points as a function of 1/N is
apparent for very short chain lengths �N�40–80� and al-
ready for N�200 D�N� agrees up to three digits with the
infinite chain-length limit.

For noncritical models the characteristic behavior of the
system is determined by a finite correlation length. There-
fore, the end effects decay exponentially and the local quan-
tity D�N� is expected to vary in leading order according to

D�N� = D + dN−� exp�− N/2�� , �6�

which is qualitatively similar to the PBC scaling of the gap
in Eq. �3�, except that the scaling variable is the distance of
the middle of the chain from the boundary, N /2, and the
exponent of the algebraic prefactor is a priori unknown.
Nevertheless, knowing the exact value of D for �=−0.5�, a
least-square fit provided � very close to 1. Using this, our
numerical data for N�60 can be fitted with D=1.124 375,
�=20.2, and a=5.9 �see the solid line in the second panel of
Fig. 3�. The correlation length is off by 4%, but the numeri-
cal value of D has an excellent relative accuracy of
310−6. The exponential convergence of local quantities
such as the dimer order parameter D�N� makes the extrapo-
lation to the thermodynamic limit very reliable. Our general
conclusion is that—because of their different scaling
behavior—the dimer order parameter is a much better quan-
tity to analyze than the energy gap. In the next section we
pursue this idea to investigate the phase diagram as a func-
tion of �.

IV. NUMERICAL RESULTS

For the reasons presented above, the highest chance
to find the subtle nondimerized spin-nematic phase near

�=−3� /4 is by studying the dimer order in open chains.
Therefore, we calculated D�N� using OBC up to 1000 lattice
sites for various � values between −3� /4 and −� /2. We
have set ��10−8, Mmin=256, and used three DMRG sweeps.
Due to the very large correlation length in the vicinity of the
ferromagnetic phase boundary the maximum value of M is
varied in the range of 600–1400 for our longest chains. Our
numerical results are shown in Fig. 5 for two different �
values. The numerical error is much smaller than the size of
the symbols.

It is seen in the figure that for large N the data points
show an upward curvature as a function of 1/N for all �
values. On the other hand, the inflexion point shifts towards
very long chain lengths with decreasing � values. The ex-
trapolated value D of the dimer order parameter was deter-
mined using Eq. �6�. These values are shown in Fig. 6 as a
function of �. In fact, we found a finite, nonzero D for all �
shown. However, we have no results for ��0.7�, where
D�N� is so small that it is comparable to the numerical error.
Although the dimer order parameter decreases very rapidly
for ��−0.64�, the smooth behavior of D as a function of �
and the upward curvature observed suggests that it vanishes
at �=−3� /4.

It is also apparent from Fig. 6 that the dimer order param-
eter resembles the form of the Berezinskii-Kosterlitz-
Thouless �BKT� transition, thus it opens exponentially
slowly as a function of �,

D��� = a exp�− c�� − �c�−��, �c = − 3�/4, �7�

for ���c. In Eq. �7�, a and c are nonuniversal constants and
� is a characteristic exponent, which was estimated by a
least-square fit to be �=1.3±0.3 �see Fig. 6�. This functional
form is in qualitative agreement with our earlier numerical
result.14

Based on our calculations we conclude that there is no
sign of any phase transition to either a gapped or a gapless
nondimerized phase in the vicinity of ��−0.67�, and thus a
direct phase transition takes place between the ferromagnetic
and the dimerized phases.

V. CONCLUSION

In summary, we have performed a density-matrix
renormalization-group calculation on the spin-1 bilinear-
biquadratic spin chain model in the vicinity of the ferromag-
netic phase in order to search for a nondimerized quantum
nematic phase suggested by Chubukov12 or an extended criti-
cal region reported recently by Läuchli et al.17 We took spe-
cial care of the numerical accuracy since it has special im-
portance in the present problem. We used the DBSS
approach with the maximum number of block states varying
between 1000 and 2000, and performed calculations on very
long chains up to N=1000 lattice sites.

As a benchmark case we analyzed in detail the exactly
solvable point �=−� /2. We have found that the dimer order

FIG. 4. Typical valence-bond configurations for chains with
even lattice sites.
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parameter is a quantity, which can be determined numeri-
cally much more accurately than the energy gap, because of
their unequal finite-size scaling forms. Whereas the gap
scales algebraically in open chains, the dimer order param-
eter, which is a local quantity measured in the middle of the
chain, becomes highly independent of end effects and scales
exponentially.

The phase diagram of the model was explored in general
by computing the dimer order parameter as a function of �.
We have found strong indications that the dimer order, which
characterizes the dimer phase, only vanishes at the phase
boundary of the ferromagnetic phase �=−3� /4. The behav-

ior resembles that of Berezinskii-Kosterlitz-Thouless transi-
tion, i.e., the order parameter opens exponentially slowly as
we move away from the transition point. Our findings are in
agreement with the exponentially slow opening of the energy
gap reported earlier.14 Nevertheless, the actual transition it-
self is of first order as it involves direct level crossings, as
well. It is noteworthy that at �=−3� /4 the model has an
extra SU�3� symmetry,3 which causes extra degeneracies in
the spectrum. We are tempted to speculate that this extra
symmetry may play a role in that the two phases with seem-
ingly unrelated broken symmetries, SU�2� and translation in-
variance, meet in this special point without an intermediate
phase.

We could not find any trace of a nondimerized regime, at
least surely not above �
−0.7�. Below this limit numerical
precision is a crucial issue since the quantities of interests are
extremely small. If the intermediate phase exists, it should be
constrained in a very narrow region near �=−3� /4, certainly
much narrower than predicted by Läuchli et al. The more
likely alternative interpretation, i.e., the nonexistence of the
intermediate phase, is clearly at odds with current field-
theory analysis. A reconciliation of the numerical results with
field theory would be very welcome in the future.
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FIG. 5. Finite-size scaling of the dimer order parameter at �=−0.67� and −0.70� for 100
N
1000.

FIG. 6. The extrapolated value of the dimer order parameter as
a function of � /�. The solid curve is a least-square fit using the
form in Eq. �7� with a=2.4±0.6, c=0.11±0.05, and �=1.3±0.3.

PROBABLE ABSENCE OF A QUADRUPOLAR SPIN-… PHYSICAL REVIEW B 72, 054433 �2005�

054433-5



1 F. D. M. Haldane, Phys. Lett. 93A, 464 �1983�; Phys. Rev. Lett.
50, 1153 �1983�.

2 C. K. Lai, J. Math. Phys. 15, 1675 �1974�.
3 B. Sutherland, Phys. Rev. B 12, 3795 �1975�.
4 L. A. Takhtajan, Phys. Lett. 87A, 479 �1982�.
5 H. M. Babujian, Phys. Lett. 90A, 479 �1982�; Nucl. Phys. B 215,

317 �1983�.
6 G. Fáth and J. Sólyom, Phys. Rev. B 44, 11836 �1991�; ibid. 47,

872 �1993�.
7 C. Itoi and M.-H. Kato, Phys. Rev. B 55, 8295 �1997�.
8 J. B. Parkinson, J. Phys. C 20, L1029 �1987�; ibid. 21, 3793

�1988�.
9 M. N. Barber and M. T. Batchelor, Phys. Rev. B 40, 4621 �1989�.

10 A. Klümper, Europhys. Lett. 9, 815 �1989�; J. Phys. A 23, 809
�1990�.

11 Y. Xian, Phys. Lett. A 183, 437 �1993�.

12 A. V. Chubukov, J. Phys.: Condens. Matter 2, 1593 �1990�; Phys.
Rev. B 43, 3337 �1991�.

13 B. A. Ivanov and A. K. Kolezhuk, Phys. Rev. B 68, 052401
�2003�.

14 G. Fáth and J. Sólyom, Phys. Rev. B 51, 3620 �1995�.
15 Ö. Legeza, G. Fáth, and J. Sólyom, Phys. Rev. B 55, 291 �1997�.
16 N. Kawashima, Prog. Theor. Phys. Suppl. 145, 138 �2002�.
17 A. Läuchli, G. Schmid, and T. Trebst, cond-mat/0311082 �unpub-

lished�.
18 S. R. White, Phys. Rev. Lett. 69, 2863 �1992�; Phys. Rev. B 48,

10345 �1993�.
19 Ö. Legeza, J. Röder, and B. A. Hess, Phys. Rev. B 67, 125114

�2003�.
20 Ö. Legeza, and J. Sólyom, Phys. Rev. B 70, 205118 �2004�.
21 S. R. White, Phys. Rev. Lett. 77, 3633 �1996�.
22 E. S. Sorensen and I. Affleck, Phys. Rev. Lett. 71, 1633 �1993�.

BUCHTA et al. PHYSICAL REVIEW B 72, 054433 �2005�

054433-6


