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We discuss nonlinear characteristics of surface and bulk magnetic polaritons in the AF/NM superlattices
composed of nonlinear antiferromagnetic and linear nonmagnetic layers. The results obtained for nonlinear
bulk modes show the unreciprocity ��k����−k�, and the existence of the attenuation or gain that indicates the
modes unstable. The dispersion relations of surface polariton uncover clearly that there is a series of nonlinear
surface eigenmodes, corresponding to the linear surface mode. The appearance of surface magnetic solitons
may be possible in these superlattices.
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I. INTRODUCTION

In the last two decades, magnetostatic waves and mag-
netic polaritons in ferromagnetic �FM� and antiferromagnetic
�AF� superlattices �SLs� have attracted interests of physicists
and a lot of interesting results have been obtained.1–6 How-
ever, these previous works were almost involved in the linear
waves and polaritons of these systems, where a linear rela-
tion between the alternating magnetization m and magnetic
field h in the magnetic mediums m=�J ·h was used. Although
this relation is available for a weak h, it holds not any longer
when h becomes strong. In this circumstance, a nonlinear
response m=�J�1� ·h+�J�2� :hh+�J�3� :hhh+¯ should be con-
sidered, instead of that linear relation.

The nonlinear magnetic phenomena and theories have
been holding the attentions of physicists since the 1950s.1,7

In recent years, the interest has been extended to nonlinear
properties of magnetic SLs and multilayers.8–12 These SLs
also can be considered as a kind of magnetic photonic
crystals.13 Reference 9 discussed the nonlinear response and
the transmission spectra of electromagnetic radiation of an
AF/nonmagnetic superlattice �ANSL�. In our previous
works, we set up an effective-medium method to describe the
effective nonlinear magnetic susceptibilities of magnetic SLs
or multilayers, where the nonlinear surface magnetostatic
waves of FM multilayers11 and nonlinear bulk magnetic po-
laritons of the ANSL �Ref. 12� were discussed. In addition,
the explicit expressions of the nonlinear magnetic suscepti-
bility sectors of FMs and uniaxial AFs were presented. How-
ever, the effective-medium method is an approximated
theory required to satisfy the condition of polariton wave-
length much larger than the SL period. This method neglects
the effects of the periodical interfaces in the SLs on the
propagation of waves, which may be important if the wave-
length is comparable to the period.

In this paper, we are concerned about such a case in which
the effective-medium method is available no longer and ex-
amine the effect of nonlinearity on magnetic polaritons in the
ANSL by means of a stricter method. Thus the results to be
obtained with this method are not limited by the condition of
wavelength.

The paper is organized as follows: Sec. II is devoted to
deriving the nonlinear polariton solution in AF layers of the

ANSL. In Sec. III, we solve the dispersion equations for the
polaritons. The numerical results and discussion are put in
Sec. IV, and the summary and conclusions in Sec. V.

II. NONLINEAR WAVE SOLUTION IN AF LAYERS

Let us consider an ANSL in a zero external field �H0

=0� made up of nonlinear AF layers with dielectric constant
�1 and linear nonmagnetic �NM� layers with �2. The coordi-
nate system and geometry are shown in Fig. 1, where the AF
anisotropy axis is pointed along the z direction, and the two
static sublattice-magnetizations are parallel and antiparallel
to the z-axis, respectively. The y-axis is normal to the inter-
face between a pair of adjacent layers. The surface waves
propagate along the x-axis, and the bulk waves with the wave
vector k= �k ,Q ,0� travel in the x-y plane. The thickness of

FIG. 1. Geometry and coordinate system. The superlattice is
composed of antiferromagnetic layers �AFs� with thickness d1 and
nonmagnetic layers �NMs� with thickness d2. The two sublattice
magnetizations in AF layers are parallel and antiparallel to the z
axis, respectively. The y-axis is pointed normal to the interfaces and
the polariton waves propagate along the x-axis for the surface
modes and in the x-y plane for the bulk modes. j is the index of
supercell.
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the AF layers is indicated by d1 and that of NM layers by d2,
so that the period of the ANSL D=d1+d2. j represents the
index of the ANSL period. For the surface modes, we take a
semi-infinite ANSL occupying the space of y�0, but the
space of y�0 is of vacuum. For the bulk modes, the ANSL
is infinite.

First, we present the deriving process of the nonlinear
wave equation for the propagation of magnetic polaritons in
AF layers. The nonlinear wave fields should satisfy the Max-
well equations

� � e = −
�

�t
b, � · b = 0, �1a�

� � h =
�

�t
d, � · d = 0, �1b�

where we have taken the vacuum light-velocity c=1, mean-
while for the magnetic layers d=�1e with �1 the relative
dielectric constant and b=h+m with m=m�1�+m�3�, the
nonlinear magnetization within the third-order approxima-
tion. As we do not want to discuss the second- and third-
harmonic generation and optical rectification, only the com-
ponents with fundamental frequency � are retained in the
expression of m. The first-order magnetization can be pre-
sented by m�1�=�J�1� ·h. Thus the nonlinear waves are gov-
erned by the wave equation resulting from Eq. �1�,

��� · h� − �2h − �1�2�J · h = �1�2m�3�, �2�

with �J=1+�J�1� and the third-order magnetization indicated
by

mi
�3� = �

jkl

�ijkl
�3� hjhkhl

*. �3�

In expression �3� i , j ,k , l=x ,y ,z and �J�1�, �J�3� are the first-
and third-order magnetic susceptibilities whose nonzero ele-
ments have been presented elsewhere.12 Here the elements to
be used are

�xx
�1� = �yy

�1� = �1 =
2�m�a

�r − �2 , �4�

�xxxy
�3� = − �yyyx

�3� = − 2�xxyx
�3� = − 2�xyxx

�3� = 2�yyxy
�3� = 2�yxyy

�3�

=
− i8�m

3 �a
2�3

M0
2��r

2 − �2�4 , �5a�

�xyyx
�3� = �yxxy

�3� = − 2�xxyy
�3� = − 2�xyxy

�3� = − 2�yyxx
�3� = − 2�yxyx

�3�

=
4�m

3 �a�2�2�r
2 − �2 − 3�a

2�
M0

2��r
2 − �2�4 , �5b�

with �m=4�	M0, �a=	Ha, and �e=	He. Ha, He and M0 are
the anisotropy, exchange fields, and sublattice magnetization,
respectively. 	 is the gyromagnetic ratio and �r

=��a��a+2�e� the AF resonance frequency. As an approxi-
mation, one may consider the field components hi on the
right-hand side of Eq. �3� as linear ones to find the nonlinear
solution of h included in Eq. �2�.

For the linear surface waves propagating along the x-axis
and also for the linear bulk waves moving in the x-y plane,
� /�z=0. Thus Eq. �2� is rewritten as

ik
�

�y
hy −

�2

�y2hx − �1�2�hx = �1�2
�y���xxxy
�3� hx − �xyyx

�3� hy� ,

�6a�

ik
�

�y
hx + �k2 − �1�2��hy = �1�2
�y���xxxy

�3� hy − �xyyx
�3� hx� ,

�6b�

�k2 −
�2

�y2 − �1�2�hz = �1�2mz
�3�, �6c�

with 
�y�= �hxhy
*−hx

*hy�. Equation �6c� implies that hz is a
third-order small quantity and equal to zero in the circum-
stance of linearity �TM waves�.

Secondly, we begin from the linear wave solution, or the
first-order field, to look for the nonlinear wave solution in AF
layers. In different regions, it is given below:14,15

h = A0e−�0yei�kx−�t�, �in vacuum space� �7a�

h = �Ae�1�y+jD�

+ Be−�1�y+jD��e−�jDei�kx−�t�, �in the jth AF layer�
�7b�

h = �Ce�2�y+jD+d1�

+ De−�2�y+jD+d1��e−�jDei�kx−�t�, �in the jth NM layer�
�7c�

where �00 and �0 are called the decay constants of the
surface modes. However imaginary � ��= iQ� corresponds to
the bulk modes, meanwhile Eq. �7a� is not necessary any
longer. j=0,1 ,2 ,3 , . . ., for the semi-infinite ANSL. Letting
the nonlinear terms on the right-hand side of Eq. �6� equal to
zero, we obtain the expressions of �0, �1, and �2,

�0
2 − k2 + �2 = 0, �8a�

�1
2 − k2 + �1��2 = 0, �8b�

�2
2 − k2 + �2�2 = 0, �8c�

respectively. At the same time, due to � ·b=0, one find the
relations among the wave amplitudes, Ay =−ikAx /�1 and By
= ikBx /�1. Substituting these relations and the solution into
Eqs. �6a� and �6b�, we find the equations satisfied by the
nonlinear wave-field in the nth AF layer as follows:

ik
�

�y
hy −

�2

�y2hx − �1�2�hx = Axe
i�kx−�t�F�m��A1e�1�y+nD�

+ B1e−�1�y+nD� + C1e3�1�y+nD�

+ D1e−3�1�y+nD�� , �9a�
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ik
�

�y
hx + �k2 − �1�2��hy = Axe

i�kx−�t�F�m��A2e�1�y+nD�

+ B2e−�1�y+nD� + C2e3�1�y+nD�

+ D2e−3�1�y+nD�� , �9b�

where F�m�=exp�−mn�D� with m=3 for the surface modes,
m=1 for the bulk modes. A1	D1 and A2	D2 are nonlinear
coefficients. The solution of the two equations can be written
as

hx = Axe
i�kx−�t�e−n�D
e�1�y+nD� + ��e−�1�y+nD� + fn��y

+ nD��1L1e�1�y+nD� + ��y + nD��1L2e−�1�y+nD�

+ L3e3�1�y+nD� + L4e−3�1�y+nD��� , �10a�

and

hy = −
ik

�1
Axe

−�nDei�kx−�t�
e�1�y+nD� − ��e−�1�y+nD� + fn���y

+ nD��1L1 + S�e�1�y+nD� + ��− �y + nD��1L2

+ T�e−�1�y+nD� + L3�e
3�1�y+nD� + L4�e

−3�1�y+nD��� , �10b�

in which fn=1 for the bulk modes and fn=exp�−2n�D� for
the surface modes. The expressions of coefficients in Eqs. �9�
and �10� are presented as follows:

�1� When �1 is a real number, the coefficients in Eq. �9�
are

A1 = 2�kAm�+, B1 = − 2���2kAm�−,

C1 = 2kAm�−, D1 = − 2����2kAm�+, �11a�

A2 = 2i�kAm�+, B2 = 2ik���2Am�−,

C2 = − 2ikAm�−, D2 = − 2ik����2Am�+, �11b�

with �±= i�1�xxxy
�3� ±k�xyyx

�3� , �±= ik�xxxy
�3� ±�1�xyyx

�3� , and Am
=�1�2�A�2 / �k2+ ��1�2�. The field strength �A�2= �Ax�2+ �Ay�2
= ���1�2+k2��Ax�2 / ��1�2. From the boundary conditions of the
linear field, one also can easily prove that � included in the
formulas is

� = Bx/Ax = ��0� + �1�/��0� − �1� �12a�

for the surface modes and

� =
e−�1d1��1 cosh��2d2� − ��2 sinh��2d2�� − �1e−iQD

�1e−iQD − e�1d1��1 cosh��2d2� + ��2 sinh��2d2��
�12b�

for the bulk modes. The coefficients in Eq. �10� can written
as

L1 =
1

2�1�2�
�A1 −

ik

�1
A2� =

Amk�

��1�2��+ +
k

�1
�+� ,

�13a�

L2 = −
1

2�1�2��
�B1 +

ik

�1
B2� =

Am�*k

��1�2��− +
k

�1
�−� ,

�13b�

L3 =
1

8�1�2�
�C1 −

3ik

�1
C2� =

Amk

4��1�2��− −
3k

�1
�−� ,

�13c�

L4 =
1

8�1�2�
�D1 +

3ik

�1
D2� = −

Am����2k

4��1�2 ��+ −
3k

�1
�+� ,

�13d�

L3� = 3L3 +
i

�1k
C2 =

Am

4��1�23k�− −
�−

�1
�k2 + 8�1

2�� ,

�13e�

L4� = − 3L4 +
i

�1k
D2 =

Am����2

4��1�2 3k�+ −
�+

�1
�k2 + 8�1

2�� ,

�13f�

S = L1 +
i

�1k
A2 =

Am�

��1�2k�+ +
�+

�1
�2�1

2 − k2�� , �13g�

T = kL2 +
i

�1�k
B2 =

kAm�*

��1�2k�− +
�−

�1
�2�1

2 − k2�� ,

�13h�

�2� If �1 is imaginary, i.e., �1= i�, these coefficients
should be changed into

A1 = − 2���2kAm�+, B1 = 2�kAm�−,

C1 = − 2k�*Am�−, D1 = 2k�2Am�+, �14a�

A2 = − 2ik���2Am�+, B2 = − 2ik�Am�−,

C2 = 2ik�*Am�−, D2 = 2ik�2Am�+. �14b�

L1 = −
Am���2k

�1�2�
��+ +

k

�1
�+�, L2 = −

Amk

�1�2�
��− +

k

�1
�−� ,

�15a�

L3 = −
Am�*k

4�1�2�
��− −

3k

�1
�−�, L4 =

Am�2k

4�1�2�
��+ −

3k

�1
�+� ,

�15b�

L3� = −
Am�*

4�1�2�
3k�− −

�−

�1
�k2 + 8�1

2��,

L4� = −
Am�2

4�1�2�
3k�+ −

�+

�1
�k2 + 8�1

2�� , �15c�

S = −
Am���2

�1�2�
k�+ +

�+

�1
�2�1

2 − k2��,

T = −
Am

�1�2�
k�− +

�−

�1
�2�1

2 − k2�� . �15d�

Note that all these coefficients contain implicitly the factor
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�= �A�2 /4�M0
2, so we say that they are of the second-order.

For simplicity in the process of deriving dispersion equa-
tions, we introduce three second-order quantities,

�1�y + nD� = �y + nD��1L1e�1�y+nD�

+ ��y + nD��1L2e−�1�y+nD�

+ L3e3�1�y+nD� + L4e−3�1�y+nD�, �16a�

�2�y + nD� = ��y + nD��1L1� + S�e�1�y+nD�

+ ��− �y + nD��1L2 + T�e−�1�y+nD�

+ L3�e
3�1�y+nD� + L4�e

−3�1�y+nD�, �16b�

and

��y + nD� =
i�1

�1�2k
�A2e�1�y+nD� + B2e−�1�y+nD� + C2e3�1�y+nD�

+ D2e−3�1�y+nD�� . �16c�

Thus the nonlinear magnetic field can be rewritten as

h = Ax��e�1�y+nD� + ��e−�1�y+nD� + ��1�y + nD�fn��ex

−
ik

�1
�e�1�y+nD� − ��e−�1�y+nD�

+ �2�y + nD�fn�ey�e−�nDei�kx−�t�, �17a�

and the third-order magnetization is equal to

my
�3� = −

ik

�1
Ax��y + nD�fnei�kx−�t�e−n�D. �17b�

The two formulas will be applied for solving the dispersion
equations of the nonlinear surface and bulk polaritons from
the boundary conditions satisfied by the wave fields.

III. NONLINEAR DISPERSION RELATIONS

Seeking the dispersion relations of AF polaritons should
begin from the boundary conditions of the magnetic field hx
and magnetic induction field by continuous at the interfaces
and surface �y=−nD ,−nD−d1, and 0�. The results �17a� and
�17b� related to the nth AF layer, as well as the solutions �7a�
in the vacuum and �7c� in the nth NM layer will be used to
determine the dispersion relations. In the following several
paragraphs, we shall calculate the dispersion relations of the
surface and bulk modes, respectively.

A. Bulk dispersion equation

For the bulk polaritons, there are 6 amplitude coefficients
in the wave solutions �7c� and ��17a� and �17b��, Ax, ��, Cx,
Cy, Dx, and Dy. The magnetic induction by =�hy +my

�3� in AF
layers and by =hy in NM layers. The boundary conditions of
by and hx continuous at the interfaces �y=−nD and −nD
−d1� imply four equations, and � ·h=0 in a NM layer leads
to two additional relations Cy =−ikCx /�2 and Dy = ikDx /�2.
Thus we have

Ax�1 + �� + �1�0�fn� = �Cxe
−�2d2 + Dxe

�2d2�eiQD, �18a�

Ax

�1
���1 − �� + �2�0�fn� + ��0�fn� =

1

�2
�Cxe

−�2d2

− Dxe
�2d2�eiQD, �18b�

Ax�e−�1d1 + ��e�1d1 + �1�− d1�fn� = Cx + Dx, �18c�

Ax

�1
���e−�1d1 − ��e�1d1 + �2�− d1�fn� + ��− d1�fn�

=
1

�2
�Cx − Dx� . �18d�

From these four equations, we find the dispersion relation of
the nonlinear bulk polaritons,

cos�QD� − cosh��1d1�cosh��2d2�

−
�1

2 + �2
2�2

2�1�2�
sinh��1d1�sinh��2d2� =

1

4
N , �19�

with the nonlinear factor N described by

N = �1�0�− e−iQD + cosh��2d2�e�1d1 +
�1

��2
sinh��2d2�e�1d1� + �2�0� +

��0�
�

�− e−iQD + cosh��2d2�e�1d1

+
�2�

�1
sinh��2d2�e�1d1� + �1�− d1�− e�1d1eiQD + cosh��2d2� −

�1

��2
sinh��2d2��

+ �2�− d1� +
��− d1�

�
�− e�1d1eiQD + cosh��2d2� −

�2�

�1
sinh��2d2�� . �20�
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Due to the nonlinear interaction, the nonlinear term N /4 ap-
pears in the dispersion equation of the polaritons and is di-
rectly proportional to �. This term is a second-order quantity
and makes a small correct to the dispersion properties of the
linear bulk polaritons.

Generally speaking, this nonlinear dispersion equation is a
complex relation. However in some special circumstances it
may be a real one. Here we illustrate it with an example. If
Q=0, the bulk wave moves along the x-axis and the disper-
sion equation is a real equation for real �1. For such a dis-
persion equation, � has a real solution, otherwise the solu-
tion of � is a complex number with the real part �NL, so-
called the nonlinear mode frequency, and the imaginary part
��, the attenuation or gain coefficient. In addition, it is very
interesting that the unreciprocity of the bulk modes, ��k�
���−k� with k= �k ,Q ,0�, is seen, due to the existence of
exp�−iQD� in the nonlinear term N /4 as a function of QD
with the period 2�.

B. Surface dispersion relations

For the surface modes, note fn=exp�−2n�D� and take the
transformation iQ→� in Eqs. �17a� and �17b�, we can find

cosh��D� − cosh��1d1�cosh��2d2�

−
�1

2 + �2
2�2

2�1�2�
sinh��1d1�sinh��2d2� =

1

4
N�e−2�nD

�21�

in which N� can be obtained directly from Eq. �20� with the
same transformation. This nonlinear term is directly propor-
tional to the multiple of � and exp�−2n�D�, so in the same
condition the nonlinearity makes a larger � contribution to
the bulk modes than the surface modes. We can use the linear
expression of exp�−�D� to reduce the nonlinear term on the
right-hand side of Eq. �21�, but have to derive its nonlinear
expression to describe cosh��D� on the left-hand side, since
its nonlinear part may has the same numerical order as that
of N� exp�−2n�D� /4. So we need another equation to deter-
mine it. Applying the boundary conditions at the surface, y
=0 and n=0, we can find

�1�1 + �� + �1�0�� = − 
��1 − �� + �2�0�� + ��0���0.

�22�

Combining this with Eqs. �18a�–�18c�, the equation deter-
mining � is found,

e�D =
�1 + �� + �1�0�fn�cosh��2d2� + �2�
1 − �� + ��2�0� + ��0�/��fn�sinh��2d2�/�1

e−�1d1 + ��e�1d1 + ��− d1�fn
, �23�

with

�� =
1

�0� − �1

�0� + �1 + �1�1�0� + �0���2�0� + ��0��� .

�24�

fn=exp�−2n�D� in Eq. �23� also can be considered as a lin-
ear quantity since it always appears in the multiply of it and
�. We also should note that there is a series of nonlinear
surface eigenmodes as n can be any integer value equal to or
larger than 1. Actually the nonlinear contribution decreases
rapidly as n is increased, so only for small n, the nonlinear
effect is important. In addition, increasing � and decreasing
n have a similar effect in numerical calculation.

Because the nonlinear terms in Eqs. �19� and �21� all con-
tain �ijkl

�3� directly proportional to 1/ ��r
2−�2�4, the nonlinear

effects may be too strong for us to use the third-order ap-
proximation for the nonlinear magnetization when � is near
to �r. In this situation we will take a smaller value of � to
assure of the availability of this approximation.

IV. NUMERICAL RESULTS AND DISCUSSIONS

We take the FeF2/ZnF2 superlattice as an example for
numerical calculations, where the physical parameters Ha

=200 kG, He=540 kG, 4�M0=7.04 kG, and 	=1.97
�1010 rads−1�kG�−1 lead to the AF resonance frequency
�r /2�c=53 cm−1. The unit of the wave vector is represented
by �r /c=3.32�102 rad�cm�−1, but �r /2�c is selected as
that of frequency. D=d1+d2 is measured in 2�c /�r=1.9
�10−2 cm. The relative dielectric constants in the AF layers
and NM layers are presented by �1=5.5 and �2=8.0. In the
numberical caculation, we apply the SL period D=1.9
�10−2 cm, and take n=1 for the surface modes. When f1
=d1 /D is considered as an adjustive parameter, d1 and d2 are
two fixed values for given f1 and D. The nonlinear factor
�= �A / �4�M0��2 is the relative strength of the wave field.
The nonlinear shift in frequency is defined as ��= ��NL

−�� /�r, where the nonlinear frequency �NL and attenuation
or gain coefficient �� as the real and imagine parts of the
frequency solution from the nonlinear dispersion equations
both are solved numerically. � is determined by the linear
dispersion relations.

First of all we present the linear polariton spectrum,14,15 as
shown in Fig. 2, where there are three bulk-mode bands and
a surface mode between the two lower bulk-mode bands. We
put the middle band in a separated figure, Fig. 2�b�, since it is
very narrow. These three frequency bands all take the disper-
sion curves with QD=0 and � as their boundaries. In terms
of the shape of a band, the second-order derivative of linear
frequency with respect to k, �2� /�k2 for a mode in it can be
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roughly estimated to be positive or negative. If a dispersion
curve bends downwards, it corresponds to �2� /�k2�0, oth-
erwise to �2� /�k2�0. Thus when the nonlinear shift �� is
presented, one can judge that the bulk-polariton solitons can
exist or not, according to the Lighthill criterion
�� ·�2� /�k2�0 for the existence of solitons.16 One confirms
from the figures that �2� /�k2�0 for modes in the top band,
�2� /�k2�0 in the bottom band, but �2� /�k2�0 or
�2� /�k2�0 in the middle band, depending on k and QD.
Due to the reciprocity ��k�=��−k� as one feature of the
bulk spectrum of a periodical structure in the linear circum-
stance, one will see the same results in the other zones as in
the zone 0�QD�� /D.

Afterwards we shall discuss the nonlinear frequency shift
and attenuation. Note the nonlinear shift in frequency ��
and attenuation �� are merely small corrections to the linear
dispersion, so the linear frequency spectrum is thought of as
a reference to discuss the nonlinear properties.

Let us consider the properties of the nonlinear bulk
modes. Due to the existence of three bulk-mode bands, we
shall discuss them separately. Figure 3 is offered to illustrate
the bottom band. �a� and �b� show the nonlinear shift in
frequency as a function of the component of the wave vector
k for Q=0 and � /D, respectively. �a� with Q=0 tells us that
for f1=0.3 and 0.5, the nonlinear shift is downward or nega-
tive in the region of smaller k, but becomes positive from
negative with the increase of k. For a SL with thicker AF
layers, for example, f1=0.7, the shift is always positive. Fig-
ure 3�b� for QD=� shows that the shift in frequency always
is positive for various values of f1. This figure also indicates
that the shift increases more quickly with k for the ANSL
with small f1. Roughly speaking, the frequency shift given in
�b� is tens of times as big as that in �a�. �c� and �d� indicate
the nonlinear frequency shift and attenuation versus Q for a
fixed k and several values of f1. We see from �c� the clear
unreciprocity since the dispersion properties in the zone
2� /D�Q�� /D differ from those in 0�Q�−� /D. �� as
a function of QD is shown in �d�. A negative �� is called the
attenuation, otherwise the gain. The nonlinear polariton
waves can be attenuated and also gained, depending on QD,
which means that the waves are unstable. Combining with
the linear results, we conclude that the existence of the bulk
soliton solution is possible in this band.

For the top bulk band, we first discuss �� versus k for
Q=0, but we do not present figures for Q=� /D since the
shift is very small for the upper boundary of this band. Now
we are going to examine the meanings of Fig. 4�a� shows
that �� always is positive and possesses its maximum. �b�
and �c� show �� and �� as a function of QD, respectively.
In the vicinities near to QD=0 and 2�, the shift is positive,
but negative in the two narrow regions near to QD=2.0 and
4.5. Although �� is positive, more obvious in only the two
small regions corresponding to negative frequency-shift. We
also confirm the unreciprocity from �b�.

The properties of bulk nonlinear polaritons in the middle
band are illustrated in Fig. 5 for QD=0, where the attenua-
tion is vanishing since we find that the dispersion equation
always is real in numerical calculations. Here we take one
different value of nonlinear parameter �=1.0�10−4 since
the mode frequency in this band is very near to the resonant

FIG. 2. Linear frequency spectrum of the polaritons. Because of
the symmetry of dispersion curves with respective to k=0, we
present only the dispersion patern in the range of k�0. �a� shows
the top and bottom bands, and �b� presents the middle band. The
surface mode is illustrated in �c�.
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frequency �r, hence the nonlinearity is very strong even for
a smaller field-strength. The figure shows the positive fre-
quency shift that increases basically with k. In this band, the
bulk polaritons for various values of QD are similar in fea-
tures.

FIG. 3. Nonlinear shift infrequency with respect to the bottom
linear band and attenuation. �a� and �b� show the shift as a func-
tion of k for various relative thicknesses of magnetic layers
f1, corresponding to QD=0 and �, respectively. �c� indicates the
shift versus QD for a fixed k and different f1 and �d� illustrates the
nonlinear attenuation as a function of QD for k and f1 as the same
as those in �c�.

FIG. 4. Nonlinear shift in frequency and attenuation of modes in
the top band. �a� shows the shift as a function of k for various
thicknesses of magnetic layers f1. �b� indicates the shift versus QD
for a fixed k and different f1 and �c� illustrates the nonlinear attenu-
ation as a function of QD with k and f1 as the same as those in �b�.
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Finally, we examine the surface magnetic polariton in the
case of nonlinearity, which is shown in Fig. 6. Similar to
those in the middle bulk band, the surface-mode frequency
also is very close to �r, as a result, the nonlinear effect also
is stronger. Considering the reasonableness of the theory, we
also use �=1.0�10−4. The attenuation ��=0 as the disper-
sion equations are real. The shift �� is negative for f1
0.3, but positive for f1=0.1. For f1=0.2, it is positive and
increases with k in the range of small k, but negative in the
range of large k and its absolute value decreases as k is
increased. Although there can be a series of surface eigen-
modes in the nonlinear situation, the obvious nonlinear effect
can be seen only for n=1, so that we present only the corre-
sponding mode. One should note that the Lighthill criterion
is satisfied for f1=0.1 and 0.2; as a result, the surface soliton
may form from the surface magnetic polariton.

V. SUMMARY AND CONCLUSIONS

We have discussed the nonlinear magnetic polaritons of
the ANSL in zero-field H0=0 with the nonlinear antiferro-
magnetic susceptibilities obtained in the third-order
approximation.12 We have cited briefly the linear frequency
spectrum in order to understand the properties of the nonlin-
ear polaritons.

For the discussion of nonlinear dispersion, we assume that
AF layers in the ANSL are nonlinear, and meanwhile NM
layers are linear. We first derive the nonlinear wave solution
of the polaritons in AF layers and introduce the linear wave
solution in NM layers, and then we look for the dispersion
equations of the nonlinear polaritons.

The dispersion equations for the surface mode are real
ones and we see a series of the nonlinear surface eigen-
modes. It is very interesting that the surface soliton may exist
in the system. The nonlinear shift in frequency can be up-

ward and also downward, depending on the relative thick-
ness of AF layers.

In general speaking, the dispersion relation for the nonlin-
ear bulk modes, except modes in the middle band, is a com-
plex equation. It means that the solution of frequency di-
rectly resulting from this relation should be a complex
number for a given k, whose real part is just the mode fre-
quency, and imaginary part is called the attenuation. Because
of the appearance of exp�iQD� in the nonlinear dispersion
relation of the bulk modes, the frequency band between
QD=0 and � is equal no longer to the band between QD
=� and 2�, which implies the unreciprocity of the nonlinear
bulk modes, ��k����−k� that also appears in the compli-
cated one-dimensional photonic crystals.17 We find that the
nonlinear frequency shift and attenuation are very obvious
and they can be positive and also be negative, depending on
values of k and f1. The attenuation ���0 means that the
nonlinear waves are unstable. The soliton solution may be
found since the Lighthill criterion can be fulfilled in the two
bands. In the middle bulk band, the mode attenuation is van-
ishing, the nonlinearity is very evident, and the nonlinear
shift is positive.

In this paper, the nonlinear parameter is taken as �=1.0
�10−3 or 1.0�10−4. These two values correspond to the
field amplitudes of about 0.022 �A/m� and 0.00704 �A/m�,
respectively. One can easily realize these amplitudes in rel-
evant experiments. The ANSL used here also can be consid-
ered as a one-dimensional photonic crystal; but this photonic
crystal is composed of antiferromagnetic and nonmagnetic
layers. These kinds of photonic crystals has been given a lot
of attention.13
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FIG. 5. Nonlinear frequency shift �� of the modes in the
middle band versus k for QD=0, �=1.0�10−4 and various values
of f1.

FIG. 6. Nonlinear frequency shift �� of the surface mode ver-
sus k for �=1.0�10−4 and various values of f1.
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