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The low-temperature statistical mechanics of one-dimensional nonlinear Klein-Gordon with anharmonic
interparticle interaction subject to the Remoissenet-Peyrard substrate potential is studied by means of the
transfer integral method. We show that the quantitative effects of the anharmonicity of the interparticle pair
potential to the thermodynamic properties of the system are controlled by temperature. They are negligible for
very low temperatures and become more and more important as the temperature increases. Furthermore, the
first lattice corrections to the thermodynamic quantities are temperature dependent and are sensitive to the
deformability of the system.
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I. INTRODUCTION

Many physical properties of real systems are directly re-
lated to nonlinear effects produced by anharmonic interac-
tions. These systems which usually support the propagation
of localized nonlinear excitations have been intensively ex-
amined in connection with nonthermalization process, non-
linear transport of energy in atomic and molecular chains.1

The model which describes the interactions between particles
of the system by an empirical potential has the advantage
that the dynamical behavior and the thermodynamic proper-
ties of the system can be studied. In other words, analytical
studies and numerical experiments can be conducted which
simulate the essential of the physical phenomena exhibited
by the system. The basic model is nonlinear Klein-Gordon
�NKG� model where the particles may be considered as
coupled to nearest neighbors via an harmonic interaction
potential and subjected to a nonlinear on-site or substrate
potential. If the substrate potential has degenerate
minima �double-well shape like �4 and deformable �4

�Refs. 2 and 3� or periodic degenerate minima like sine-
Gordon �sG� and deformable sG potential �Refs. 2 and 4��,
solitary waves can exist and can be calculated exactly in the
continuum limit. In addition, soliton-soliton interactions and
the interactions between solitons and other elementary exci-
tations such as phonons can also be calculated. The result
being of particular importance when investigating, within the
soliton gas approach, the statistical mechanics of the system
in order to determine the thermal density of thermally acti-
vated kink excitations and their contribution in the thermo-
dynamic quantities of the system.5–7 The inclusion of inter-
actions between low-lying excitations �kink and phonons�
allows to obtain precise agreement between this phenom-
enology and the exact result of the transfer integral operator
�TIO� method.2,5–7

The basic NKG model takes into account only the har-
monic approximation of the nearest-neighbor interaction po-
tential. However, in real systems interaction between par-
ticles is more complicated and can be consequently modeled
by an anharmonic function. There is also a clear evidence

that kink internal modes are not only limited to the case of an
harmonic interparticle interaction since it was found that
such solutions occur also in anharmonic interparticle
interaction.8,9 Note that the inclusion of anharmonic interac-
tions is dictated by some experimental investigations. For
example, some previous models have indicated that the in-
clusion of anharmonic forces can give an answer to the prob-
lem of heat conduction in one-dimensional insulating
solids.10 It is the merit of Rosenau and Hyman,11 who inves-
tigated a special type of Korteweg-de Vries equation to dis-
cover that solitary waves may become compact in the pres-
ence of nonlinear dispersion. Such solitary waves, which are
characterized by the absence of infinite tail, have been called
compactons. Since this pioneering work, the kink compacton
excitations have become the subject of many works. To cite
just a few examples, we mention that Dusuel et al.12 have
demonstrated that kink compacton can also appear in the
NKG systems with anharmonic interaction pair potential.
Recently, it has been demonstrated that, localized breathing
mode with an “almost compact support” �stationary breather
compacton�,13 drop compactons, cups, peak solitons, and
defects14 can appear in the generalized NKG model with �4

substrate potential. The ability of a compacton like kink to
execute a stable ballistic propagation in this discrete Klein-
Gordon system15 has been also investigated. Note also the
study of lattice effects on the motion of kink compactons16

which has revealed that the effects of lattice discreteness and
the presence of a linear coupling between sites are detrimen-
tal to a stable ballistic propagation of compactons, and that
of the exact calculation of the poly-kink compactons in the
generalized NKG model with deformable periodic symmet-
ric and asymmetric double well potentials of Peyrard and
Remoissenet.17

Since condensed matter physics is one of the areas of the
physics where the dynamical behavior of the systems can be
satisfactorily described by the generalized NKG model and
where the number of low-lying excitations is thermally con-
trolled, the study of the statistical mechanics of this model is
therefore an interesting problem. In this spirit, we have stud-
ied recently the low-temperature statistical mechanics of the
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generalized NKG systems with rigid substrate potentials
such as the sG and the �4.18 We have shown that the pres-
ence of kink compactons in the thermodynamic properties of
the system is signaled by terms proportional to
exp�−���Ekc�3/4� in the low-temperature free-energy, where
Ekc is the static kink compacton energy and � a temperature
independent coefficient. In addition, by means of the TIO
method, we have shown that the first lattice corrections to
these thermodynamic quantities are temperature dependent.19

In the present work, we focus our attention on the influence
of anharmonic interparticle interaction on the thermody-
namic quantities of this model which is extended to include
the deformability of the substrate potential. Here, we restrict
our analysis to the case where the system exhibits the kink
solitons.

The organization of the paper is as follows. In Sec. II we
present the model under consideration. In the limit of strong
coupling between adjacent particles, the equation governing
wave propagation in the lattice is derived and the qualitative
behavior of the system is analyzed. In Sec. III, by means of
the TIO method associated with the asymptotic methods
from the theory of differential equations depending on a
large parameter,20 we derive the thermodynamic quantities of
the system exhibiting the kink solitons. The influence of lat-

tice effects to the free energy of the system is also consid-
ered. Finally, a brief summary and concluding remarks are
done in Sec. IV.

II. MODEL AND KINKLIKE EXCITATIONS

The system under consideration consists of N particles of
mass m placed on a one-dimensional lattice of lattice spacing
a, oriented in the direction of the a axis. The Hamiltonian of
this discrete chain may be written as follows:

H = Aa�
i
�1

2
�d�i

dt
�2

+ U��i+1 − �i� + �0
2VRP��i�	 ,

�2.1�

where

U��i+1 − �i� =
C0

2

2a2 ��i+1 − �i�2 +
Cnl

4a4 ��i+1 − �i�4,

�2.2�

is the interaction potential of the nearest-neighbor particles
or interparticle pair potential �IPP� represented in Fig. 1 with
�i the dimensionless displacement of the ith particle and

FIG. 1. Interaction pair potential of the nearest-neighbor particles U�X� /U0 defined by Eq. �2.2�, as a function of the reduced relative
displacement between particles X= ��i+1−�i� /X0 where U0=2C0

4 / 
Cnl
 in unit of Aa, and X0=C0a�2/ 
Cnl
. It is important to distinguish two
quite different situations according to the sign of the NICC Cnl, �i� Cnl�0, in this case; X0 may be viewed as the relative displacement for
which the contribution of the two terms in the IPP are identical and are equal to U0 /2. Accordingly, for X�1, the IPP is dominated by the
harmonic term while the opposite situation occurs when X�1. �ii� Cnl�0, here, X0 is a critical displacement since for this displacement, the
IPP is zero and may become negative if ��i+1−�i��X0, that is, X�1. The IPP is nonconvex and presents a barrier at X= ±�2/2 with height
U1=C0

4 /4
Cnl
=U0 /8.
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where Cnl determines the anharmonicity of this IPP. The con-
stant A�ma sets the energy scale of the system. The last
term of Eq. �2.1� is the external potential or substrate poten-
tial. Here we focus our attention on the periodic deformable
potential introduced by Remoissenet and Peyrard �RP�4

VRP��i� = �1 − r�2 1 − cos �i

1 + r2 + 2r cos �i
, �2.3�

where the parameter r�
r
�1� determines the shape. As r
varies, the amplitude of the substrate potential remains con-
stant with degenerate minima 2	n and maxima �2n+1�	,
while its shape changes �see Fig. 2�. This shape is controlled
by the curvatures of the potential at the minima, that
is VRP� �2	n�=
2 for r�0 and VRP� �2	n�=1/
2 for r�0,
and at the maxima VRP� ��2n+1�n�=−1/
2 for r�0 and
VRP� ��2n+1�n�=−
2 for r�0, where the parameter 
 is re-
lated to r through the following relation:


 =
1 − 
r

1 + 
r


. �2.4�

At r=0, that is 
=1, the RP potential reduces to the well-
known sG potential. In addition, when the nonlinear interpar-
ticle coupling coefficient �NICC� Cnl=0, the model described
by the Hamiltonian �2.1� reduces to the basic Hamiltonian
previously used by CKBT �Ref. 2� and describing the basic
NKG systems.

Two different regimes can occur according to whether the
characteristic lengths of the system

d0 = C0/�0 and/or �0 = �3
Cnl
/4�0
2�1/4, �2.5�

are on the order of the lattice constant a or large compared to
a. The first situation results when the interaction energy be-
tween neighbors is small compared to the on-site potential.
In this case we are faced with the discrete system. In the
opposite situation where the linear and nonlinear couplings
between sites are strong enough �d0�a and �0�a� to ensure
that the variation of �i from site to site are quite small, one
can use the standard continuum approximation �i�t�
→��x , t� and expand �i±1 with x= ia. Under these condi-
tions, the Hamiltonian �2.1� is transformed approximately to

H = A
 dx�1

2
� ��

�t
�2

+
C0

2

2
� ��

�x
�2

+
Cnl

4
� ��

�x
�4

+ �0
2VRP���	 . �2.6�

In the following, we shall have occasion to use both forms,
�2.1� and �2.6�, of the Hamiltonian of the system. The dis-
crete form �2.1� is used in obtaining exact statistical me-
chanical results via the TIO method, whereupon the explicit
process of taking the continuum limit follows. The con-
tinuum form �2.6� is used to study the nature of excitations
of the system; these excitations arise as solutions to the

FIG. 2. Substrate potential
VRP��� for different values of the
shape parameter r.
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Euler-Lagrange equation of motion of particles of the system
following from Eq. �2.6�:

�2�

�t2 − �C0
2 + 3Cnl� ��

�x
�2	 �2�

�x2 + �0
2dVRP���

d�
= 0.

�2.7�

We look for travelling waves of the form ��x , t�=��s�
=��x−
t� where s is a single independent variable depend-
ing on 
 which is an arbitrary velocity of propagation. Thus,
Eq. �2.7� is transformed to

d2�

ds2 �1 + 3��L
2�d�

ds
�2	 − ��L

2 dVRP���
d�

= 0, �2.8�

with the first integral given by

�d�

ds
�4

+
2

3��L
2�d�

ds
�2

−
4�

3�
�VRP��� + C1� = 0, �2.9�

where �=Cnl /C0
2 is the reduced NICC, �=1/d0

2 is the effec-
tive depth of the substrate potential, �L= �1−
2 /C0

2�−1/2 the
Lorentz factor and C1 is a constant of integration.

When Cnl=0, Eq. �2.8� reduces to the standard continuous
“RP model,” that is the basic NKG system with the RP sub-
strate potential, which admits solitary waves �kinks and
breathers�4 and linear waves solutions �phonons�. These two
kinds of excitations are well evidenced by the phase plane
plot of the system. Similarly, the excitations of the system
governed by Eq. �2.8� can be well analyzed by means of the
phase plane plot. In order to obtain this phase plane, Eq.
�2.8� is transformed into an equivalent autonomous equation

d�

ds
= p ,

dp

d�
=

��L
2

p�1 + 3�L
2�p2�

dVRP���
d�

. �2.10�

In the low-velocity regime �nonrelativistic case�, two situa-
tions occur according to whether the NICC Cnl is positive or
negative.

�i� When Cnl�0, the dynamical behavior of the system is
qualitatively similar to that of the standard RP model. In fact,
the phase plane plot exhibits, in one period of the substrate
potential, three equilibrium points, and three kinds of phase
trajectories �see for example Fig. 3�c��, the closed trajectories
around the equilibrium point �� , p�= �	 ,0� indicating the ex-
istence of linear and nonlinear phonons in the system, the
open trajectories and finally the trajectories connecting the
two other equilibrium points �0,0� and �2	 ,0� known as the
separatrix which evidenced the existence of kinklike excita-
tions in the system. These kinks are usually known as kink
solitons. However, in the particular case where 
=C0, it has
been demonstrated that these kinks may become compacts
and are called kink compactons. Then the static kink com-
pacton may be obtained only if C0=0. In this latter case, the
system is purely anharmonic.

�ii� When Cnl�0, the dynamical behavior of the system,
materialized by the phase plane plot, changes qualitatively as
a function of the strength of the NICC. Indeed, beside the

classical points previously obtained, few more singular
points appear. The exact position of these special points are
derived from the singularity arising in the denominator of
Eq. �2.10�. Thus, we have �� , p�= �0, ± p0�, �	 , ± p0� and
�2	 , ± p0� with p0=1/�L

�−3�. For weak nonlinear interpar-
ticle coupling, in addition to the trajectories present in the
standard RP model, one notes the appearance of two more
families of open trajectories above and below the central
region of Fig. 3�b� corresponding to new types of solutions
which are not known in the standard RP model, confirming
the fact that the anharmonicity in the IPP can allow the ap-
pearance of a rich variety of static and travelling
excitations.14 The separatrices are also present. However,
when Cnl decreases upon reaching the threshold value

Cnl � Cnl
th with Cnl

th = −
C0

4

24�0
2�L

4 , �2.11�

the separatrices disappear on the phase plane plot �see Fig.
3�a��, indicating the breakdown of kink solitons like excita-
tions. This disintegration of kink solitons has already been
obtained for the rigid models such as the �4 and the sG �Ref.
18� as well as for the deformable double well models.17

Finally, the phase plane plot for the system governed by
Eq. �2.8� with r=−0.3 shown in Fig. 4 demonstrates that the
dynamical behavior of the system is qualitatively indepen-
dent of the deformability parameter r of the system.

On the basis of the above results, it is now obvious
that Eq. �2.8� admits different kinds of excitations among
which are the kinks. These kinks are localized structure of
permanent profile and verify the boundary conditions,
�→ ±0�2	� and d� /ds→0 when s→ ±�, that is C1=0 in
the first integral equation �2.9�. From this equation, it is easy
to show that the shape of kink soliton is described by the
following implicit relation:



��s0�=	

��s� d�

2�VRP���
�1 + �1 + 12�L

4��VRP����1/2

= ± ���L�s − s0� , �2.12�

while its corresponding energy is given by

Eks = 2AC0�0�L

0

2	

d��VRP���

�
1 + 4�L

2��VRP��� + �1 + 12�L
4��VRP���

�1 + �1 + 12�L
4��VRP����3/2

.

�2.13�

The plus sign stands for the kink while the minus sign stands
for the antikink. Due to the mathematical difficulties, we
have not been able to integrate analytically Eqs. �2.12� and
�2.13�. Nevertheless, the numerical integration can be done.
Figure 5 shows the profile of kink solitons for different val-
ues of the reduced NICC � and for few values of the deform-
ability parameter r. It appears that, for a given value of r, the
shape of the kink is sensitive to the anharmonicity of the IPP;
its width increases with �. When Cnl=0��=0�, Eq. �2.8� re-
duces to the well-known standard equation without nonlinear
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dispersion while Eq. �2.13� gives the energy at rest of stan-
dard RP kink solitons,4

Eks
�0��j� = 8AC0�0G�j�, �2.14�

with

G�1� =
1

�1 − 
2�1/2 tan−1 �1 − 
2�1/2



, �2.15�

G�2� =



�1 − 
2�1/2 tanh−1�1 − 
2�1/2,

and with the pseudowidth

dks
�1� = d0
 and dks

�2� = d0/
 . �2.16�

The superscripts �1� and �2� stand for −1�r�0 and 0�r
�1, respectively.

When the nonlinear coupling term, which corresponds to
nonlinear dispersion in Eq. �2.8�, is preponderant or when
the linear coupling is zero, the kink soliton derived above
may become almost compact since they decay in space ac-
cording to a super-exponential �or double exponential� law as
do breather solutions as well �see, e.g., Ref. 21�. The char-
acteristic parameters of these kinks usually called kink com-
pactons can be obtained by setting 
=C0=0 in Eq. �2.8�.
These kink compactons are not in the scope of this paper. In
the next section, the above kink soliton parameters should be
of particular importance when determining the different con-
tribution of low-lying excitations including the nonlinear

FIG. 3. Phase plane plots of
the system, p=d� /ds as a func-
tion of �, described by the au-
tonomous equation �2.10� with the
deformability parameter r=0.3,

 /C0=0.0, and �=4�10−2 and
for the following value of the
NICC: �a� Cnl /C0

2=−4/3
�Cnl

th /C0
2. Note the absence of the

separatrix due to the fact that Cnl

�Cnl
th. �b� Cnl /C0

2=−1/3�Cnl
th /C0

2.
�c� Cnl /C0

2=4/3�Cnl
th /C0

2.
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solitary waves to the thermodynamic properties of the
system.

III. LOW-TEMPERATURE STATISTICAL MECHANICS

In this section, we investigate analytically the low-
temperature thermodynamic properties of the model. For this
purpose, we use the transfer integral operator �TIO� method
to evaluate the classical partition function of the system. The
use of the TIO method has the advantage that it gives the
exact results without the explicit knowledge of the kink
waveform, its internal oscillation and the interactions with
other low-lying excitations.

A. Formulation of the TIO method

The thermodynamic quantities of the model are derived
from the classical partition function for the discrete system
governed by the Hamiltonian �2.1�. This partition function
can be written in the factored form Z=Z�̇Z� with Z�̇ the
kinetic contribution given by

Z�̇ = �2	Aa/�h2�N/2, �3.1a�

and Z� the configurational part whose expression is

Z� = �
n

exp�− �AL�0
2�n� , �3.1b�

and where �=1/kBT , h is the Planck’s constant and L=Na is
the total length of the system of N particles with assumed

FIG. 4. The same as Fig. 3, but
with r=−0.3. The phase plane plot
remains qualitatively unchanged
for changes of the value of the
shape parameter r.
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periodic boundary condition, �N+1=�1. The quantities �n are
the eigenvalues of the TIO defined by



−�

+�

d�i exp�− �Aa�0
2f��i+1,�i���n��i�

= exp�− �Aa�0
2�n��n��i+1� , �3.2a�

where

f��i+1,�i� =
1

2

C0
2

a2�0
2 ��i+1 − �i�2 +

1

4

Cnl

a4�0
2 ��i+1 − �i�4

+
1

2
�VRP��i+1� + VRP��i�� . �3.2b�

This TIO can be approximated, for each specific case, to an
equivalent Schrödinger-type equation with eigenfunction
�n��� and eigenvalue �n.

B. Continuum limit

In the continuous limit of slowly varying fields, that is
d0�a, the transfer integral equation �3.2a� and �3.2b� can be
reduced, through a set of transformations and neglecting
higher power in �a /d0�, to the following Schrödinger-type
equation:

−
1

2m*

d2�n���
d�2 + VRP����n��� = �̃n�n��� , �3.3�

where �̃n=�n−V0, with

V0 = −
1

2�
ln�2	a2

�d0
2 g1�y�2�, m* = ��AC0�0g2�y��2,

�3.4�

� = �Aa�0
2.

For positive values of the NICC Cnl, the renormalization fac-
tors g1�y� and g2�y� are given by

g1�y� = �2y

	
�1/2

eyK1/4�y� �3.5�

and

g2�y� = � K1/4�y�
4y�K3/4�y� − K1/4�y���

1/2

. �3.6�

Here, K��y� is the modified Bessel function and the param-
eter y is related to the NICC Cnl through the following rela-
tion: y=�AaC0

4 /8Cnl. This parameter may be viewed as the
ratio between the IPP energy of the system, E0=AaU0
=2AaC0

4 /Cnl, and the Boltzmann energy kBT, where E0 is the
IPP energy corresponding to a relative displacement �i+1
−�i for which the contributions of harmonic and anharmonic
terms in the IPP are equal. One can then distinguish two
different regimes according to whether the Boltzmann energy
is less than the characteristic energy E0 or large compared to
E0. The first results when y�1/16, in this case the IPP is
dominated by the harmonic term. In the opposite limit
�y�1/16�, the IPP is dominated by the anharmonic term.
This means that the renormalization factors g1�y� and g2�y�
contain all the information concerning the contribution of the

FIG. 5. Kink soliton profiles,
obtained from the numerical inte-
gration of Eq. �2.12�, for different
values of the reduced NICC � and
for few values of the deformabil-
ity parameter r. The curves in
each subplot correspond to the
following value of the reduced
NICC: �1� �=0; �2� �=−1; �3�
�=10, and �3� �=40.
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nonlinear term of the IPP. Figure 6 shows the variation of
these factors as a function of the parameter y. It follows that
at low temperature, they are close to 1, while for temperature
such that y�1/16 they become very large evidencing the
fact that the system is very sensitive to the anharmonicity of
the IPP.

Equation �3.3� is the Schrödinger-type equation for a
single particle, where the temperature dependent parameter
m* plays the role of an effective mass, moving in the nonlin-
ear potential VRP��� defined by Eq. �2.3�. This equation is
identical to the Schrödinger equation obtained for the stan-
dard RP model, except the fact that, here, the quantities V0
and m* depend on NICC Cnl through the renormalization
factors. Note that in the limit Cnl→0, that is y→
+� , g1�y�=1 and g2�y�=1, one recovers the basic results2,6

V0 = −
1

2�
ln�2	a2

�d0
2 � and m* = ��AC0�0�2. �3.7�

Thus, the Schrödinger equation �3.3� can be solved using the
technique usually invoked to solve the Schrödinger type
equation obtained for the basic NKG system.

Indeed, in the thermodynamic limit �L→�, N→�, and
L /N→constant�, Z� is dominated by the lowest eigenvalue
�̃0. To evaluate �̃0, we use the procedure developed by Cro-
itoru et al.22 and Grecu and Visinescu23 based on the assump-
tion depending on the large parameter which has the advan-
tage of making a clear distinction between different
contributions of low-lying excitations to the thermodynamic
properties: phonons, kink, kink-kink interactions, …, etc.
Following this procedure, the calculation of the ground state
�̃0 is similar to that performed in the case of the standard RP
model.6 Then

�̃0
�j� = �̃00

�j��1 − 4��j�� , �3.8�

where �̃00
�j� is the first term in the asymptotic expansion of the

lowest eigenvalue of the isolated potential well given by

�̃00
�1� = 1/�2
�m*�, �̃00

�2� = 
/�2�m*� . �3.9�

The quantities ��j� are the small parameters related to the
small shift from the eigenvalue of an isolated well due to the
presence of other degenerate minima of the RP potential. The
presence of these degenerate minima leads to the tunnel
splitting of the lowest level �̃00

�j� of the isolated well. The
lower extremity can be found from the boundary conditions
for the wave function of Eq. �3.3� and its derivatives. The
result which takes into account various kink soliton contri-
butions is

��j� � �k
�j� + �kk

�j�, �3.10�

where �k
�j� is the single kink soliton contribution given by

�k
�j� = �16�m*C̃�j�/	�1/2e−��j�

, �3.11�

since, as we shall see below, it is proportional to the single
kink soliton energy, and �kk

�j� the kink-kink contribution given
by

�kk
�j� = − 2�k

�j�2 ln�4���j�C̃�j�/G�j�� , �3.12�

where �=1.781 072 … is the Euler constant. The quantities

��j� and C̃�j� are given by

��j� = 8�m*G�j� = �Eks
�0��j�g2�y� �3.13�

and

FIG. 6. Renormalization fac-
tors �a� g1�y� and �b� g2�y� as a
function of 
y
. Curves �1� corre-
spond to the exact result of g1�y�
and g2�y� while curves �2� stand
for the series expansion of g1�y�
given by Eq. �3.28� and g2�y�
given by Eq. �3.29�, for positive
values of the NICC. It appears
that these series expansion repro-
duce the corresponding exact re-
sults if 
y
�2. Finally, curves �3�
stands for negative values of the
NICC Cnl, g1�y� and g2�y� are also
approximated by Eq. �3.28� and
by Eq. �3.29�, respectively.
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C̃�1� = 
 exp�2��1 − 
2/
�tan−1��1 − 
2/
�� ,

�3.14a�

C̃�2� = �1/
�exp�− 2�1 − 
2 tan−1�1 − 
2� . �3.14b�

From Eqs. �3.8�–�3.11�, the lowest eigenvalues �̃0 of the
Schrödinger eigenvalue equation is easily obtained,

�̃0
�j� = �̃00

�j� − 4�16�m*C̃�j�/	�1/2/�̃00
�j�e−��j�

��1 − 2�16�m*C̃�j�/	�/1/2e−��j�
ln�4���j�C̃�j�/G�j��� .

�3.15�

With the knowledge of the eigenvalue �̃0, the classical parti-
tion function Z is completely determined and consequently,
the thermodynamic quantities can also be evaluated.

Let us begin by calculating the free energy per unit length
of the system defined by f l=−�1/�L�ln Z. On the basis of the
previous calculation of the thermodynamic properties for the
basic NKG, we can separate the free energy into two parts,

f l
�j� = fph

�j� + f tun
�j� . �3.16�

The first part is given by

fph
�j� =

1

�a
ln� ��C0

ag1�y�
� +

1

2�dks
�j�g2�y�

, �3.17�

and the second part by

f tun
�j� = − kBTnks

�j��1 − Bks
�j�nks

�j�� , �3.18�

with

nks
�j� =

2

dks
�j�g2�y�

� 2

	
�1/2� C̃�j�

G�j��1/2

��j�1/2e−��j�
�3.19�

and

Bks
�j� = dks

�j�g2�y�ln�4���j��C̃�j�/G�j��� . �3.20�

When r=0�sG�, the results �3.16�–�3.20� reduce to those ob-
tained for the sG model.18 In addition, when the NICC Cnl is
weak, the first part of the free-energy fph

�j� given by �3.17� can
be developed as

fph
�j� =

1

�a
ln���C0/a� +

1

2�dks
�j� +

3

4

Cnl

�2Aa2C0
4�1 −

a

dks
�j�� ,

�3.21�

which is in fact the lowest-order terms in series expansion in
powers of Cnl. The first two terms are the phonon contribu-
tion to the free energy of the standard RP model,6 that is, for
Cnl=0, while the last term is the correction due to the anhar-
monicity of the IPP. Therefore, Eq. �3.17� can be interpreted
as the phonon contributions to the free energy of the system.

Similarly, in the limit Cnl=0, g2�y�=1, and ��j�=�Eks
�0��j�,

and consequently Eq. �3.19� reduces to the soliton density of
the standard RP model within the ideal gas approximation
while Eq. �3.20� gives the second virial coefficient.6,7 This
limiting case suggests that one can interpret the expression
�3.18� as the contribution of kink soliton in the free energy

where nks
�j�, given by Eq. �3.19�, designates the density. This

density can be rewritten in suggestive form as

nks
�j� =

2

deff
�j� � 2

	
�1/2� C̃�j�

G�j��1/2

��Eeff
�j��1/2e−�Eeff

�j�
, �3.22�

where Eeff
�j� and deff

�j� are the effective kink energy and width
given by

Eeff
�j� = Eks

�0��j�g2�y�, deff
�j� = dks

�j�g2�y� . �3.23�

Equation �3.23� shows that at finite temperatures, the energy
at rest of the kink soliton depends on the temperature and
increases with temperature since g2�y� is an increasing func-
tion of the temperature. In addition, Eks

0�j� can be viewed as
the kink soliton energy at the zero absolute temperature.
Note that a similar temperature dependence of the kink soli-
ton energy has been obtained by many authors when study-
ing the quantum statistical mechanics of the basic NKG
systems.24 The dependence on the temperature of the soliton
energy has been attributed to the anharmonic interactions
between small oscillations since it is induced by the param-
eter that measures the level of anharmonicity in the system
and consequently the strength of interactions. In our case,
following these studies, the temperature dependence of the
soliton energy is interpreted in the same way as the effect of
interaction between small oscillations or phonons; the
strength of these interactions being measured by the NICC
Cnl. In addition, the quantitative effects of these interactions
on the kink-soliton parameters �energy and width� are de-
scribed by the renormalization factor g2�y�. Therefore the
anharmonicity in the IPP enhances the energy of creation of
kinks and its width and contribute in lowering the kink soli-
ton density in the system. Following the result of the stan-
dard RP model,6 the total density of kink soliton in the sys-
tem is given by

ns
�j� = nks

�j��1 − Bks
�j��nks

�j�, �3.24�

where Bks
�j� is the second virial coefficient given by Eq. �3.20�.

This quantity can be rewritten in the more suggestive form
depending on the effective kink-soliton parameters as

Bks
�j� = deff

�j� ln�4��Eeff
�j��C̃�j�/G�j��� . �3.25�

Following this expression, it appears that, the anharmonicity
in the IPP enhances the interactions between kink in the sys-
tem since the second virial coefficient is an increasing func-
tion of Cnl.

We now consider another thermodynamic quantity, the
specific heat per unit length defined as c=−T�2f1 /�T2. As
the free energy, it can be separated into two parts,
c�j�=cph

�j�+ctun
�j� . From Eqs. �3.16�–�3.25�, we obtain

acph
�j�/kB = 1 +

2

y
�g1�

g1
+

a

2deff
�j�

g2�

g2
� +

1

y2�g1�

g1
− �g1�

g1
�2

+
a

2deff
�j� �g2�

g2
− 2�g2�

g2
�2	� �3.26a�

and
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ctun
�j� /kB = nks

�j�����Eeff
�j� −

1

2
� −

1

y

g2�

g2
��Eeff

�j� +
1

2
�	2

− 1 +
1

2
�1 −

1

y

g2�

g2
� −

1

y2

g2�

g2
��Eeff

�j� +
1

2
�� ,

�3.26b�

where the prime designates the derivation with respect to
1/y. In the limit of weak nonlinear coupling Cnl, the lowest-
order terms in the series expansion in powers of Cnl is given
by

ac�j�/kB = 1 −
3

16y
�1 −

a

dks
�j�� + nks

�0��j����Eks
�0��j� −

1

2
�2

−
1

2
	

−
3

16y
nks

�0��j�a��Eks
�0��j� +

1

2
����Eks

�0��j� −
1

2
�2

−
1

2
	 ,

�3.27a�

where nks
�0��j� is the kink soliton density of the standard RP

model given by

nks
�0��j� =

2

dks
�j�� 2

	
�1/2� C̃�j�

G�j��1/2

��Eks
�0��j��1/2e−�Eks

�0��j�
.

�3.27b�

When r=0, Eqs. �3.27a� and �3.27b� reduce to the results
previously obtained for the sG model.18 The deformability of
the system enters in these expressions through the kink soli-
ton parameters; the energy at rest and the width.

The first three terms in the brackets of Eq. �3.26a� and
�3.26b� are the contributions, to the specific heat, from the

phonon part of the free energy. The first term which is inde-
pendent of temperature, 1 /a, describes the Dulong-Petit law
while the other terms are induced by the anharmonicity of
the IPP. The last four terms in the second brackets are the
contribution from the second part of the free energy, f tun, in
the limit of ideal gas of solitons. Figure 7 shows the influ-
ence of anharmonicity of the IPP in the variation of the spe-
cific heat as a function of the temperature, in general, the
anharmonicity contributes in lowering the specific heat of the
system whatever the deformability parameter r. This effect is
less important if y�2 and becomes more important for the
values of y close or less than 1/16. This result is understand-
able since, as pointed out above, for y�1/16, the IPP re-
mains dominated by the harmonic term while for y�1/16
the anharmonic term predominates. Since y depends on the
temperature and the NICC Cnl, this influence is controlled by
the magnitude of the temperature of the system; it is negli-
gible for very low temperature and become more important
when the temperature increases and reaches the critical
value, depending on the nonlinear coupling coefficient
Cnl ,Tcr=2AaC0

4 /kBCnl. On the other hand, this influence of
anharmonicity on the thermodynamic properties and kink
soliton parameters is not sensitive to the deformability of the
system since there is no coupling between the shape param-
eter r and the NICC Cnl.

We now turn our attention to the case where the NICC has
negative values �Cnl�0�. In this case, the TIO �3.2a� and
�3.2b� diverges if Cnl→−�. However, for weak values of
Cnl, it is possible to replace it by the Schrödinger equation
�3.3� using the cumulant expansion, where V0, �̃n, and � are
also given by Eq. �3.4�. However the renormalization param-
eters, g2�y� and g1�y�, are now given by the series expansion
in powers of 1 /y,

FIG. 7. Specific heat of kink-
soliton system as a function of
the reduced temperature Tr

=kBT /AC0�0, for few values of
the reduced NICC � and for four
values of the deformability param-
eter r.
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g1�y� = 1 −
3

25y
+

105

211y2 −
3465

216y3 +
675 675

223y4 + ¯

�3.28�

and

g2�y� = 1 +
3

24y
−

69

29y2 +
1647

213y3 −
223 245

219y4 + ¯ ,

�3.29�

where the parameter y still remains defined by
y=�AaC0

4 /8Cnl as in the preceding paragraph. In order to
verify the exactness of expressions �3.28� and �3.29�, we
have verified successfully that the series expansion of g1�y�
and g2�y�, given by �3.5� and �3.6�, respectively, are identical
to the series expansion �3.28� and �3.29�. Figure 6 confirms
this result since the series expansion �3.28� and �3.29� for
Cnl�0 are very close, for y�2, to the exact analytical ex-
pressions of g1�y� and g2�y�. This means that the analytical
results of the free energy and specific heat derived in the
preceding paragraph for Cnl�0 are also valid for the case
Cnl�0 but with the renormalization factors given by Eqs.
�3.28� and �3.29�. In addition, the physical signification of y
must be revised. Indeed, y is proportional to the ratio be-
tween the IPP barrier, E1=AaC0

4 /4
Cnl
=E0 /8, and the Bolt-
zmann energy. As in the case of Cnl�0, we can also distin-
guish two different situations; according to whether the
Boltzmann energy is less than the IPP barrier E1 or large
compared to E1. When 
y
�1/2, the barrier height, E1, is
higher than the Boltzmann energy and the particles are con-
fined in the bottom of the potential while for 
y
�1/2 this
barrier height is less than the Boltzmann energy and particles
can reach the top of the barrier and escape.

The effective kink parameters, the energy and width, are
also given by Eq. �3.25� but the renormalization parameter
g2�y�, given by Eq. �3.30�, is now a decreasing function of

Cnl
 and the temperature. Thus, the anharmonicity in the IPP
contributes in lowering the energy of creation of kink in the
system and then increases the number of thermally activated
kink solitons whose expression is given by Eq. �3.23�. As in
the case of positive Cnl, the influence of the anharmonicity is
dictated by the magnitude of the temperature. It is negligible
for low temperatures and more important for temperatures
greater than the critical value Tcr=−AaC0

4 /4kBCnl. This influ-
ence is not also sensitive to the deformability of the system.

C. Lattice corrections to the free energy of the system

We now consider the lattice corrections to the thermody-
namic properties of the model. As pointed out by Trullinger
and Sasaki,25 it is possible, through a set of transformations
and neglecting higher powers in �a /d0�2, that the transfer
integral equation �3.2a� and �3.2b� with the first lattice cor-
rection included can be approximated by a Schrödinger-type
equation. Following this procedure, we obtain the following
Schrödinger equation for the TIO �3.2a� and �3.2b�:

−
1

2m*

d2�n���
d�2 + Veff����n��� = �̃n�n��� �3.30�

for a single particle of mass m* given by Eq. �3.4�, moving in
the nonlinear effective potential

Veff��� = VRP��� −
a2

24d0
2g2�y�2

d2VRP���
d�2 , �3.31�

where g2�y� is the renormalization factor defined by Eq. �3.6�
for cnl�0 and by the series expansion �3.29� for Cnl�0. The
eigenvalues �̃n of this Schrödinger equation is related to the
eigenvalues �n of the TIO �3.2a� and �3.2b� through the re-
lation �̃n=�n−V0, where V0 is given by Eq. �3.4� and where
g1�y� is given by Eq. �3.5� for Cnl�0 and by the series
expansion �3.28� for Cnl�0.

As one can easily see, the Schrödinger equation �3.30� is
identical to that obtained at order �a /d0�, that is in the con-
tinuum limit, except for the fact that the potential VRP��� is
replaced here by the effective potential �3.31� depending
both on the substrate potential VRP��� and on the scaling
parameter g2�y�. Therefore, we can use the procedure of the
preceding paragraph to solve �̃0. Following this procedure,
the ground state �̃0 is given by

�̃0
�j� = �̃00

�j��1 − 4��j���1 − ��j�� , �3.32�

where �̃00
�j� is the first term in the asymptotic expansion of the

lowest eigenvalue of the isolated potential well given by Eq.
�3.9� and

��j� = �1/24��a2/deff
�j�2� . �3.33�

The expression of the small parameters ��j� which takes into
account kink and kink-kink contributions is

��j� � �k
�j� + �kk

�j�, �3.34�

where �k
�j� is the single kink solition contribution given by

�k
�j� = �16�m*C̃�j�/	�1/2�1 − ��j�/3�e−��j�

, �3.35�

and �kk
�j� the kink-kink contribution given by

�kk
�j� = − 2�k

�j�2�ln�4���j�C̃�j�/G�j�� − �2/3���j�� ,

�3.36�

with � the Euler constant, and C̃�j� given by Eq. �3.14�. The
quantities ��j� are given as

��j� = �Eeff
�j��1 − ��j�/3� , �3.37�

where Eeff
�j� is the effective kink soliton energy in the con-

tinuum limit. From Eqs. �3.32�–�3.37�, the lowest eigenval-
ues �̃0 of the Schrödinger eigenvalue equation can be easily
obtained and then the expression of the classical partition can
be followed. Thus, the free energy per unit length is given by

f l
�j� = fph

�j� + f tun
�j� , �3.38�

where the phonon contribution is given by
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fph
�j� =

1

�a
ln���C0/a� +

1

2�deff
�j� �1 −

a2

24deff
�j�2� , �3.39�

and the kink soliton contribution,

f tun
�j� = − kBTnc_ks

�j� �1 − Bc_ks
�j� nc_ks

�j� � . �3.40�

The quantity nc_ks
�j� is the lattice corrected kink soliton density

within the ideal gas approximation,

nc_ks
�j� =

2

deff
�j� � 2

	
�1/2� C̃�j�

G�j��1/2�1 −
a2

72deff
�j�2���Ec_eff

�j� �1/2e−�Ec-eff
�j�

,

�3.41�

with

Ec_eff
�j� = Eeff

�j��1 −
a2

72deff
�j�2� , �3.42�

the corrected kink effective energy due to lattice discrete-
ness, while Bc_ks

�j� , given by

Bks
�j� = deff

�j��1 +
1

24

a2

deff
�j�2��ln�4��Ec_eff

�j� �C̃�j�/G�j��� −
1

36

a2

deff
�j�2� ,

�3.43�

is the lattice corrected second virial coefficient. The cor-
rected effective energy is therefore, as expected, lowered be-
low the continuum zero-order value. The discreteness correc-
tions appearing in Eq. �3.42� for the kink soliton rest energy
can be interpreted as a downward renormalization of the kink
soliton creation energy in this discrete system. In the limit
�a /d0�2→0, Eqs. �3.39�–�3.43� reduce to those obtained in
the continuum limit, namely Eqs. �3.17�–�3.20�. In addition,
when r=0 they reduce to the results previously obtained for
the sG model.19 The above corrected expressions depend not
only on the characteristic length of the system d0, the shape
of the substrate potential but also on the anharmonicity of the
IPP through the effective kink width deff

�j� defined by Eq.
�3.23�. This dependence of the lattice corrections factors to
the kink soliton effective width is at the origin of the tem-
perature dependence of the first lattice corrections to the
thermodynamic quantities of the system.19 As mentioned
above, the temperature dependence of kink soliton effective
parameters, which results from the anharmonicity of the IPP,
may be attributed to the anharmonicity of the interactions
between linear phonons. Note also that, the analytical ex-
pressions �3.39�–�3.43� suggest that, for positive values of
the NICC Cnl, the first lattice corrections become less and
less important when the temperature is increased while for
negative values of Cnl they are more and more important for
increasing temperatures.

IV. CONCLUSION

In this paper, we have investigated the low-temperature
statistical mechanics of the nonlinear Klein-Gordon �NKG�
model with the Remoissenet-Peyrard substrate potential and
anharmonic interparticle pair potential �IPP�. We have used
the phase plane plot to predict that the system may sustain

different features concerning the existence of excitations: For
convex IPP obtained for positive nonlinear interparticle cou-
pling coefficient �NICC�, the system exhibits the kink and
phonons excitations usually observed in the basic NKG sys-
tem. However, for nonconvex IPP obtained for negative val-
ues of the NICC, the anharmonicity of the IPP is at the origin
of the appearance of new types of excitations and may be
also responsible for the disintegration of kink solitons if the
value of the NICC is lower than a particular threshold. It
should be mentioned that these results are qualitatively inde-
pendent of the deformability of the system.

We have calculated also the thermodynamic properties of
the system by means of the TIO method associated with the
asymptotic methods from the theory of differential equations
depending on a large parameter. The free energy and the heat
capacity of the system exhibiting kink solitons have been
exactly calculated. Due to the anharmonicity of the IPP, the
obtained results are renormalized by the factors which de-
pend both on the NICC and on the temperature, but not on
the deformability parameter. Furthermore, and contrary to we
can naively expect, the soliton effective parameters �energy
of creation and width� are also corrected by these tempera-
ture dependent renormalization factors. The analysis shows
that at very low temperatures, the quantitative effects of the
anharmonicity of the IPP to the thermodynamic quantities
are very small and can be neglected, and become large for
temperatures close to or exceeding some critical values.
Thus, due to this coupling between the NICC and the tem-
perature of the system, the quantitative effects of the anhar-
monicity of the IPP to the thermodynamic quantities and
kink to the soliton effective parameters are controlled by
temperature. In addition, the analysis of the discreteness fac-
tor resulting from the first lattice corrections to the free-
energy shows that the magnitude of the discreteness effects is
monitored by temperature and the deformability parameter of
the system.

The present results allow one to predict three things. �i�
The kink soliton parameters �energy and width� of the basic
NKG models give the zero-temperature parameters of kink
solitons in the corresponding NKG models with anharmonic
IPP. In addition, these zero-temperature parameters set the
scale of the corresponding parameters in the NKG model
with anharmonic IPP. �ii� As far as the statistical mechanics
of the NKG model with anharmonic IPP is concerned, pa-
rameters of kink solitons of this model are temperature de-
pendent. �iii� The renormalization factors resulting from the
first lattice corrections to the thermodynamic properties and
to the static kink energy are temperature dependent for the
kink soliton bearing systems with anharmonic IPP and are
also sensitive to the deformability parameter of the system.

As previously mentioned,18 although a complete proof of
a similar CKBT phenomenology does not exist at present,
our results strongly support the idea that their phenomenol-
ogy is valid at low temperatures. This comes from the pho-
non part which reproduces exactly, for weak anharmonicity,
the specific heat capacity of a phonon lattice gas. We hope
that, these exact results for one-dimensional NKG systems
with anharmonic interparticle interactions will stimulate fur-
ther with the goal of making detailed comparisons to test the
validity of the phenomenological generalization of the
CKBT theory.
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