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Spectral properties and anomalous diffusion in the silver-mean �octonacci� quasicrystals in d=1,2,3 are
investigated using numerical simulations of the return probability C�t� and the width of the wave packet w�t�
for various values of the hopping strength v. In all dimensions we find C�t�� t−�, with results suggesting a
crossover from ��1 to �=1 when v is varied in d=2,3, which is compatible with the change of the spectral
measure from singular continuous to absolute continuous; and we find w�t�� t� with 0���v��1 correspond-
ing to anomalous diffusion. Results strongly suggest that ��v� is independent of d. The scaling of the inverse
participation ratio suggests that states remain delocalized even for very small hopping amplitude v. A study of
the dynamics of energy-filtered wave packets in large three-dimensional quasiperiodic structures furthermore
reveals that wave packets composed of eigenstates from an interval around the band edge diffuse faster than
those composed of eigenstates from an interval of the band-center states: while the former diffuse anomalously,
the latter appear to diffuse slower than any power law.
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I. INTRODUCTION

The discovery of quasicrystalline solid-state structures,
characterized by the presence of long-range order but no
translational symmetry,1 which can be viewed as intermedi-
ates between crystalline and amorphous structures2 with
icosahedral,1 dodecagonal,2 decagonal,3 and octagonal4 ori-
entational symmetry, as well as the classical wave propaga-
tion in quasiperiodic structures,5 renewed the interest in
studying quasiperiodic systems, in particular their transport
properties.6–10

Quantities commonly studied to characterize the electron
dynamics in this context are the return probability C�t� and
the mean-square displacement w�t�, defined as

C�t� �
1

t
�

0

t

dt����r�0,t���2, �1�

and

w2�t� � �
n=1

N

�r�n − r�0�2���r�n,t��2, �2�

where ��r� , t� is a wave packet initially located at a site r�0:

��r�,t = 0� = �r�,r�0
. �3�

One of the characteristic properties of quasiperiodic sys-
tems are power-law asymptotic behaviors of these two quan-
tities in the limit t→�, when

C�t� � t−�, �4�

and

w�t� � t�. �5�

The exponents satisfy 0�� , ��1, where the two equalities
correspond to the limiting cases of, respectively, the absence

of diffusion and the ballistic motion. Inbetween these two
cases anomalous diffusion takes place �the classical diffusion
is a special case �=1/2�, leading to the anomalous transport
via Einstein’s relation for the zero-frequency conductivity:
��2e2nFD���, where D���=w2��� /� is the diffusion con-
stant, nF is the density of states per spin at the Fermi energy,
and Eq. �5� leads to the generalized Drude formula �
�2e2nFA� 2�−1, with A being a constant and � being a char-
acteristic time beyond which the propagation becomes diffu-
sive due to the scattering.8,10 Furthermore, the shape of the
diffusion front of the wave packet has asymptotically the
form of a stretched exponential exp�x /w�t��−	 with 	=1/ �1
−�� in the limit t→�,11 where x is the distance from the
initial site.

The exponent � characterizes the spectral properties and
equals the correlation dimension of the spectral measure �the
local density of states�.12–14,25 Furthermore, the wave packet
dynamics exhibits multiscaling, where different powers of
displacement in Eq. �2� scale with different exponents �.17–23

Pure-point, singular continuous and absolute continuous
spectra can be defined with �=0,0���1 and �=1, respec-
tively. Spectra with �
0 have also �
0. Bounded w2�t
→�� implies �=0, but the opposite is not necessarily true.24

One-dimensional quasiperiodic systems commonly have sin-
gular continuous spectra,15,16,25–29,35 and may furthermore
exhibit transitions from pure point to absolute continuous
behavior �being singular continuous at the transition point�
as a parameter in the Hamiltonian is varied, for instance in
Harper’s model of an electron in a magnetic field,30 or the
kicked rotator.31 Eigenstates of quasiperiodic systems exhibit
multifractality41, when the electron wave function is neither
localized nor extended but exhibits self-similarity15,26,27,32

�definitions and further discussion are given in Sec. VI�,
similar to the Anderson model of localization for disordered
conductors near the localization-delocalization transition.33
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The Hamiltonian H studied in this work �defined in Sec.
II� describes a system of Nm

d atoms of a d-dimensional prod-
uct of mth approximants of the silver-mean �octonacci� off-
diagonal model.

In a previous work,25 the direct sum of one-dimensional
quasiperiodic systems was studied, and it was shown that
already in this case spectrum undergoes a transition from
singular to absolute continuous spectrum. On the other hand,
it is easy to prove analytically exactly that in quasiperiodic
systems defined as a direct sum of one-dimensional quasip-
eriodic systems, w�t� does not depend on the dimensionality
of such tilings. In the product systems studied here this is not
the case anymore and therefore they can be viewed as a
natural next choice for the construction of interesting higher-
dimensional quasiperiodic systems in the study of w�t�.

The rest of the paper is organized as follows: In Sec. II we
define the systems studied, whose eigenproblem is discussed
in Sec. III; in Secs. IV and V results of the calculation of
C�t� and w�t� are presented and discussed, respectively; in
Sec. VI participation ratios of eigenstates are analyzed, and
finally, conclusions are presented in Sec. VII.

II. DEFINITIONS

The silver-mean chain is defined over an alphabet 	L ,S

by the inflation rule

�:�L → LSL

S → L ,
� �6�

iterated m times starting with letter S, with the corresponding
Hamiltonian

Hm = �
nn��

tnn��cn
†cn� + cn�

† cn� , �7�

where the sum is restricted to nearest neighbors and the hop-
ping integrals tnn� take values 1 and 0�v�1 for, respec-
tively, letters L and S �“large” and “small” hoppings� of the
letter sequence of the approximant �with open boundary con-
ditions�. Among various number-theoretical properties of the
approximants, we mention that the mth approximant’s length
Nm satisfies limm→�Nm+1 /Nm=1+�2=�S, the so-called silver
mean.

The d-dimensional quasiperiodic tilings we study are de-
rived from the direct product of silver-mean chains28,34 with
the Hamiltonian

Hm
�d� � � i=1

d Hm. �8�

This has a particularly simple geometrical interpretation,
since it describes a particle on a d-dimensional cube, with
coordinates r��	x1 ,… ,xd
, hopping only along the main di-
agonals of the cube: 	x1 ,… ,xd
→ 	x1±1 ,… ,xd±1
. Since
the nearest neighbors of the cube cannot be connected by any
number of such hops from Hm

�d�, the Hamiltonian �8� decom-
poses into N=2d−1 parts defined on corresponding interpen-
etrating disconnected quasiperiodic tilings. It can be shown
that all of these Hamiltonian parts are equivalent, and that
the tilings they define are symmetry related, due to the re-

flection symmetry of the silver-mean chain about the middle
bond of the chain.

Such tilings in d=2 are known as labyrinth tilings, and
Fig. 1 shows one example, an m=5 tiling. The tiling has
bipartite structure. Furthermore, a two-dimensional projec-
tion of the silver-mean tiling in d=3, for instance, looks
exactly as the tiling in Fig. 1, because the whole tiling has a
layered structure: all symbols of the same kind in the figure
belong to one layer. The distance between successive layers
are, of course, again determined by the silver-mean se-
quence. The number of sites N in various tilings is given in
the Table I.

III. EIGENPROBLEM

The eigenproblem of Hm is

Hm��i� = Ei��i�, i = 1,…,Nm, �9�

to which the eigenproblem of Hm
�d� reduces

Hm
�d���i1

� � ¯ � ��id
�

� Ei1
¯ Eid

��i1
� � ¯ � ��id

�, ij = 1,…,Nm.

�10�

Regarding the subtiling eigenproblem, its eigenstates are
obtained simply by projecting the eigenstates of Hm

�d� onto the
subtiling �with normalization constant N−1/2� due to the
equivalence of the individual eigenproblems �9�. Thus, if P
denotes the projector onto the subspace of one subtiling, the

FIG. 1. Labyrinth tiling corresponding to the Hamiltonian �8�
for m=5, d=2. The distances L and S of the silver-mean chain are
taken as 1 and v=0.5. Then the bond lengths of the labyrinth tiling
are �2, �1+v2, and v�2. The bipartite structure is indicated by the
open and closed circles for the sites, taking into account that hop-
ping occurs only among the sites of different kind. The second,
equivalent, labyrinth tiling is shown in the figure by dots.
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corresponding subtiling Hamiltonian is PHm
�d�P and its eigen-

states are N−1/2P��i1
� � ¯ � ��id

� with the same eigenener-
gies as in Eq. �10�. The reduction of the problem to quasip-
eriodic subtilings of the product tiling therefore only reduces
the degeneracy of individual eigenstates of Hm

�d�, while the set
of distinct eigenenergies is exactly the same. Furthermore,
since all the Hamiltonians studied here have only off-
diagonal matrix elements on a bipartite lattice, their eigenen-
ergies necessarily come in opposite-energy pairs, and thus
we can restrict our discussion to the spectral properties for
states with E�0.

Figure 2 shows the dependence of the eigenenergies on
the parameter v. A characteristic feature of the spectra is the

existence of gaps of various sizes. In d=1, the gap-labeling
theorem gives an enumeration of all the possible gaps in the
spectrum.26,36 For d
1 these gaps seem to close for a suffi-
ciently large v, and Fig. 2 suggests that gaps persist only for
v0.6,0.4 in d=2,3, respectively. The gaps close due to the
level crossings that are a consequence of the factorizability
of the eigenenergies in Eq. �10�. Due to this we expect that
the spectrum will acquire finite Lebesgue measure and
change from fractal to continuous for intermediate values of
v, similar to the results of Ref. 28.

A more difficult question, that we address in the next
section, is whether the spectrum is singular or absolute con-
tinuous or a mixture of the two in different regions of the
spectrum for various values of v. To this end we first note
that 2d states corresponding to E=−1 for v=0 are a conse-
quence of the open boundary conditions used in this work,
corresponding to the electron localized, for small v, at the
different ends of the chain �in d=1 and corners of the cube
for d
1�, and spreading across the system as v→1. Such
states are not necessarily localized since their linear combi-
nation can have a nonzero component at both ends of the
chain. In this respect the systems studied here are different
from those of Ref. 34, where two E=0 states have been
induced by adding two sites at each end of the chain with
�=0. However, for the results presented here this difference
in boundary conditions does not play any important role.

IV. RETURN PROBABILITY AND SCALING OF THE
SPECTRAL MEASURE

In this section we study the scaling of the return probabil-
ity C�t� by evaluating numerically Eq. �1� of initially local-
ized wave packets on silver-mean tilings in d=1,2,3 con-
structed, as described in the previous section, from
eigenstates of the chain, obtained from the numerical diago-
nalization of the Hm, and taking into account that the time
evolution is given by � j�t�=� j exp�−iEjt�. We present the
results in Fig. 3. For small values of v there are pronounced
steps, and this limit we analyze elsewhere.37

For each of the studied cases in the figure, there are three
characteristic time-scales of the particle dynamics: �i� short
times, characterized by a high probability to find the particle

TABLE I. The number of sites N of the d-dimensional tilings of
various approximants m of the silver-mean �octonacci� quasicrystal.

m d=1 d=2 d=3

2 4 8 16

3 8 32 128

4 18 162 1458

5 42 882 18 522

6 100 5000 250 000

7 240 28 800 3 456 000

8 578 167 042 48 275 138

9 1394 971 618 677 217 746

10 3364 5 658 248 9 517 173 136

11 8120 32 967 200 133 846 832 000

12 19 602 192 119 202 1 882 960 298 802

FIG. 2. Dependence of eigenenergies on the parameter v in d
=1,2,3, from the bottom panel to the top, respectively, for the iter-
ants m=10,7,6. Only eigenenergies E�0 are shown due to the sym-
metry of the spectra about the band center.

FIG. 3. Calculated values of the return probability C�t� in d=1,
2, and 3, from left panel to the right, respectively, for
v=0.1,0.2,…,0.9, respectively, from the top curve to the bottom.
The dashed line in each panel has the slope −1.
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at the initial site, which corresponds to the regime when the
wavepacket has only begun spreading; �ii� intermediate
times, when C�t� does seem to behave according to the
power law �4�; and �iii� the long-time limit when there is a
crossover into a constant C�t�, due to the finite spatial extent
of the studied systems.

The quantitative determination of � is rather difficult, due
to the large subdominant contributions to the asymptotic
power-law behavior.25 These appear through the dependence
of � on the interval of t values taken for the least mean-
squares linear fit in the log-log plot of C�t�. Lacking rigorous
results, one attempt to characterize these corrections to Eq.
�4� would be to consider a class of power-law subdominant
corrections by assuming

C�t� � t−� + c1t−��, 0 � � � �� � 1. �11�

It was noted in Ref. 25 that, in the case of the Fibonacci
model, C�t� can be accurately fitted to Eq. �11� under the
assumption that �� is exactly equal to 1, and the authors gave
some plausible but nonrigorous arguments for this assump-
tion. On the other hand, numerical verification of Eq. �11� by
a least-squares nonlinear fit requires that C�t� is calculated
for many decades of ln t. In addition, verification of ���1
by such a procedure would be particularly difficult near the
transition from singular to absolute continuous spectrum
where the fit would be expected to yield already �→1, i.e.,
to decompose the fitted function into two nearly identical
terms. Finally, the parameter v would be expected to play
some role also in the subdominant terms, for instance
through the dependence of the value of �� on v.

An additional difficulty was pointed out in Ref. 38, where
the scaling exponent of the second moment of the spectral
measure was considered �which is known12 to be equal to ��
for several quasiperiodic systems, including Fibonacci
chains, and an apparently irregular behavior of the moment
was found in all of the non-Fibonacci models. This led the
authors to use a fitting procedure that does not involve fitting
of a straight line and even to consider the possibility that the
exponent � might not exist in these non-Fibonacci systems.

In this work we fit the power law �4� to the calculated
values of C�ti� �for many values of ti equidistant in the loga-
rithmic scale� by fitting of the expression

C�t� = At−�+� ln t, �12�

in all intervals containing ti values spanning at least one
decade in t �for easier comparison, this corresponds to a
change in ln t of at least 2.3 in the plots�, and selecting
among the obtained fits of � those that have � values closest
to 0. Should several distinct values of � occur that all have
small �, it seems reasonable that those values corresponding
to later times are closer to the correct asymptotic value of �,
just as it is reasonable to expect that for larger t values Eq.
�11� becomes close to the power law �4�. Our fitting proce-
dure does not assume anything in particular about the sub-
dominant terms of the powerlaw asymptotic behavior, but
rather estimates � by requiring the absence of certain types
of subdominant terms, as quantified by �.

We show such obtained fits in Fig. 4 for the case m
=6, d=3. This is the most difficult system among the three
cases presented in Fig. 3 because the duration of the inter-
mediate time regime �ii�, where the power law asymptotic
behavior should be most likely expected, depends only on
the linear size of the system, determined by m, and not on the
dimensionality d. The obtained values of � in the fits pre-
sented in Fig. 4 range from 10−4 to 10−7.

A characteristic feature of the fits is that for v�0.5, the
time intervals where the power law is obeyed best �i.e.,
where � is smallest� are shorter than the intervals for v
0.4, even though for large v the curves for ln C�t� do not
show oscillatory behavior and appear to be more similar to
the straight lines. There is, however, a small curvature in the
dependence of ln C�t� on ln t for the crossover times inbe-
tween regimes �i� and �ii� as well as �ii� and �iii�. This is hard
to see in the plots, since it involves large relative changes in
small curvatures, but easy to distinguish numerically in our
fitting procedure.

The results for � obtained from the above described fitting
procedure applied to the results from Fig. 3 are presented in
Fig. 5. The plot for d=2 shows ��v� also for m=6, which is
systematically larger than ��v� of the m=8 system for v
�vc and smaller for v
vc, from which we speculate on the
possible form of the limiting curve of the infinite system as
indicated in the figure for d=2,3. This extrapolation of ��v�
in d=2,3 is in agreement with semiquantitative consider-
ations of this limit in Ref. 25. For d=1 the results suggest
that ��1 for all v�1 also in the infinite system. The expo-
nents thus suggest that there is a singular continuous spec-
trum for all v values in d=1 and a possible transition from
singular continuous to absolute continuous spectra at vc
�0.6 in d=2 �in agreement with a previous estimate�,34 and
at vc�0.4–0.5 in d=3. Interestingly, the possible values of
vc are in agreement with the exact result for direct sums of

FIG. 4. Return probability in d=3 �points� together with fitted
lines close to the power law from the procedure described in the
text.
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one-dimensional systems,25 vc�d
1�=v* where v* is the so-
lution of �d=1�v*�=1/d.

A difficulty in obtaining exact values of vc could be due to
the possibility that, for v�vc, the spectrum is a mixture of
singular continuous and absolute continuous parts, when ab-
solute continuous parts appear in only small intervals of the
full spectrum that grow larger with increasing v, and when
the � values obtained for v away from vc are closer to the
correct asymptotic values.

A previous study34 of the propagation of the projection of
the wave packet �3� onto various segments of the spectrum
of the silver-mean model in d=2 found that C�t� of such
restricted wave packets still obeyed the power law, with ex-
ponents differing only slightly from � obtained when the full
spectrum is used. We were able to extend this result by prov-
ing the following: If the spectrum is divided into a finite
number of M segments such that 1=��=1

M P�, where P� is the
projector onto the subspace corresponding to the segment �,
and if C��t�� t−�� in each of the M segments, where C��t� is
defined as in Eq. �1� with the wave packet �3� replaced by its
projection P���r� ,0�, and if Eq. �4� also holds, then �
�max�	��
 �the derivation is given in the Appendix�.

V. ANOMALOUS DIFFUSION

The main advantage of calculating the width w�t� of a
wave packet is that it is more directly related to the transport
properties than C�t�, as discussed in the introduction, and
that its asymptotic power-law behavior �5� seems to be less
influenced by subdominant contributions, and therefore
easier to determine from numerical studies of finite-size sys-
tems, as we discuss below.

One of the main difficulties in numerical studies of the
anomalous diffusion is that in order to obtain w�t� accurately,
many eigenvectors are needed. Calculating its behavior at
large times also requires large system sizes. This puts signifi-
cant constraints on the system sizes that can be investigated
numerically, and several approximations have been devel-
oped to circumvent these difficulties. One of them is to ex-
pand the evolution operator in terms of small-time
increments,39 or to study the time evolution of the position
operator expanded in terms of Chebyshev polynomials com-
bined with energy filtering via a Gaussian operator centered
at a given energy and of the width of, e.g., 1% of the total
bandwidth.40 In the latter work, generalized quasiperiodic
Rauzy tilings have been studied and the authors were inter-
ested how the connectivity of the tiling influences transport

properties of the quasicrystal in d=2,3. The simplifying fea-
ture of the model is that the Hamiltonian is sparse with no
matrix elements different from 1, which significantly speeds
up any algorithm where multiplication with the Hamiltonian
is a time-consuming part of the calculation, like the algo-
rithm of Ref. 40 as well as, for instance, the Lanczos algo-
rithm. Another approach was to study the evolution of a
wave packet ���r� , t=0� constructed from a subset of eigen-
states from an interval � of the full spectrum34,42

���r�,t = 0� � P�� r�̂,r�0
= �

Ei��

�i
*�r�0��i�r� � , �13�

where P� is, as in the previous section, the projector onto the
subspace corresponding to the segment �:

P��r�,r�̂ ���r�̂ � � �
Ei��

�i�r� ��
r�̂

�i
*�r�̂ ���r�̂ � . �14�

These wave packets are localized at a single site only ap-
proximately and have ripples all over the system, so that the
initial width is not zero, though small. Using such wave
packets, the largest system studied in this work is m=7 for
d=3 with 3 456 000 sites.

Figure 6 presents results of the calculations of the spread-
ing width w�t� of a wave packet initially localized on a single
site using all the eigenstates of the spectrum. For small v
values pronounced steps appear, related to the similar steps
in Fig. 3 and the structure of very narrow bands of the spec-
tra �cf. Fig. 2�, that we discuss elsewhere.37

The three regimes of wave-packet dynamics discussed in
the previous section here correspond to �i� the nearly ballistic
propagation for early times t1, �ii� anomalous diffusion, in
intermediate intervals of t, characterized by Eq. �2�, and �iii�

FIG. 5. Calculated values for the exponent �
characterizing the asymptotic behavior C�t�� t−�.
Error bars are of the size of the symbols. Con-
necting lines are included for guiding the eye.
The possible behavior of � in the limit of large m
is indicated by dotted lines �see text for further
discussion�.

FIG. 6. Calculated values of the width w�t� of the wave packet
for three systems as indicated in each panel, for v=0.9,0.8,…,0.1,
going from top curve to the bottom, respectively. The dashed line in
each panel has slope 1 corresponding to the ballistic motion.
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a stationary regime of approximately constant w�t�, due to
the finite extent of the studied systems, for large t. The maxi-
mum of w which would be possible for a system of linear
size L can be estimated as �dL /2, corresponding to a state
completely localized at the corners of the sample; for the
system sizes in Fig. 6, maximal values of ln w are approxi-
mately 7.4, 5.1, 4.5 in d=1,2,3, respectively. On the other
hand, a completely delocalized state would lead to ln w
�6.878,4.587,3.919, respectively; thus Fig. 6 shows that for
large values of v the wave packet becomes smeared out over
the entire sample in the regime �iii�. The crossover from
regime �ii� to �iii� becomes longer for larger d, which is due
to the more complicated reflection of the wave packet off the
boundaries in higher-dimensional tilings.

The values of the exponent �, which were obtained using
the same fitting procedure as in the previous section, are
presented in Fig. 7. They seem to be independent of the
dimensionality of the system. Since the calculation of w�t� is
computationally slower than that of C�t�, system sizes con-
sidered here are smaller than in the previous section, and in
particular, for v=0.9, the power law was observed for only
about a half a decade of time for d=2,m=7, as opposed to
two decades for d=1,m=10, and we could not obtain a re-
liable exponent using our fitting procedure for d=3,m
=6,v=0.9. In the fitting procedures used in the previous sec-
tion, for comparison, the calculated exponents were obeyed
for at least a decade �and up to six decades in some cases for
smaller v values�.

In order to assess the role of connectivity of the quasip-
eriodic tiling43–45 in d=3, we make a comparison of the
wave-packet dynamics studied here with those of Ref. 40.
Since in the latter work energy filtering was used as de-
scribed above, we calculate w�t�, as defined by Eq. �2�, of the
wave packet Eq. �13� that is a linear combination of eigen-

states with energy E in the interval 0� �E�− �E����E�,
where �E� is chosen such that the interval contains about
2% of the total number of states.

Figure 8 presents calculated values for several energies E�

between the band edge and the band center. Apparently when
the wave packet is composed only of band edge states, the
diffusion is anomalous with the exponent very close to the
value ��0.66 obtained when the full spectrum is consid-
ered, as indicated in the figure. For other energies, there
seems to be an intermediate time regime when anomalous
diffusion also takes place, with the same or smaller expo-
nents as compared to the one found at the band edge. Fur-
thermore, a third kind of behavior also occurs, most notably
at the band center, where the wave packet seems to spread
slower than any power law. This is in qualitative agreement
with the findings of Ref. 40 in the sense that there wave
packets made out of states from the band edge also spread
faster but, in contradistinction with the finding here, ballistic
motion was found at the band edge and anomalous diffusion
at the band center.

It is unclear to us at present what kind of eigenstates are
responsible for the slow diffusion seen at the band center.
Qualitatively, marginally critical states45 might be perhaps
related to this kind of wave packet dynamics.

Such constructed wave packets will inevitably have some
“ripples” that depend on how well eigenstates from the cho-
sen interval � approximate �r�,r�0

, which in turn depends on
the choice of the starting site r0. This can be characterized by
p0=�Ei�� ��i�r�0��2, and states in Fig. 8 have p0�14% and
0.7% at the band edge and the band center, respectively. In

FIG. 7. Values of the exponent � governing anomalous diffusion
of the wave packet, as extracted from the data in Fig. 6. The error
bars are of the size of the symbols.

FIG. 8. Calculated values of the width w�t� of the initially lo-
calized wave packet composed only of states with eigenenergies
from small energy intervals containing around 2% of the total num-
ber of states, for d=3, m=7, v=0.5 �with 3 456 000 sites� going
from the band edges �top curve� to the band center �bottom curve�.
Individual curves are shifted vertically for clarity. The dashed line
near the topmost curve has the slope ��0.66 that was found in the
m=6 system using the whole spectrum.
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order to show some evidence that the obtained dynamics in
the two cases does not depend on the choice of the initial
site, we present w�t� in Fig. 9 when the initial site is chosen
two sites along the main diagonal of the system away from
the center, in which case p0�0.3% and 11% at the band
edge and the band center, respectively. The dependence of
the values of p0 on the choice of the initial site is reflected in
the range of values that w�t� takes, but does not seem to
affect the two different types of dynamics. Although the con-
tribution p0 of the band edge states to the wave packet in Fig.
9 is much smaller than to that in Fig. 8, the spreading of the
entire wave packet is again characterized by the slope �
�0.66 in agreement with the value shown in Fig. 7.

VI. PARTICIPATION RATIOS

The results of the previous section strongly suggest that
��v� is independent of d for the class of systems Hm

�d� studied
here. In this section we attempt to link that with the eigen-
state properties by the analysis of the participation number.

The �generalized� inverse participation numbers, Zq���,
are defined as

Zq��� � �
r

���r��2q. �15�

The participation number P2����Z 2
−1��� for instance, char-

acterizes on how many sites a given state � is significantly
different from zero: for a particle completely localized
at a single site P2��r�,r�0

�=1, while for a Bloch
wave P2�exp�ik� ·r�� /�N�=N. The participation ratio, p2���
� P2��� /N, gives the fraction of the total number of sites
where � is significantly different from 0.

In the case of the eigenstates of Hm
�d�, we have

Zq���i1
� � ¯ � ��id

�� = �
x1

¯ �
xd

��i1
�x1� ¯ �id

�xd��2q

= �
x1

��i1
�x1��2q

¯ �
xd

��id
�xd��2q

= Zq��i1
� ¯ Zq��id

� , �16�

or, in other words, Zq of the product state is equal to the
product of the inverse participation numbers of the one-
dimensional states.

On the other hand, the inequality

�min
i

Zq��i��d � Zq��i1
� ¯ Zq��id

� � �max
i

Zq��i��d,

�17�

gives us insight into the nature of eigenstates of Hm
�d�: they

are always less or equally extended than the most extended
state of the product, and more or equally extended than the
least extended state of the product. In particular, they can be
anisotropically extended, which happens whenever states
from the product have quite different participation numbers.
For each such state of Hm

�d�, there is another one with the
same energy and anisotropy in a different direction due to the
product structure of the Hamiltonian.

A previous numerical study36 indicates that the scaling
exponents of Z2 of the ground state and the band center state
are only slightly different. Here, we investigate the scaling of
the participation ratio p averaged over the whole spectrum as
a function of Nm and v in d=1, and the results are presented
in Fig. 10.

The results indicate that the average participation ratio
scales with a power law in the number of sites of the chain

pm�v� � Nm
	 �v� , �18�

and the inset of Fig. 10 shows the values of 	�v� obtained
from the least mean-squares linear fit to the data for the
largest system sizes in the figure. The results suggest that
	�v→1�=0, which is not surprising since in this limit the
quasiperiodic tiling becomes a periodic chain �we note that
in our case p�v→1��1 because we have real instead of
complex eigenstates so that the Bloch waves have nodal
structure�. On the other end, however, 	�v→0�=−0.52
±0.03, even though for v=0 the chain breaks up into clusters
of atoms, and therefore 	�v=0�=−1. This particular limit we
address elsewhere.40 For d
1 we have also calculated 	�v�

FIG. 9. Same as Fig. 8 but for a slightly different initial site of
the wave packet �see text for further details�. The dashed line has
the slope ��0.66, same as in Fig. 8.

FIG. 10. Dependence of the average participation ratio p2�v� on
the number of sites Nm of the silver-mean chain for m=4,…,12 in a
doubly-logarithmic plot for v=0.075,0.1,0.125,…,0.975. The inset
shows the values of the exponent 	�v� obtained from the fit of p
�N	.

SPECTRAL AND DIFFUSIVE PROPERTIES OF… PHYSICAL REVIEW B 72, 054203 �2005�

054203-7



numerically for several v values and it remains the same
within the error bars, which we attribute to the multiplicative
nature of the participation numbers as reflected in Eqs. �16�
and �17�. This can be related to the independence of ��v�
with respect to the dimensionality determined in the previous
section.

VII. CONCLUSIONS

We studied spectral properties, dynamics of wave packets
and scaling properties of eigenstates in one-dimensional,
two-dimensional, and three-dimensional systems obtained as
direct products of the silver-mean chains, by investigating
the scaling exponents �, �, and 	 describing the asymptotic
properties of, respectively, the return probability, the spread-
ing of the wave packet, and the average participation ratio of
eigenstates.

The obtained values of � are compatible with the spectral
measure being singular continuous in one dimension and un-
dergoing a transition from singular to absolute continuous in
d=2,3 with large subdominant contributions. The latter
would appear �if such a transition indeed occurs� as a sys-
tematic shift of the value of ��v� when the system size in-
creases. The comparison of the results for ��v� for m=6, and
8 in the two-dimensional systems �cf. Fig. 5� shows such a
shift of the order of up to 10% near the speculated transition
point vc�0.6 and thus corroborates such conclusion. A more
quantitative characterization of these corrections, such as, for
instance, whether they are of the form �11�, is beyond the
scope of this work. The obtained values for � are indepen-
dent of the dimensionality, which we have linked to the prop-
erties of the inverse participation numbers.

Even though these results are certainly related to the prod-
uct structure of the quasiperiodic systems studied here, it is
quite possible that they describe some features of generic
higher-dimensional quasiperiodic systems. In particular, we
found an exact relation among the exponent � and corre-
sponding exponents �� of the dynamics of the projection
onto subintervals of the spectrum of a wave packet initially
localized at a single site, and compared the dynamics of
wave packets in the silver-mean quasiperiodic tiling con-
structed from about 2% of the total number of states near
various energies in the band with a study of generalized qua-
siperiodic Rauzy tilings in Ref. 43. There seems to be a
similarity between the two in so far that wave packets of
states near the band edge are spreading much faster than
those made out of the states near the band center. However,
while in the latter work dynamics of these wave packets is,
respectively, ballistic and anomalously diffusive, we find that

the dynamics is, respectively, anomalously diffusive and, for
the wave packets made out of band-center states, slower than
any anomalous diffusion.
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APPENDIX

Let P� , �=1,… ,n be projectors of a decomposition of
the Hilbert space into n
1 subspaces. Then the wave packet
component �0�t����r�0 , t� can be written as

�0�t� = �
�=1

n

��0�t�, ��0�t� = P��0�t�, P�P�� = ��,��P�.

�A1�

Inserting Eq. �A1� into Eq. �1� gives

C�t� =
1

t
�

0

t

dt���
�

��0�t���2
�A2�

=
1

t
�

0

t

dt��
�

���0�t���2 +
1

t
�

0

t

dt� �
����

��0
* �t�����0�t�� .

�A3�

After exchanging the order of integration and summation,
each of the integrals in the last term of Eq. �A3� can be
estimated using the Cauchy–Schwartz inequality

1

t
�

0

t

dt���0
* �t�����0�t��

� �1

t
�

0

t

dt����0�t���2�1/2�1

t
�

0

t

dt�����0�t���2�1/2

.

�A4�

Applying Eq. �A4� to the last term of Eq. �A3� and defining
C��t��1/ t�0

t dt����0�t���2, one gets

C�t� � �
�

C��t� + �
����

�C��t��C���t� . �A5�

If, in addition, C��t�� t−��, i.e., there are real constants C1,2
���

such that 0�C1
���� t��C��t��C2

�����, and C�t�� t−�, with
0�� , ���1, it is straightforward to show using Eq. �A5�
that

� � max
�

	��
 . �A6�
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