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We discuss the coherent behavior of a polarized, nuclear or electron, spin system for which the magnetic
dipole radiation emitted in the radio-frequency region, has approximately quadratic dependence on the number
of spins. An effective method of describing these phenomena is provided by computer simulation of a micro-
scopic model of the spin system. Important aspects of this numeric simulation are described, together with a
comparison with the theoretical predictions. The behavior of the transverse component of the magnetic mo-
ment, M+�t�, in super-radiant conditions is studied. In addition, the role of dipole-dipole interactions in super-
radiation phenomena is investigated in detail. It is shown that some important features of super-radiation
cannot be described with the Bloch equations.
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I. INTRODUCTION

One of the manifestations of the phenomenon of super-
radiation �SR� is that the radiation intensity can be N times
the incoherent radiation from a system of N radiators. The
properties of such coherent effects in optics, for example,
super-fluorescence, super-luminescence, collective induction
and photon echo, have been extensively studied.1 An effect
similar to optical super-fluorescence, but in the radio-
frequency region, is much less well known. It is this SR
phenomenon which is the topic of this study.

Although this phenomenon is very similar to optical
super-fluorescence, the physics governing SR in nuclear or
electron spin systems is very different and is more naturally
described using traditional magnetic resonance �MR� meth-
ods. Magnetic resonance methods are well understood �for
example Abragam and Goldman’s book2� and were first ap-
plied to this SR phenomenon in Refs. 3 and 4. From a physi-
cal standpoint, the main difference between SR from nuclear
or electron spin systems and the SR in optical case is that the
radio-frequency wavelength is much longer than the size of
the system so that propagation effects do not play a role.
Bloembergen and Pound investigated5 the collective behav-
ior of a system of nuclear spins under the influence of a
resonator feedback field and showed that the relaxation time
of nuclear induction can become much shorter than the spin
dephasing time. Although they considered collective induc-
tion, rather than SR, their results were later used to argue that
it might be experimentally possible to obtain a measurable
SR signal using the resonator feedback field. A SR signal
was indeed successfully observed experimentally for several
spin systems by, for example, Bosiger et al.6 and Kiselev et
al.7 Some recent studies of SR are described in Ref. 8.

In experiments measuring SR from nuclear spins,7 the
super-radiance from protons in propandiol �C3H8O2� was de-
tected. The sample was kept at a temperature of about 0.1 K
in a magnetic field, H0�2.6�104 G. The proton spins were
dynamically polarized by imposing a high-frequency mag-
netic field on the wing of the EPR resonance line of low

concentration Cr5+ ion impurities in the propandiol. Due to
energy exchange with the electron spin system of paramag-
netic ions, the proton spin system dynamically cools, thus
achieving a large polarization. In these experiments, after
cooling, the material is frozen at a temperature of about 5
�10−2 K, which corresponds to a proton polarization of
about 90%. At this temperature the spin-lattice interaction is
very weak, the relaxation is very slow and the polarization
lifetime is measured in tens of hours. Prepared in such a way,
the polarized sample �with a volume of about 0.5 cm3� is
placed in a passive resonant electric coil and a strong perma-
nent magnetic field, H0, directed antiparallel to the total mag-
netic moment of the sample. In this way, the spin system is
prepared in an inverted, strongly nonequilibrium state. SR is
observed when the proton Larmor frequency, �0, is equal to
the resonant frequency of the passive resonant coil, �c
�108 Hz �radio-frequency region�. For large polarizations a
sharp SR peak is observed due to feedback from the passive
resonant coil, while the nuclear spins coherently flip to the
equilibrium state.

References 3, 4, and 9 describe numeric simulations based
on a microscopic description of this type of SR from a ho-
mogeneous spin system. One of the results of these numeri-
cal calculations is that if the SR delay and pulse times are
short enough, dipole-dipole interactions play a very weak
role in observable phenomena. If dipole-dipole interactions
are ignored, the behavior of the system is governed by the
interaction of the spins with the external magnetic field and
the external circuit. The precession of the spins about the
external magnetic field takes place on a time scale dependent
on the magnitude of the field. Whereas the interaction of the
spins with the external circuit takes place on a time scale
longer or shorter than the first scale, depending on the initial
parameters.

Section II of this article briefly describes the microscopic
model of a system of spins which forms the basis of our
numeric simulation and phenomenological approach. In Sec.
III, dipole-dipole interactions are incorporated into the single
particle model by including transverse Bloch damping terms
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into the equation of motion of the system. Methods of
achieving a desired initial distribution of spins, and the use
of parallel computing architecture in the numeric simulation
are described in Sec. IV. In Sec. V theoretical predictions are
compared to results of the numeric simulation. Particular at-
tention is paid to the behavior of the transverse component of
the magnetic moment, since this is a critical quantity in mag-
netic resonance experiments.

II. MICROSCOPIC SPIN MODEL

Consider a system of N spins whose sites are enumerated
by the index i=1,2 , . . . ,N. The spin operator si corresponds
to the effective spin s=1/2 of the paramagnetic ions �or
nuclei� at the nodes of a regular rigid simple-cubic lattice.
The dipole interaction of spins has the form

Hij =
�i� j

rij
3 −

3��i · rij��� j · rij�
rij

5 , �1�

where rij =ri−r j, rij = �rij� and the magnetic moment �i=�si,
where �=�� and � is the gyromagnetic ratio ���0 for pro-
tons, ��0 for electrons�.

The system is under the influence of a constant external
magnetic field H0. Including a passive electric resonant cir-
cuit, tuned to the Zeeman frequency, �0=�H0, the system
also feels an additional magnetic field Hres, induced by the
rotating spins of the system. The coupling of the spin system
with the external circuit causes a rapid coherent relaxation of
the nonequilibrium state that produces a SR pulse. The emf
and magnetic field induced in the circuit are classical mac-
roscopic quantities due to the collective action of all the
spins in the system. The emf is given by

Uind = −
1

c

d	

dt
= −

1

c

d

dt
�4
�n�

l
�

i

N

�si� · ec	
= −

4
�An�

cV

d

dt�i

�si� · ec, �2�

where �¯� represents the statistical average, corresponding
to the mean polarization of the spin system at a particular
temperature;10 n is the number of turns in the circuit with
cross section A, volume V, and length l. ec is a unit vector in
the direction of the axis of the circuit and � is the filling
factor of the coil ���1�. The magnetic field induced in the
circuit is then given by

Hres =
4


c

n

l
j =

4


c

n

l

Uind

R
= − �4


c
	2n2��

l2R

d

dt�i

�si� · ec,

�3�

where R is the resistance and j the current in the circuit. The
inductance and the quality factor of the circuit are, respec-
tively, L=4
n2A / lc2 and Q=�L /R. We imply that the circuit
frequency �= �LC�−1/2 is in resonance with the Zeeman fre-
quency, �=�0. With the coil axis orthogonal to the constant
field H0 and taken along ex, the induced magnetic field can
be written

Hres = Hresex = −
2g

�
ex

d

dt�i

�si
x� , �4�

where

g =
1

2
�4


c
	2�n

l
	2���

R
. �5�

g is a measure of the coupling between the spin system and
the resonant circuit. With n / l=104 m−1, R=10 � �values
similar to those of Kiselev7�, g is approximately 10−20 for
electrons and 10−25 for protons. As will be shown later, the
product gN, where N is the number of spins in the system, is
critical in determining the behavior of the system. For a
sample of containing 1022 spins, gN has the value 10−3 for
protons and 102 for electrons.

Ignoring inhomogeneous widening, the total Hamiltonian
of the system has the form

Ĥ = − �H0�
i

si
z −

1

2
�Hres�

i

�si
+ + si

−� + Ĥd, �6�

where the dipole-dipole interaction Hamiltonian is given by

Ĥd =
1

2�
i�j

aij�si

zsj
z −

1

2
si

+sj
−	 + 2cijsi

+sj
z

+ 2cij
* si

zsj
− + eijsi

+sj
+ + eij

* si
−sj

−� , �7�

s±=sx± isy, and the coefficients aij, cij, eij are

aij =
�2�2

rij
3 �1 − 3 cos2 ij� ,

cij = −
3�2�2

4rij
3 sin 2ij exp�− i�ij� ,

eij = −
3�2�2

4rij
3 sin2 ij exp�− 2i�ij� . �8�

In MR applications solutions are typically obtained via
perturbation theory based on the �small� quantity �Hloc /H0�,
where Hloc represents the local magnetic fields.2 However,
coherent effects are described by nonlinear equations for
which the perturbation method is not applicable. In this case,
the equations of motion must be solved using the total
Hamiltonian �6�, rather than only the secular terms �those
including aij� of dipole-dipole interactions.

Using the Heisenberg equations of motion for the spin

operators, i��d /dt�si
�= �si

� ,Ĥ, performing commutations
and replacing spin operators with index j with their classical
averages, we obtain

i
dsi

z

dt
= −

g

2
�si

− − si
+�

d

dt��
j

�sj
− + sj

+�� +
1

�
�

j��i�

aij

4
�si

−�sj
+�

− si
+�sj

−�� + �cijsi
+ − cij

* si
−��sj

z� + eijsi
+�sj

+� − eij
* si

−�sj
−�� ,

�9�
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i
dsi

−

dt
= − �0si

− − gsi
z d

dt��
j

�sj
− + sj

+�� +
1

�
�

j��i�

aij

2
�si

z�sj
−�

+ 2si
−�sj

z�� + cij�si
−�sj

+� − 2si
z�sj

z�� + cij
* si

−�sj
−�

− 2eijsi
z�sj

+�� �10�

and the conjugate of Eq. �10�. These equations describe the
evolution of spin si in the mean field of the other spins, s j.
They can also be obtained from Eq. �7� replacing a product
of two operators, AB⇒ �A�B+A�B�− �A��B�, equivalent to
the mean-field approximation.

III. THE ROLE OF DIPOLE-DIPOLE INTERACTIONS

The realization of equilibrium of a system of spins can be
conveniently described in two distinct stages. First, the Zee-
man �in the field H0� and dipole-dipole subsystems form,
each with a characteristic, distinct, temperature. In the sec-
ond stage these two subsystems exchange energy finally
reaching thermodynamic equilibrium with a common spin
temperature. This stage is described by Provotorov’s
equations;11 the characteristic time for this evolution being
approximately the dipole-dipole interaction time, Td. Clearly,
dipole-dipole interactions play a central role in this process.
However, for times much shorter than Td, it is well known2

that dipole-dipole interactions play a very weak role in ob-
servable macroscopic magnetic resonance phenomena such
as the time evolution of the total magnetization of a sample.
Thus, if SR delay and pulse times are much shorter than Td,
dipole-dipole interactions may be neglected in describing SR
which results in a rapid inversion of the total magnetization.

Solving Eqs. �9� and �10� by means of numeric simula-
tion, it can also be shown that neglecting the dipole-dipole
interaction terms gives practically the same results for mac-
roscopic quantities such as the total magnetization and the
intensity of magneto-dipole radiation as solving the equa-
tions directly. In contrast, at longer time scales, dipole-dipole
interactions, in particular the nonsecular terms, play a critical
role in establishing the equilibrium of such a system.

Regarding the role of dipole-dipole interactions, it is im-
portant to note that we are not considering the situation
where the total polarization vector is initially in exactly the
same direction as H0. In these cases dipole-dipole interac-
tions can play an important role in the evolution of the po-
larization vector at the very beginning of the process.8 To
describe the process in simple terms, the evolution of the
angle , between the macroscopic magnetization M and H0,
can be written12

tan


2
= tan

�0�
2

e−t�/2,

where t�=�0t /� ���1/gN, see below�. If the magnetiza-
tion vector initially makes a small angle 
−�0� with H0

�where =
 corresponds to the unstable state�, then

tan

 − 

2
�

1

2
�
 − �0��et�/2

and the time of deviation from the initial direction rises loga-
rithmically as ln�
−�0�� as 
−�0� decreases. For �

−�0���0.10, the time to reach =
 /2 is given by t��20
�in units of the characteristic SR time Tc�� /�0�. In this
time period, transverse relaxation weakens the SR pulse
making it more difficult to observe.

However, in a typical MR experiment, such as that of
Kiselev,7 the directional accuracy of the magnetization vec-
tor is at best several degrees, meaning that there will always
be a significant initial deviation from the direction H0.
Therefore, in these circumstances, if the SR delay and pulse
times are much shorter than the characteristic dipole-dipole
interaction time, we may safely neglect dipole-dipole inter-
actions when describing the time evolution of the SR pro-
cess. However, it should be noted that even in this case the
behavior of the individual spins are not independent; they
interact with each other via the induced feedback magnetic
field of a resonator.

It is helpful to present a simple analytical discussion when
dipole-dipole interactions are neglected. In this case the sys-
tem of Eqs. �9� and �10� and the conjugate of Eq. �10� be-
come

i
d

dt
si

+ = �0si
+ + gsi

z�
j

d

dt
�sj

− + sj
+� ,

i
d

dt
si

− = − �0si
− − gsi

z�
j

d

dt
�sj

− + sj
+� ,

i
d

dt
si

z = −
1

2
g�si

− − si
+��

j

d

dt
�sj

− + sj
+� . �11�

Performing statistical averaging and summing over all spins
in the system, using the notation S+= �1/N��i�si

+�, S−

= �1/N��i�si
−�, Sz= �1/N��i�si

z�, the above system of equa-
tions can be solved algebraically for the time derivatives giv-
ing,

i
d

dt
S+ = S+ −

1

i
gNSz�S− − S+� ,

− i
d

dt
S− = S− +

1

i
gNSz�S+ − S−� ,

d

dt
Sz =

gN

2
�S− + S+�2, �12�

where the time scale has been renormalized by setting t
= t /�0.

It is clear from �12� that the behavior of the system is
highly dependent on the value of gN. When gN�1 it is
dominated by the interaction of the spins with external mag-
netic field. In contrast, if gN�1 the dominant interaction is
that of the system with the resonant circuit. Alternatively, if
we write the initial magnetization as M0=�NL���, where �
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=�H0 /kbT, T is the temperature of system, kb is the Boltz-
mann constant and L���=coth �− �1/�� is the classical
Langevin function, then the feedback field becomes, Hres

=−�1/��M0�Ṁx,
12 where � is related to gN via �

=1/gNL. It is clear that the value of � determines the char-
acteristic of the motion. For ��1, the tuned coil scenario is
forbidden, the motion being aperiodic rather than oscillatory.
The characteristic scale of the variation of Mx with respect to
t� is found to be of order � /�H0 and the ratio of the energy
of interaction of M with the fields H0 and Hres is H0 /Hres
��2�1/N2. On the other hand, if ��1, the motion is pe-
riodic with frequency �0=�H0, the characteristic scale of the
variation of Mx with respect to t� is of order 1 /�H0 and
H0 /Hres���1/N. The set of parameters, R=3 ohm, w
=5 cm−1, N�5�1023, H0=0.25�105 G and T=0.3 K, as
used in the NMR experiment of Kiselev et al.,7 gives �
�6000, corresponding to gN�1. Thus, the condition gN
�1 can be satisfied for some systems of proton spins or a
relatively small system of paramagnetic spins.

The method of multitime scales provides a standardized
approach to deal with this type of system. It allows the con-
sideration of slow motion in any order through a series ex-
pansion in powers of a small parameter. In this case the
parameter is the ratio of the characteristic times of slow mo-
tion �relaxation with times Tc and Td� and fast motion �rota-
tion time about the field H0�. Expanding S+, S−, Sz and the
operator of the derivative d /dt in powers of gN, we obtain

d

dt
=

d

dt0
+ gN

d

dt1
+ ¯ , S+ = S0

+ + gNS1
+ + ¯ ,

S− = S0
− + gNS1

−
¯ , Sz = S0

z + gNS1
z + ¯ . �13�

In “zeroth” order, where all terms involving gN can be ig-
nored, Eq. �12� describe the simple rotation of the magnetic
moment around the external field, H0,

S0
+ = A exp�− it0�, S0

− = B exp�it0�, S0
z = C , �14�

where A ,B ,C may be functions of the times t1 , t2 , . . . ,, but
not t0 which corresponds to the Zeeman frequency �0. In-
cluding terms linear in gN, Eqs. �12� may be written,

i
d

dt0
S1

+ − S1
+ = − i� d

dt1
A	exp�− it0� −

1

i
C�A exp�− it0�

− B exp�it0�� ,

− i
d

dt0
S1

− − S1
− = i

d

dt1
B exp�it0� +

1

i
C�B exp�it0�

− A exp�− it0�� ,

i
d

dt0
S1

z =
d

dt1
C +

1

2
�B exp�it0� − A exp�− it0��2, �15�

where S0
+, S0

−, and S0
z have been substituted from Eq. �14�.

Equations �15� are nonhomogeneous first order differential
equations. If such equations include terms with the same
exponents as the exponents which are solutions of the homo-
geneous equations, then the nonhomogeneous solutions are

divergent as t0 becomes large. For physical, nondivergent,
solutions we require these terms be zero, leading to the first
two of the following equations:

d

dt1
A = CA,

d

dt1
B = CB,

d

dt1
C = − AB . �16�

The third of Eqs. �16� is obtained by averaging over t0, as-
suming Si

z is independent of t0. Making use of the fact that A
and B are complex conjugates, A=x+ iy, B=x− iy, and writ-
ing C=z we obtain

d

dt1
x = xz,

d

dt1
y = yz,

d

dt1
z = − �x2 + y2� . �17�

Solving for z, gives

z = c1
c2 − e2c1t1

c2 + e2c1t1
, �18�

where c1 and c2 are constants, defined by the initial condi-
tions of the system. With z�0�=z0 and �d /dt1�z�0�=−�x0

2

+y0
2�, where x0, y0, z0 are the initial components of the total

magnetic moment, the constants c1 and c2 are given by

c1
2 = z0

2 + x0
2 + y0

2,

c2 = −
�z0 + �z0

2 + x0
2 + y0

2�2

x0
2 + y0

2 . �19�

Assuming an initial polarization making a small angle with
the z axis, and having x and y components small compared to
the z component, the time taken for the polarization of the
system to reach zero is given approximately by Eq. �18�,
when z�t1��0,

t1 =
ln�− c2�

2c1
. �20�

This time is characteristic of the interaction between the spin
system and the external coil. Reverting back to conventional
units from the dimensionless t1 we find

t =
ln�− c2�

2c1gN�0
. �21�

Using z0=0.475 �this value corresponds to a polarization of
0.95 for spin 1/2�, x0=y0=0.01, �0=108 Hz and the charac-
teristic value for a nuclear spin system from Sec. II, gN
=10−3, the time for the polarization to reach zero is about
10−4 s.

The intensity of magneto-dipole radiation is given by

I =
2

3c3 �M̈�2, �22�

where M=��i�si� is the total magnetic moment of the sys-
tem. Using the derivative operator introduced in Eq. �13� the
maximum value of SR intensity can be written as a series in
powers of gN,
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I = �N2�0
4��1 + �1�gN�2 + ¯ � , �23�

where �1, �1, are coefficients which depend on the constants
c1 and c2, which in turn depend on the initial parameters of
the spin system. The results of the numeric simulation de-
scribed in Sec. V are in good agreement with this prediction
when gN�1.

When the dominant interaction of the spins is with the
resonant circuit rather then the external magnetic field, gN
�1. In a similar manner to Eq. �13�, S+, S−, Sz and the
derivative operator may be expanded in powers of 1 /gN,
rather than gN. In this case, t0 is not associated with Zeeman
oscillations, but with the interaction of the spins and the coil.
Under these circumstances the characteristic time for this
process is much shorter than that of the Zeeman oscillations.
However, the mean-field approach, which forms the basis of
any analysis of this type, requires that the time scale for all
other processes be significantly longer than that of Zeeman
oscillations.10 Therefore, when gN�1, this method cannot
be used to describe the behavior of such a system of spins.

The single particle approach is retained in the presence of
dipole-dipole interactions by including transverse Bloch
damping terms in the equation of motion of the magnetic
moment of the system. These equations lead to the solution12

�2 =
�2

cosh2� 1

2
�t� +

1

2
ln

� + 2
�

�2

+ cos �0�

� − 2
�

�2

− cos �0��
, �24�

where the function ��t� is defined through the relations
� cos �=Mx /M0 ,� sin �=My /M0 ,nz=Mz /M0, M0 is the
magnitude of M at t=0; nz=�2 /2.

In Eq. �24�,

� =�1 + 4
�

�2
cos �0� + 4

�2

�2
2 , � = 1/gNL, �2 = �0T2,

where T2 is transverse relaxation Bloch time. In this case the
intensity is given by

I =
2

3c3�0
4M0

2�2. �25�

This expression is similar in form to the theoretical predic-
tion for the intensity of super-radiation in optical region.13

The relative importance of dipole-dipole interactions and
interaction with the resonant coil is determined by the mag-
nitude of � /�2. If dipole-dipole interactions dominate,
� /�2�1, and the expression for intensity, Eq. �25�, becomes

I =
32

3c3�0
4M0

2 sin2 �0�e−�2�t�/�2�. �26�

On the other hand, if the interaction with the resonant coil is
dominant, � /�2�1. In this case, if the initial deviation angle
�0��
 /2, I�t� has a maximum, the magnitude of which

decreases as the field of the resonant coil decreases, equiva-
lent to the effect of increasing temperature. This maximum
disappears when � /�2�− 1

2 cos �0�.
When the angular deviation of the single particle mag-

netic moment from its equilibrium position is small, the be-
havior of the system may be described via a “linear re-
sponse” approach12 instead of including Bloch damping. In
this case the resonant line shape is given by,

g̃��� =
1



�

0

�

e−i�tG�t�dt , �27�

where G�t�, the free induction decay function, important in
magnetic resonance experiments, is defined through

M+ = M0�e−i�0tG�t� , �28�

with M+=Mx+ iMy =��i�si
x+ isi

y�. g̃��� may be determined
from the relationship,

1

g̃���
=

1

g̃0���
+ 
�1

�
− i�	 , �29�

where � is a constant whose value depends on the initial
parameters of the system, g̃0��� is the resonant line shape
function when the resonant circuit is not present and � is the
time delay,

� = �/�0. �30�

It is seen from �30� that ��1/N. Comparison of this theo-
retical prediction and the results of our numeric simulation
are presented in Sec. V.

IV. NUMERIC SIMULATION

The summations in Eqs. �9� and �10� are limited to the
N−1 nearest spins. In order to ensure that each spin in our
cubic lattice has the same number of neighbors we adhere to
the common practice in the modeling of such systems14 of
requiring periodic boundary conditions. For a cube of side L,
centered at the origin, with vectors L1, L2, and L3 defined by
L1= �L ,0 ,0�, L2= �0,L ,0�, and L3= �0,0 ,L�, the boundary
conditions are given by,

s�x� = s�x ± L��, � = 1,2,3,

for any point x. The results of the modeling of spin systems
over short time periods is known to be insensitive to the
number of spins,16,17 thus reducing the possible effect of re-
quiring periodic boundary conditions.

It is not feasible to diagonalize the quantum Hamiltonian
for spin systems of the size being considered in this analysis.
However, for such cases, a methodology in which each spin
is considered a “classical spin” is commonly applied. For-
mally, this is equivalent to taking the limits s�1 and �→0
such that �s remains constant. Therefore, following the work
of many others, in our numeric simulation we will follow
this approach. In this case, the system is described by 3N
differential equations representing these classical spins �Eqs.
�9� and �10� and the conjugate of Eq. �10�. Numerical simu-
lations for “classical” spin systems have been used by many
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authors to investigate topics such as MR line shapes and free
induction decay,15,18 spin diffusion,16 and spin glasses.17 In
those situations where a quantum phenomenological ap-
proach is feasible, such as the method of moments or the
truncated dipolar interaction approximation, the results of
such quantum methods are qualitatively similar to the clas-
sical methodology and both are in agreement with experi-
ment. There is particularly good agreement over the time
scales involved in this study. In calculating the central mo-
ments, up to M8, Jensen and Hansen18 found that the classi-
cal spin approximation provides an accurate description of
NMR line shapes. In addition, Tang and Waugh19 showed
that the free induction decay process calculated numerically
for a system of 729 classical spins is in good agreement with
experiment. Our analysis involves a system of nuclear spins
occupying every lattice site �maximum possible spin den-
sity�, identical to the systems studied in the previous two
references. The condition for the time evolution of large
groups of spins to behave in a similar manner is that the
collective radiation wavelength is much larger than the sepa-
ration of the individual spins, which is always valid for NMR
radio-frequency wavelengths.

In classical spin methodology spins are treated as classical
vectors, whose initial distribution defines the initial condi-
tions of the differential equations which describe the behav-
ior of the spin system. The initial spin distribution can be
defined via the Boltzmann energy distribution,

F�cos � =
�

2 sinh���
e�−� cos �, �31�

where  is the angle between the direction of spin and the
direction of the magnetic field and �=�H /kbT is determined
by the desired initial polarization of the system. In our com-
puter simulation we start with the uniformly distributed ran-
dom quantity x=cos , in which case the function

F�x� =
�

2 sinh����−1

x

e�−�x��dx� =
1

2 sinh���
�e�x − e−��

�32�

gives the Boltzmann distribution.
The initial spin distribution can also be assigned by a

Monte Carlo technique similar to the procedure of Metropo-
lis et al.20 This technique considers the overall spin polariza-
tion of the sample which is related to the temperature
through the Langevin formula

p = coth��� − 1/� . �33�

A random configuration of spins �si�i=1
N is taken as the first

member of a Gibbs ensemble of spin arrays and its polariza-
tion pinit, is evaluated. A new direction is chosen randomly
for an arbitrary spin and the new total polarization p�, is
calculated. If �p= �p�− p0� is less than �pinit= �pinit− p0�,
where p0 is the desired initial polarization of the system, the
array with the changed spin is chosen as the second member
of the Gibbs ensemble; if it is not rejected. This procedure is
repeated until an array of spins is achieved whose polariza-
tion is very close to p0. The array so obtained is taken as the
initial spin distribution of the system. In this analysis we set

the maximum possible value of the desired initial polariza-
tion p0, to be unity.

A probability distribution similar to that of the Boltzmann
distribution can be obtained using the Metropolis method.
We have been unable to find the details of this method pub-
lished elsewhere. Therefore, we present our technical details
in the hope that they may prove useful for others involved in
the simulation of spin systems.

After the �n+1�th step, the probability that the z compo-
nent of the jth spin is between y and y+dy is given by

dpj
n+1�y� = dpj

n�y��N − 1

N
+

1 + y

2N
	

+
1

N
�

−1

y

dpj
n�y1�

1 − y1

2

dy1

1 − y1
. �34�

The first term represents the case in which there is no change
in the z component since a different spin is selected. The
second term describes the case in which the new z compo-
nent is smaller. The third term describes the case of a larger
z component. Introducing the function f ,

dpj
n�y� = fndy ,

we may write

fn+1�y� =
1

N
�N +

y − 1

2
	 fn�y� +

1

2n
�

−1

y

dy1fn�y1� . �35�

Assuming the number of required steps is very large, n may
be considered a continuous variable. With t=n /N, Eq. �35�
can be written for the function f�t ,y�,

�2f

�t�y
=

y − 1

2

�f

�y
+ f . �36�

The boundary conditions on f are

f�0,y� =
1

2
,

�f�t,− 1�
�t

= f�t,− 1�,
�f�t,1�

�n
=

1

2
,

which become

f�0,y� = 1
2 , f�t,− 1� = 1

2e−t, f�t,1� = 1
2 �1 + t� . �37�

Performing a Laplace transformation of function f over vari-
able t gives

s
�f�s,y�

�y
=

y − 1

2

�f�s,y�
�y

+ f�s,y� , �38�

the solution of which is

f�s,y� =
c�s�

�y − 1 − 2s�2 . �39�

Applying the boundary conditions �37�, followed by the in-
verse transformation, gives

f�t,y� =
1

2
e�t/2��y−1��1 +

t

2
�1 + y�	 , �40�

the probability distribution for the Metropolis method.
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The probability distributions for the Boltzmann and Me-
tropolis methods are compared in Fig. 1. In this figure the
probability distributions for both methods are plotted versus
the �normalized� z component of a particular spin when the
initial polarization is 30%. An initial polarization of approxi-
mately this value leads to the largest discrepancy between
the two probability distributions. Nevertheless, even in this
case, the distributions are similar enough that we can be
confident that either method will lead to an appropriate initial
spin distribution.

Using the Metropolis method the polarization of the sys-
tem is defined by

p = �
−1

1

yf�t,y�dy =
�2 + t2 − 2t − 2e−t�

t2 . �41�

For a given polarization, �41� allows us to determine the
parameter t and therefore the number of steps needed to
reach the desired initial distribution of spins. In Fig. 2 the
parameter t, the ratio of the number of required steps to the
number of spins in the system, is plotted versus the required
polarization. For the Boltzmann method the number of steps
is exactly equal to the number of spins in the system. There-
fore, from Fig. 2 it is clear that for an initial spin distribution
requiring a large polarization the Boltzmann method will re-
quire significantly fewer steps. For this reason we use the
Boltzmann method to determine initial spin distributions in
our numeric simulation.

The time evolution of any spin system clearly depends on
the initial configuration of the spins, but there are many dif-
ferent initial spin configurations which correspond to a spe-
cific initial polarization of the system. Therefore, in order to
describe the time evolution of a system of particular polar-
ization, it is appropriate to obtain a thermodynamic average
over the canonical ensemble of initial spin configurations
having the same initial polarization. Each member of the

ensemble is a solution of Eqs. �9� and �10�, completely inde-
pendent of any other solution. This independence means that
thermodynamic averaging can most efficiently be achieved
by allowing each processor in a multiprocessor architecture
to determine the numeric solution of a different initial con-
figuration in parallel. In the next section the results of our
numeric simulation are compared with theoretical predic-
tions. The numeric simulation curves in the figures describ-
ing the time evolution of various parameters of the spin sys-
tem all represent an average over 500 initial spin
distributions obtained using a multiprocessor parallel archi-
tecture described above. Each initial spin distribution is cre-
ated via the Boltzmann method described above.

V. COMPARISON OF NUMERIC SIMULATION AND
THEORETICAL PREDICTIONS

The role of dipole-dipole interactions in determining the
behavior of a system of spins has been investigated by ap-
plying our numerical simulation to a system of 1331 spins
�11�11�11�, including and excluding dipole-dipole inter-
actions. In Sec. III, the characteristic time for the polarization
of the system to reach zero, given by Eq. �30�, which also
characterizes the time taken to reach maximum SR intensity,
is seen to depend on three parameters: the external field �0,
the coupling constant g, and number of spins in the system
N. With the number of spins in the system fixed, we can alter
this characteristic time by adjusting the values of �0 and g in
our simulation. Figures 3�a�–3�d� display the time evolution
of the normalized SR intensity for four different values of
this characteristic time. In each figure there are two curves
representing the spin system with and without dipole-dipole
interactions. In the units employed in this simulation the
characteristic time for dipole-dipole interactions is of order
unity. It is clear from the figures that as the time taken for the
SR intensity to reach its maximum value increases, the dis-
parity between the curves including and excluding dipole-
dipole interactions also increases. Therefore, as expected,

FIG. 1. Normalized z component of spin polarization versus
probability distribution for the two methods of obtaining the initial
spin distribution. Solid line, Metropolis method; dashed line, Bolt-
zmann method.

FIG. 2. Desired polarization versus the ratio of the number of
steps to the number of spins, for the Metropolis method of obtaining
an initial spin distribution.
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when the time taken for the SR intensity to reach its maxi-
mum value, or equivalently the time taken for the polariza-
tion of the system to reach zero, is comparable or shorter
than the characteristic time for dipole-dipole interactions,
dipole-dipole interactions do not play a significant role and
can be neglected in numeric simulations.

In Sec. III, the Bloch relaxation method was used to ob-
tain an expression for ��t�, �24�, as a function of the initial
angle �0�, between the magnetic moment M and the direc-
tion of the external field H0. Note that ��t� is proportional to
M+�t�, where M+=��i�si

x+ isi
y�. In the numeric simulation

M+�t� at arbitrary �0� is obtained by solving Eqs. �9� and
�10� in the coordinate system which rotates about the mag-
netic field with the spin precession frequency. In this system,
if an additional coil is placed orthogonal to the original coil,
cylindrical symmetry is achieved, eliminating the �0 depen-
dent terms in �9� and �10�. With these terms eliminated, the
time dependence of M+�t� can be found from the numeric
simulation using an integration step size �0 times larger
without compromising accuracy and stability. The only sig-
nificant effect of including an additional coil is a factor of 2
increase of the interaction with the spin system, such that the
dimensionless parameter � is redefined as �=1/2gNM0.
Since Bloch relaxation methodology is most reliable at high
spin temperature, the numeric simulation and theoretical pre-
diction are compared at a Boltzmann factor �H /kbT, of ap-
proximately unity, corresponding to an initial polarization of
0.3 �60%�. A system of 343 �7�7�7� spins is simulated
with the coupling constant g=0.0001; the value of g chosen
to be large enough to ensure spin inversion when �0��
,
but not so large that there is no difference between neglect-
ing and including dipole-dipole interactions.

Figure 4�a� compares the time dependence of
M+�t� /M+�0� using the Bloch relaxation method with the re-

sult of the numeric simulation for �0�=2.7 radians �155°�,
under conditions when dipole-dipole interactions can be ne-
glected. M+�t� from the Bloch relaxation method is obtained
through ��t� from Eq. �24� by allowing the Bloch relaxation
time T2, to become very large. The numeric simulation curve
represents an average over 500 different initial spin configu-
rations, each with the same initial polarization of 0.3. As
indicated in the previous section, a multiprocessor comput-
ing architecture allowed us to consider such a large number
of initial spin configurations. It can be seen from the figure
there is good agreement between the theoretical prediction
and the numeric simulation. The two curves reach their
maxima at almost exactly the same time, although there is a
slight difference in the magnitude of the maxima.

Figures 4�b�–4�d� compare the time dependence of
M+�t� /M+�0� using the Bloch relaxation method with the re-
sult of the numeric simulation when dipole-dipole interac-
tions are included. Under these conditions the Bloch relax-
ation time T2, is of order unity. For each value of �0� there
is a corresponding specific value of T2 which produces the
best agreement between the theoretical prediction and the
numeric simulation. The curves shown in Figs. 4�b�–4�d�
represent three different values of �0�; in each case the the-
oretical curve is calculated with T2=1.45, the value of T2
which gives the best overall agreement. As in the case when
dipole-dipole interactions are ignored, each numeric simula-
tion curve represents an average over 500 different initial
spin configurations having the same initial polarization of
0.3. When comparing the theoretical and numeric simulation
curves it is important to realize that Bloch relaxation theory
cannot reproduce the secondary maxima generated by the
numeric simulation. Therefore, a meaningful comparison
should be limited to the location �in time� and magnitude of
the first peak in M+�t� /M+�0�. Nevertheless, these figures

FIG. 3. Numeric simulation results of SR intensity ration
I�t� / I�0� as a function of dimensionless time for different values of
the spin inversion time. Solid line, dipole-dipole interactions ne-
glected; dashed line, dipole-dipole interactions included. Four dif-
ferent spin inversion times are displayed, corresponding to different
pairs of values of g and �0. Initial polarization is 0.475�95%� in all
cases. �a� g=0.0001, �0=200; �b� g=0.00002, �0=200; �c� g
=0.00007, �0=40; �d� g=0.00004, �0=40.

FIG. 4. M+�t� /M+�0� as a function of dimensionless time. Solid
line, Bloch relaxation theoretical prediction; dashed line, numeric
simulation. �a� Dipole-dipole interactions neglected; �0=200, initial
polarization=0.3, initial angle between magnetic moment and the
external field �0�=2.7 radians �155°�: �b�–�d� Dipole-dipole inter-
actions included, �0=200, initial polarization 0.3; �b� �0�
=2.9 radians �166°�; �c� �0�=2.7 radians �155°�; �d� �0�
=2.5 radians �143°�.

DAVIS et al. PHYSICAL REVIEW B 72, 054406 �2005�

054406-8



show that Bloch relaxation provides a qualitative description
of this non-equilibrium system.

In Sec. III the linear response method is described, by
which the resonant line shape g̃��� may be obtained when
the single particle magnetic moment deviates by a small
angle from its equilibrium position. Figure 5 compares the
numeric simulation of g̃��� with the linear response predic-
tion from Eq. �29�. The g̃0��� in �29� is obtained from the
numeric simulation without including the resonant coils. The
two curves in Fig. 5 are in good agreement demonstrating the
consistency of our numeric simulation.

Another peculiarity of SR phenomena is the presence of
secondary maxima in the amplitude of the transverse magne-
tization �=��Mx

2+My
2� /M0, Fig. 6. The quantity �2 is pro-

portional to the radiation intensity,12 which also exhibits sec-
ondary maxima, Fig. 7. It is seen that secondary maxima are
easier to observe in the transverse magnetization �. Note that
the maximum in � for large t corresponds to the maximum in
the Fourier transform of the free induction decay function,

g̃���, commonly used in magnetic resonance applications. A
hint of the secondary maximum is seen in Fig. 5 for g���
=Re g̃��� at small �=�−�0 �� measures the departure from
resonance�. All these maxima disappear if the initial devia-
tion of the magnetic moment from its equilibrium position
along the z axis, �0�, is far from 
 �in Figs. 6 and 7 the
value of this angle is 172°�. To our knowledge, the phenom-
enon of secondary maxima, both in transverse magnetization
and radiation intensity has not previously been reported.
There is no analogy between this effect and spin-echo since
our situation does not involve external pulses.

As well as the numeric simulation, Fig. 7 shows the quan-
tity �2 for the Bloch solution, in which ��1/cosh��t
− t0� /��. It can be seen that the Bloch solution describes
qualitatively the shape of the radiation intensity and is in
good quantitative agreement with the numeric simulation
during the initial stage of the process. However, at later
stages, when dipole interactions are important �they are less
significant when the radiation peak occurs at very short
times, t�T2�, it is not adequate even in the region of the
primary maximum and, of course, it does not exhibit second-
ary maximum.

VI. CONCLUSION

We have investigated several aspects of the coherent be-
havior of a system of polarized spins where magnetic dipole
radiation is emitted in the radio-frequency region. The radia-
tion intensity is proportional to N2, the characteristic SR time
�=� /�0�1/N. The peak of the intensity is sharper the
shorter the delay time and its width increases as the delay
time increases �compared to Td�.

The Bloch relaxation method has been used to describe a
spin system when dipole-dipole interactions are included. In
this case, the time evolution of the magnetic moment of the
system can be determined as a function of the initial angle
between the magnetic moment and the external magnetic
field. Qualitative agreement between this prediction and our
numeric simulation, based on the microscopic Hamiltonian,

FIG. 5. g��� as a function of �. Solid line, linear response
theoretical prediction; dashed line, numeric simulation.

FIG. 6. Numeric simulation of � as as function of dimensionless
�in units of Td� time. Initial polarization is 0.475 �95%�, �0=200,
g=0.0001, N=343.

FIG. 7. �2 as a function of dimensionless time. Same values of
the parameters as in Fig. 6. Solid line, numeric simulation; dashed
line, Bloch solution �24�.
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is observed. Results of the linear response method, appropri-
ate when the single particle magnetic moment deviates by a
small angle from its equilibrium position, are also seen to be
in good agreement with the numeric simulation.

As part of our numeric simulation we considered two
methods of obtaining an initial spin distribution for a specific
desired system polarization. Both the Metropolis and Boltz-
mann methods produce acceptable initial spin distributions.
However, the Boltzmann method is favored, since in the Me-
tropolis method the number of steps required to produce a
desired polarization increases rapidly as the polarization ap-
proaches unity. Thermodynamic averaging over multiple ini-
tial spin distributions, each having the same initial polariza-
tion, is achieved in a multiprocessor environment.

The role of dipole-dipole interactions for SR phenomena
is studied in detail. Simple models for these interactions and
a phenomenological approach based on the Bloch equations
qualitatively describe some aspects of SR relaxation. These
models, together with numeric simulations based on a micro-
scopic consideration of dipole-dipole interactions allow us to
obtain a reliable description of spin system radio-frequency
SR. Secondary peaks in observable quantities associated
with SR relaxation have been observed. These peaks are spe-
cific for SR from highly polarized and almost completely
inverted spin systems. They do not appear in the phenom-
enological approach, but are observed if dipole-dipole inter-
actions are taken into account microscopically, through the
dipole-dipole interaction Hamiltonian.
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