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Swift heavy-ion irradiation of amorphous materials causes nonsaturating plastic deformation. Thin samples
deform anisotropically as if they were hammered. Thick samples or thin layers on top of thick crystalline
substrates flow plastically during nonperpendicular irradiations. In this paper, we demonstrate that the consti-
tutive equation of ion hammering not only describes the homogeneous flow of uniformly irradiated matter but
also the deformation effects at boundaries between irradiated and unirradiated matter. An analytic expression is
derived which describes the flow of thin surface layers in the vicinity of an abrupt boundary. This solution is
complemented by finite-element calculations, which reveal the influence of finite transition widths. The con-
stitutive equation is also solved numerically to unveil the boundary effects for thick samples, where the
ion-induced deformation depends on the distance from the specimen surface. The calculations are compared
with experiments carried out with thin amorphous silicon surface layers and thick crown glasses. The excellent
agreement confirms the validity of the constitutive equation and supports its microscopic basis, namely the idea
of an efficient relaxation of thermally induced shear stresses along the ion path during the thermal spike period.
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I. INTRODUCTION

A swift heavy ion, penetrating a solid, predominantly in-
teracts with the electrons of the solid giving rise to the so-
called electronic energy loss per path length Se. A high den-
sity of electronic excitations and ionizations is created a few
nanometers around the ion’s trajectory in less than 10−16 s.
Depending on the degree of excitation and the specific nature
of the solid, there are various routes to transform this elec-
tronic excitation energy into atomic motion. The most fre-
quently discussed mechanisms are Coulomb explosion, non-
thermal melting, and electron-phonon coupling. There is
growing experimental evidence that, on the picosecond time
scale, the resulting atomic motion can be adequately de-
scribed as a thermal spike.1–3

Two decades ago, the discovery of an anisotropic growth
effect in amorphous materials during high-energy heavy-ion
irradiation4–9 opened new and promising ways to contribute
to the understanding of this thermal spike9–19 and to modify
amorphous materials in a well-defined way.20–23 By means of
this effect, both effective structuring and smoothing of the
surfaces of amorphous layers without mass loss could be
achieved.24–27 Recently, this effect was successfully applied
to shape nanoparticles for potential opto-electronic
devices28–34 and to provide experimental evidence for liquid
polymorphism in silicon.35

The underlying phenomenon is a nonsaturating irrevers-
ible macroscopic deformation of amorphous materials during
swift heavy-ion irradiation without a change in volume or
mass density. Under perpendicular ion incidence, thin free-
standing samples shrink parallel and grow perpendicular to
the beam direction. The deformation yield, which is the rela-
tive length change per unit fluence, increases with decreasing
temperature. Figuratively, the ion beam acts like a hammer
and, therefore, the anisotropic growth became known as ion-

hammering effect. Thick free-standing samples undergo the
same effect but eventually bend due to an apparent depth
dependence of the deformation yield. Ion hammering does
not appear in nonamorphizable materials and the deforma-
tion of an amorphous layer on top of a thick inert substrate is
mechanically constrained. However, under nonperpendicular
ion incidence even thin surface layers exhibit nonsaturable
shear flow as a consequence of the ion-hammering effect.

II. MODELING OF ION HAMMERING

The most successful microscopic model to describe the
ion-hammering effect is the effective-flow-temperature ap-
proach by Trinkaus and Ryazanov15 and Trinkaus.16–19 The
authors assume a thermal spike with dimensions of some
nanometer in diameter and several micrometers in length.
With increasing temperature, thermal expansion in combina-
tion with track confinement due to the surrounding cold ma-
trix leads to thermal stress. At sufficiently large excitation
densities, the authors postulate that the matter in the track
becomes fluid. As soon as the shear viscosity in the ion track
becomes sufficiently low—i.e., as soon as the temperature in
the track exceeds an effective flow temperature
T*—shear-stress relaxation rapidly proceeds towards hydro-
static pressure, the state of mechanical equilibrium. As in any
material, the thermal strain is reverted during cooling down
to ambient temperatures, but in amorphous materials the
strain increment �R�t� associated with the shear-stress relax-
ation freezes-in at T* at the solidification front R�t�, because
there is no memory for the starting state. In nonamorphizable
crystalline materials, �R�t� is reverted by the subsequent re-
crystallization and no hammering can occur. By applying
Eshelby’s theory of elastic inclusions to the low-viscosity
zone,36 and averaging the deformation effects according to
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fundamental theorems on inclusions,37 Trinkaus and Ryaza-
nov derived for amorphous samples, free of macroscopic
stress, an asymptotic expression for the ion-hammering ten-
sor A= for low sample temperatures, T0�T*, and intense elec-
tronic excitations, Se�Se0, where Se0 refers to the energy
deposition threshold for ion hammering. In a Cartesian coor-
dinate system where the z axis points along the ion-track
axis, A= is given by15,38

A= = A0�1 0 0

0 1 0

0 0 − 2
� = �m

R�Rmax
2 �1 0 0

0 1 0

0 0 − 2
� , �1�

where A0 is the deformation yield per ion, �m
R the mean

frozen-in relaxation strain and Rmax the maximum radius of
the low-viscosity zone. For a Gaussian temperature profile,
set up by the fraction gSe, the maximum cross section of the
low-viscosity zone reads

�Rmax
2 =

gSe

e�C�T* , �2�

where � and C represent effective values for the density and
specific heat of the material, respectively, �T*=T*−T0, and
e=2.718 is the base of the natural logarithm. In the case of a
constant linear thermal expansion coefficient � the deforma-
tion yield A0 is given by15

A0 = 1.164
1 + �

5 − 4�

�gSe

e�C
, �3�

where � is the Poisson number. In the case of thick layers, Se
varies along the penetration path �, hence A0���	Se���.39

As a consequence of multiple ion impacts, the ion-
hammering strain rate is given by

�̇= I = A=
 , �4�

where 
 is the ion flux. Because of Â=Tr�A= �=0, ion ham-
mering occurs without density change. In a Cartesian coor-
dinate system as depicted in Fig. 1, �̇= I is given by24,40

�̇= I = A0
� 1 − 3 sin2 � 0 3 sin � cos �

0 1 0

3 sin � cos � 0 1 − 3 cos2 �
� , �5�

where � stands for the incidence angle of the ions measured
from the surface normal of the sample.

When a mechanical stress �= is present, either applied ex-
ternally or induced by the constraints of an unirradiated or
crystalline environment, ion hammering is superimposed by
a creep term proportional to the stress deviator �̃= =�=
− �̂ /3 I=, with �̂=Tr��= � and I= the unity tensor.17,22,42–44 This
apparent Newtonian flow with strain rate �̇=N is described by
a totally symmetric effective fluidity tensor of rank four k=

=



according to24,33,45,46

�̇=N = k=
=
�Se����
�̃= . �6�

The total strain rate of the irradiated amorphous sample �̇= is
given by a modified Maxwell model24,33,45,46

�̇= = �̇= I + �̇=H + �̇=N. �7�

The strain rate �̇=H describes purely elastic behavior according
to Hooke’s law, which reads for isotropic compressible ma-
terials

�̇ij
H =

1

2G

d

dt
��ij −

�

� + 1
�̂ij� , �8�

with the shear modulus G. The strain rate �̇= is linked to the
velocity v� by

�̇ij =
1

2
� �vi

�xj
+

�v j

�xi
� . �9�

The constitutive equation of the viscoelastic model, Eq. �7�,
is supplemented by the equation of motion. For small veloci-
ties of some nm/s, the inertia terms can be ignored and the
equation of motion reduces to quasistatic equilibrium

Div �= = 0. �10�

The macroscopic deformation state of the sample can be
derived by solving Eqs. �5�–�10� for the nine quantities vi
and �ij and taking into account initial and boundary condi-
tions as well as irradiation-induced symmetry relations in the
irradiated area. A general solution of this system of equations
is probably impossible. Therefore, in this paper we assume
that the sample fills the half-space z�0 and we consider
three cases �cf. Fig. 1�: �i� Far away from any boundary and
for uniform irradiation, i.e., 
�x ,y�=
0, we have v� =v� �z , t�
and �= =�= �z , t�; in the following this region will be denoted as
“central region.” �ii� If the ion flux is collimated to the region
y�0, i.e., a boundary is running along the x axis, we have

=
�y�, v� =v� �y ,z , t�, and �= =�= �y ,z , t�. Such a boundary
will be called “y boundary.” �iii� If the ion flux is collimated
to the region x�a, i.e., a boundary is running parallel to the
y axis, we have 
=
�x�, v� =v� �x ,z , t�, and �= =�= �x ,z , t�. Such
a boundary will be called “xa boundary.” Similarly, if the flux

FIG. 1. Schematic view of the irradiation geometry with a y
boundary in the case of an embedded amorphous silicon �a-Si�
layer of thickness d in crystalline silicon �c-Si�. The projection of
the ion beam onto the specimen surface determines the x axis. The
x axis is the borderline between irradiated area �y�0� and unirra-
diated area �y�0�. The surface of the unirradiated specimen part
defines z=0 and the incidence angle of the ions � is measured from
the z axis. The same notation is used for the irradiation of the crown
glass. For y→−�, the transition from c-Si to a-Si at x=a forms an
xa boundary and the transition from a-Si to c-Si at x=b forms an xb

boundary since c-Si is almost inert to irradiation with swift heavy
ions �Ref. 41�.
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is collimated to x�b, we call the corresponding boundary an
“xb boundary.”

Furthermore, we rigorously simplify Eq. �6� by replacing
k=
=

by its scalar part k0. According to Trinkaus, k0 results from
the scalar component F0 of the normalized fluidity tensor F=

=

according to17

k0 =
F0

2G
�Rmax

2 =
33 − 47� + 16�2

5G�5 − 4��
gSe

e�C�T* 	
1

2�rad
,

�11�

so that �rad �in Pa ion/cm2� describes a flux-independent
radiation-induced viscosity.42–44,46 With these approxima-
tions the shear velocity in the central region is given
by24,45,46

vx�z� = 3
0 sin 2� cos �

�0

z/cos �

A0�Se����d� , �12�

where �0 denotes the maximum deformation length. The in-
tegration of Eq. �12� over time yields the shift �x�z , t� in the
central region, which at the surface of a thin amorphous layer
with thickness d is given by24,45,46

�x�z = 0,t� = 3dA0�Se�
0t sin 2� , �13�

where 
0t is the uniform ion fluence in the central region.
This description of the ion-hammering effect and its mac-

roscopic consequences is in good agreement with experimen-
tal observations.15,33,35 However, the model has not yet been
verified for the reduction of the shear velocity and the for-
mation of ditch and dike structures at y and x boundaries,
respectively. In this paper we demonstrate that the viscoelas-
tic model also applies to these stress-induced deformation
effects in areas with low symmetry.

III. EXPERIMENTS

The experiments were performed with amorphous silicon
�a-Si� surface layers, 3�3 mm2 in size, and samples of a
crown glass �B270, Deutsche Spezialglas AG�, 5�5 mm2 in
size, representing thin amorphous surface layers on top of
crystalline substrates and thick amorphous layers, respec-
tively. The a-Si surface layers were produced by multiple Si
ion implantation into 370-�m-thick crystalline silicon
�c-Si� wafers at 100 K using various ion energies between
0.25 MeV and 9.5 MeV and ion fluences in the range be-
tween 3�1015 cm−2 and 7�1015 cm−2. The implantations
were carried out at the Tandetron accelerator of the Univer-
sity of Jena. Rutherford backscattering spectrometry,
infrared-reflection spectrometry, and cross-sectional trans-
mission electron microscopy revealed a homogeneous amor-
phous surface layer, free of voids and hydrogen, with a thick-
ness of d= �5.71±0.05� �m. Its material parameters are �
=2.29 g/cm3, G=38.8 GPa, and �=0.29. Because a-Si is
about 1.8% less dense than c-Si,47 amorphization of c-Si
results in both building up of biaxial in-plane compressive
stresses and out-of-plane swelling. After complete amor-
phization, further implantation induces a relaxation of these
in-plane stresses. If they were completely vanished, height

changes of about 100 nm would have been expected. How-
ever, DEKTAK line scans revealed an initial out-of-plane
swelling of a-Si with respect to c-Si of about 80 nm. In
effect, the remaining biaxial in-plane stresses prior to the
swift heavy-ion irradiations can be estimated to be about
�0�−0.3 GPa in agreement with values derived from curva-
ture measurements.48 Before irradiation with swift heavy
ions, a Au layer of approximately 40 nm thickness was
evaporated onto the sample surface through a Ni net in order
to quantify irradiation-induced plastic flow with a precision
of 1 �m.

The 1.5-mm-thick crown glass samples were provided
with scaled surfaces by the Heidenhain Company, Germany.
The composition in wt % of the crown glass was 69.5 SiO2;
8.3 K2O; 8.1 Na2O; 7.1 CaO; 4.2 ZnO; 2.1 BaO; 0.5 TiO2,
and 0.5 Sb2O3. Its material parameters are �=2.55 g/cm3,
G=29.3 GPa, �=0.22, �20–500° C=10.3�10−6 K−1, and C
=0.86 J /g K.

Swift heavy-ion irradiations were carried out at the Ion
Beam Laboratory ISL in Berlin using 390 MeV Xe21+,
350 MeV Au26+, and 600 MeV Au30+ ions with a homoge-
neous beam sweep of 5�5 mm2 and the conditions listed in
Table I. The irradiation geometry is shown in Fig. 1. In front
of the samples there were apertures so that a part of each
sample remained unirradiated. The borderlines between irra-
diated and unirradiated specimen parts formed y boundaries.
In the case of a-Si embedded in c-Si, the interfaces to c-Si
formed x boundaries since c-Si is almost inert to swift
heavy-ion irradiation.41 In fact, the aperture was movable
and micrographs of the sample surfaces were taken in situ
with a long-distance microscope.

The electronic energy depositions per unit path length
Se��� of the ion-target combinations used in our experiments
are shown in Fig. 2. It can be seen that Se��� is nearly con-
stant across the a-Si layer with a maximum deformation
length of �0=−d / cos ��−8.1 �m �Fig. 2�a��. The mean
values Se are listed in Table II. In the case of the crown glass,
Se��� can be fitted by a fourth-order polynomial fit. The nu-
merical values with the appropriate units are given in Fig.
2�b�.

The irradiated samples were analyzed by means of a sty-
lus profilometer �DEKTAK�, atomic force microscopy �AFM�,
laser profilometry �LP�, and scanning electron microscopy
�SEM�.

TABLE I. Swift heavy-ion irradiation conditions. The incidence
angle of the ions was kept at �=45°.

Irradiation
T0

�K�

0

�1010 cm−2 s−1�

0t

�1015 cm−2�

a-Si 390 MeV Xe 80 6.3 7.4

a-Si 390 MeV Xe 300 8.3 9.3

a-Si 350 MeV Au 80 4.6 1.7

a-Si 350 MeV Au 300 2.5 0.8

a-Si 600 MeV Au 80 5.7 3.1

a-Si 600 MeV Au 300 5.3 2.6

B270 600 MeV Au 300 4.3 0.3

B270 600 MeV Au 300 4.4 0.1
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IV. EXPERIMENTAL RESULTS

During swift heavy-ion irradiation a-Si flows plastically
in the same way as conventional glasses.35,50 As an example,
Fig. 3 shows the shift at the specimen surface in the uni-
formly irradiated central region �x�z=0, t� as a function of
the ion fluence 
0t for 600 MeV Au irradiation at T0
=80 K. In accordance with Eq. �13�, �x�z=0, t� increases
linearly with 
0t at T0=80 K, whereas at T0=300 K a linear
behavior is only found for low fluences.50 By applying Eq.
�13�, the deformation yields A0�Se� were derived and the re-
sults are summarized in Table II.

In the vicinity of a y boundary the shift depends on the
distance from the boundary and vanishes in the unirradiated
area �cf. Fig. 8�.35,50 DEKTAK line scans across the y bound-
ary of a-Si revealed no remarkable height changes. Thus,
irradiation-induced density changes are below 1% for irra-
diations with swift heavy ions at T0=80 K, or T0=300 K and
low fluences, respectively.50

Figure 4 shows a DEKTAK line scan parallel to the x axis
of an a-Si sample after an irradiation with 390 MeV Xe ions
at T0=300 K. As a consequence of the lateral mass transport
in the positive x direction, a ditch �dike� appear at the xa �xb�
boundary. The depth �height� and cross section of the ditch
�dike� changed continuously with the ion fluence. No steady
state of these deformations was observed. In Table II, the
values of the cross sections for the ditch, Fd, and dike, FD,
derived from long-scan DEKTAK profiles are listed for the
corresponding irradiation conditions.

In Fig. 5, a comparison of the DEKTAK profiles at the x
boundaries from Fig. 4 with measurements by AFM is
shown. Due to the resolution limit given by the stylus width,
DEKTAK cannot resolve the exact depth and shape of narrow

FIG. 2. Electronic energy deposition per unit path length Se���
of a penetrating ion for the irradiation conditions used in our ex-
periments in the case of a-Si �a� and the crown glass �b�. The
distributions were calculated with SRIM2003 �Ref. 49�.

TABLE II. Electronic energy deposition Se, deformation yield A0, and cross sections of ditch Fd and dike
FD at the xa and xb boundaries, respectively, for the irradiations of a-Si. The cross sections were derived from
DEKTAK surface profilometry. Also the mean value Fm= �Fd+FD� /2 is listed together with the cross section of
the uniform flow in the central region Fc and the relative deviation �F /Fc= �Fm−Fc� /Fc.

Irradiation
Se

�keV/nm�
T0

�K�

0t

�1015 cm−2�
A0

�10−16 cm2�
Fd

��m2�
FD

��m2�
Fm

��m2�
Fc

��m2�
�F /Fc

�%�

390 MeV Xe 15.8±0.2 80 7.4 1.2 28 54 41 43 −5

390 MeV Xe 15.8±0.2 300 9.3 0.9 29 63 46 41 12

350 MeV Au 18.8±1.0 80 1.7 3.7 26 32 29 31 −6

350 MeV Au 18.8±1.0 300 0.8 2.9 — 12 �12� 11 �9�
600 MeV Au 21.3±0.3 80 3.1 5.0 43 94 69 75 −8

600 MeV Au 21.3±0.3 300 2.6 3.5 — 31 �31� 44 �−29�

FIG. 3. Shift at the surface �x�z=0, t� in the uniformly irradi-
ated central region versus ion fluence 
0t during 600 MeV Au ir-
radiation of a-Si at T0=80 K and the crown glass at T0=300 K.
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and steep structures. The underestimation of the ditch in Fig.
5�a� and the overestimation of the dike in Fig. 5�b� in com-
parison with the AFM measurements are clearly visible. Un-
fortunately, the length of the AFM line scans was limited to
about 50 �m and some of the irradiations induced more than

one ditch, so that the x boundary effects could not be satis-
factorily analyzed by AFM. Due to the smallness of the ef-
fects, SEM and LP did not provide more precise measure-
ments. However, since plastic flow occurs without mass loss
and with a constant shear velocity in the uniformly irradiated
central region, a homogeneous mass transport is expected,
i.e., the mass, which is missing at the xa boundary, forms the
dike at the xb boundary.24,45,46 Thus, the mean value Fm
= �Fd+FD� /2 represents a fair estimate for the real cross sec-
tion of both ditch and dike.

For the crown glass sample, Fig. 3 shows the shift at the
specimen surface in the uniformly irradiated central region,
�x�z=0, t�, versus ion fluence 
0t �600 MeV Au, T0

=300 K�. Because of the similarities with all investigated
amorphous materials, it is plausible to assume that the defor-
mation yield A0�Se� of the crown glass also increases linearly
with Se according to

A0�Se���� = ��Se��� − Se0� . �14�

Because Se0�2 keV/nm for soda-lime glasses, we ignore
Se0 for the crown glass and �0 equals the projected ion range.
Then we obtain from Eqs. �12� and �14�

�x�z = 0,t� = 3�
0tEion sin 2� cos � , �15�

where Eion is the kinetic energy of the swift heavy ion. The
linear fit in Fig. 3 yields �=0.0257 nm3/keV. Thus, the de-
formation yield of the crown glass at the surface A0�Se��
=0��=61.8�10−16 cm2 is an order of magnitude higher than
the one of a-Si �cf. Table II�. Using g=0.5 from Eq. �3�, a
low-temperature value �=0.05 nm3/keV follows. An in-
crease of � by a factor of 2 going from T0=300 K to very
low temperatures is not uncommon for silicate glasses.40

Similarly to other glasses, at the y boundary a reduction of
the surface shift occurs along the way from the uniformly
irradiated central region to the unirradiated area �cf. Fig. 10�.
DEKTAK line scans across the y boundary revealed step
heights of about 300 nm for a fluence of 1�1014 cm−2.
Thus, irradiation-induced density changes are below 1% as
in the case of a-Si. Because the samples were irradiated over
their whole widths, x boundaries were absent and the forma-
tion of ditch and dike structures could not be observed.

V. DISCUSSION

A. Irradiation effects in the central region

As long as in the uniformly irradiated central region the
surface remains plane, all derivatives � /�x and � /�y must
vanish and Eqs. �7� and �10� reduce to

0 =
1

2G

�

�t
��xx −

�

� + 1
�̂ + k0
0��xx −

1

3
�̂

+ A0
0�1 − 3 sin2 �� , �16a�

0 =
1

2G

�

�t
��yy −

�

� + 1
�̂ + k0
0��yy −

1

3
�̂ + A0
0,

�16b�

FIG. 4. DEKTAK surface profile of an a-Si layer embedded in
c-Si after an irradiation with 390 MeV Xe ions at T0=300 K, flux

0=8.3�1010 cm−2 s−1, and fluence 
0t=9.3�1015 cm−2. The
a-Si layer extends from xa=0 to xb=3000 �m.

FIG. 5. DEKTAK and AFM surface profiles of the sample from
Fig. 4 at the xa boundary �a� and xb boundary �b�. The origin of the
x scale is set arbitrarily.
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�vz

�z
=

1

2G

�

�t
��zz −

�

� + 1
�̂ + k0
0��zz −

1

3
�̂

+ A0
0�1 − 3 cos2 �� , �16c�

0 =
1

2G

�

�t
�xy + k0
0�xy , �16d�

1

2

�vx

�z
=

1

2G

�

�t
�xz + k0
0�xz + A0
03 sin � cos � ,

�16e�

1

2

�vy

�z
=

1

2G

�

�t
�yz + k0
0�yz, �16f�

0 =
��xz

�z
=

��yz

�z
=

��zz

�z
. �16g�

The material derivative d /dt has been replaced by � /�t,
which implies that the following considerations are limited
to small shears. From Eq. �16g� and the fact that the surface
is traction-free, �xz=�yz=�zz=0 holds for the entire amor-
phous layer thickness at all times. The initial condition is
either determined by a biaxial stress field with �xx�t=0�
=�yy�t=0�=�0 �as in the case of a-Si, see Sec. III� or given
by a stress-free state with �0=0 �as in the case of the crown
glass�. With �xy�t=0�=0, Eq. �16d� immediately yields �xy

=0 for all times.
The solution for the in-plane stresses results from Eqs.

�16a� and �16b� and is given by

�xx�z,t� = �c��1 + �2 exp
− t

�G
+ �3 exp

− t

�Y
 + �0 exp

− t

�Y
,

�17a�

�yy�z,t� = �c��1 + �2 exp
− t

�G
+ �3 exp

− t

�Y
 + �0 exp

− t

�Y
,

�17b�

where �G=1/ �2Gk0
0� and �Y =3/ �Yk0
0� correspond to
time constants for stress relaxation determined by the shear
modulus G and the biaxial elastic modulus Y =2G�1+�� / �1
−��, respectively, and �c=−3A0 /k0=−6A0�rad denotes the
maximum steady-state compressive stress. The coefficients
�i and �i are given by

�1 = cos 2�, �2 =
1

2
sin2 �, �3 =

1

2
�1 − 3 cos2 �� ,

�1 = cos2 �, �2 = −
1

2
sin2 �, �3 =

1

2
�1 − 3 cos2 �� .

For �0=0, the stress �xx is compressive for ��45°, is tem-
porarily tensile for �=45°, and vanishes completely for t
��Y. For ��45°, �xx is always tensile. The stress �yy is
compressive for all � and at all times.

Since the unirradiated part below the bombarded region is
at rest, from Eq. �16f� it follows vy =0. The shear velocity vx
is immediately in a steady state, follows directly from Eq.
�16e�, and is given by Eq. �12�. The out-of-plane velocity vz
is obtained from Eqs. �16c�, �17a�, and �17b�

FIG. 6. Steady-state shear ve-
locity vx�y ,z� of a-Si at the y
boundary with a transition width
�=0 �m �a� and �b�, and �
=30 �m �c� and �d�, respectively.
�a� and �c� show vx�y� for constant
values z and �b� and �d� show
vx�z� for constant values y. The
numerical and analytical calcula-
tions coincide in �a� and �b�. All
calculations were carried out for
d=5.7-�m-thick a-Si layer irradi-
ated with 350 MeV Au ions at
T0=80 K and ion flux 
0=4.6
�1010 cm−2 s−1.
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vz�z,t� = 
0
1 − 2�

1 − �
cos �


�0

z/cos � �2�3A0 −
2

3
�0k0

�exp
− t

�Y
d� . �18�

This motion of the specimen surface is not caused by an
intrinsic radiation-induced density change but a consequence
of mechanically constrained ion hammering. The integration
of vz at z=0 over time yields the height change �z�t� with
respect to the unirradiated surface

�z�t� = 
0
1 − 2�

1 − �
cos �


�0

0 �2�3A0 −
2

3
�0k0

��Y�1 − exp
− t

�Y
d� . �19�

In the case of �0=0, �z is negative for ��55° and positive
for ��55°.

Taking into account that �Y ��G, the characteristic fluence
for the approach of the steady state is given by


0�Y =
3

Yk0
=

3

F0

1 − �

1 + �

1

�Rmax
2 . �20�

In the steady state, ion hammering and stress-induced creep
are in equilibrium. The corresponding stresses and the height
change follow from Eqs. �17a�, �17b�, and �19� for t→�
resulting in24,45,46

�xx�z� = − 3
A0

k0
cos 2� , �21a�

�yy�z� = − 3
A0

k0
cos2 � , �21b�

�z = 
0
1 − 2�

1 − �
cos �


�0

0 �2�3A0 −
2

3
�0k0�Y d� .

�21c�

Because the quantities A0 and k0 depend in the same way on
Se �cf. Eqs. �3� and �11�� the steady-state in-plane stresses
should not be depth dependent even in thick layers.

Using a typical track radius of Rmax�3 nm and the cor-
responding material parameters, Eq. �11� yields the values
k0�0.8�10−21 m2/MPa and k0�1.1�10−21 m2/MPa for
a-Si and the crown glass, respectively. Consequently, Eq.
�20� yields a characteristic fluence of 
0�Y �0.8/�Rmax

2 �3
�1012 cm−2 for both a-Si and the crown glass, and is of the
order of one complete coverage of the irradiated area with
ion tracks. Furthermore, using the experimental results for
A0, by means of Eq. �21b� a steady-state compressive stress
of �yy �−0.1 GPa and �yy �−0.8 GPa can be estimated for
a-Si and the crown glass, respectively. These stresses are
sufficiently small to be consistent with one of the basic as-
sumptions of the effective-flow-temperature approach,
namely the linearity between strains and stresses. Taking into
account the initial stress states, the steady-state step height as
predicted from Eq. �21c� is �z�10 nm for a-Si and �z�

−250 nm for the crown glass. While for a-Si the experimen-
tally observed height change of �z�50 nm is in good agree-
ment with the theoretical value, for the crown glass a small
swelling effect with �z�300 nm has been observed, which
is obviously due to a second process, presumably defect gen-
eration with saturation of defects when track overlap is im-
portant. However, since the plastic flow of the crown glass is
similar to that of all other investigated glasses we conclude
that this neglected effect does not determine the steady-state
flow process.

B. Irradiation effects at the y boundary

In the transition region of a y boundary all derivatives
� /�x must vanish. Because the steady state is reached at
rather small fluences we look only for such a solution for �=
and v� . In this case Eqs. �7� and �10� reduce to

0 = k0
��xx −
1

3
�̂ + A0
�1 − 3 sin2 �� , �22a�

�vy

�y
= k0
��yy −

1

3
�̂ + A0
 , �22b�

�vz

�z
= k0
��zz −

1

3
�̂ + A0
�1 − 3 cos2 �� , �22c�

1

2

�vx

�y
= k0
�xy , �22d�

1

2

�vx

�z
= k0
�xz + A0
3 sin � cos � , �22e�

1

2
� �vy

�z
+

�vz

�y
 = k0
�yz, �22f�

FIG. 7. Shift at the surface, �x�y ,z=0, t�, of a-Si at the y
boundary for different transition widths �. The numerical calcula-
tions were carried out for a 5.7-�m-thick a-Si layer irradiated with
350 MeV Au ions at T0=80 K, flux 
0=4.6�1010 cm−2 s−1, and
fluence 
0t=1.7�1015 cm−2.
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0 =
��xy

�y
+

��xz

�z
, �22g�

0 =
��yy

�y
+

��yz

�z
, �22h�

0 =
��yz

�y
+

��zz

�z
. �22i�

From Eqs. �22a�–�22c� we have div v� =0. If vy �0 were valid
in the vicinity of the y boundary, it would follow vz�0 and
vice versa. This would lead to the formation of a ditch and/or
dike structure. If the surface were no longer plane, ion ham-
mering would modify the stress state and, in turn, would
induce further flow without reaching a steady state. There-
fore, a search for a steady-state solution of Eqs. �22a�–�22i�
is equivalent with the condition vy =vz=0. This is exactly the
situation we encounter in the experiments. As a result, Eq.
�22f� yields �yz=0 and from Eqs. �22h� and �22i� we find that
��yy /�y=��zz /�z=0. At the plane and traction-free surface
we have �xz=�yz=�zz=0. Then from Eq. �22i� it follows that
�zz must vanish in the entire y-boundary region. Inserting
�zz=0 in Eqs. �22a� and �22b�, we find that �xx and �yy are
the same as in the central region and given by Eqs. �21a� and
�21b�.

According to Eqs. �22d� and �22e� the shear stresses �xy
and �xz are coupled with the shear velocity vx and, therefore,
will change across the y boundary. An equation for vx�y ,z�
can be obtained by eliminating these shear stresses in Eq.
�22g� by means of Eqs. �22d� and �22e�. The result reads

0 =
�2vx

�y2 +
�2vx

�z2 + �
�vx

�y
+ �

�vx

�z
. �23�

The coefficient � is determined by the magnitude of the ion
flux in the y-boundary region according to

��y� = −
1


�y�
�
�y�

�y
. �24�

The flux itself is modeled by the function


�y� =

0

2
�1 − erf

4y

�
 , �25�

where � stands for the transition width from the central re-
gion to the unirradiated area. The error function �erf� allows
for ion scattering at the movable aperture, tiny position fluc-
tuations of the movable aperture itself and slight fluctuations
of the ion-beam angle � due to accelerator drifts. The geo-
metrical setup of the beamline and the automatic beam posi-
tion controlling system is such that � is estimated to be
smaller than 50 �m.

The coefficient � follows from Eqs. �1�, �2�, and �11� and
is given by

��z� = −
1

A0�z�
�A0�z�

�z
= −

1

k0�z�
�k0�z�

�z
. �26�

1. Shear flow of thin surface layers

In thin amorphous surface layers, Se is constant across the
layer thickness d and, hence, �=0 in Eqs. �23� and �26�. In
the ideal case of a perfect aperture with transition width �
=0, the coefficient � also vanishes and Eq. �23� reduces to
the Laplace equation

0 =
�2

�y2vx�y,z� +
�2

�z2vx�y,z� . �27�

The boundary conditions are given by

y � 0: vx = 0,

y → − �: vx = vx
c,

FIG. 8. Comparison of the calculated shift at the surface �x�y ,z=0, t� of a-Si with the experimental result for a transition width �
=0 �m �a� and �=10 �m �b�. The underlying micrograph of the specimen surface was taken from a 5.7-�m-thick a-Si layer after an
irradiation with 350 MeV Au ions at T0=80 K, 
0=4.6�1010 cm−2 s−1 and 
0t=1.7�1015 cm−2. The calculation results were taken from
Fig. 7. The origin y=0 is chosen to give optimal agreement with the experiment, x=0 is arbitrary.
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z = − d: vx = 0,

z = 0: �xz = 0, �28�

where vx
c�z�=B�z+d� denotes the solution in the central re-

gion according to Eq. �12�, with B=3A0
0 sin 2�. By means
of Eq. �22e�, the condition at the surface results in �vx /�z
=B. With these boundary conditions, Eq. �27� can be solved
analytically. The solution reads

vx�y,z� = vx
c�z� + �

n=1

�

an cos�bnz�exp�bny� , �29�

with the coefficients

an =
− 2B

bn
2d

, bn = �2n − 1�
�

2d
. �30�

In Figs. 6�a� and 6�b�, the solution for vx�y ,z� is shown for
the irradiation of our a-Si layers with 350 MeV Au ions at
T0=80 K and an ion flux of 
0=4.6�1010 cm−2 s−1. The
value for A0 is taken from Table II. From Fig. 6�a� one can
see that the transition from vx=0 to vx=vx

c occurs within less
than 5d. It is clearly visible that a steady-state shear velocity
at the sample surface vx�y ,z=0��3 Å/s appears, which
smoothly vanishes in the vicinity of the y boundary.

The integration of Eq. �29� over time yields the shift at the
specimen surface

�x�y,z = 0,t� = �xc�z = 0,t� + �
n=1

�

cn�t�exp�bny� , �31�

where �xc�z=0, t�=vx
c�z=0�t=Btd denotes the solution for

the central region according to Eq. �13� and

cn�t� = ant =
− 2�xc�z = 0,t�

bn
2d2 . �32�

In Fig. 7 �solid line�, the function �x�y ,z=0, t� is shown for
the irradiation conditions used in Fig. 6 and an ion fluence of

0t=1.7�1015 cm−2. In Fig. 8�a�, this curve is plotted over
a micrograph of the specimen surface taken in situ during the
experiments. It can be seen that the derived steady-state so-
lution for a y boundary is in good agreement with the ob-
served flow in a-Si. The remaining discrepancies are obvi-
ously due to the unknown exact position of y=0 and the
idealized transition width �=0.

From the solution for vx given by Eqs. �29� and �30�, the
macroscopic shear stresses �xy and �xz follow by means of
Eqs. �22d� and �22e� and read

�xy�y,z� =
1

2k0

�
n=1

�

anbn cos�bnz�exp�bny� , �33a�

FIG. 9. Steady-state shear velocity vx�y ,z� of the crown glass at the y boundary with a transition width �=0 �m �a� and �b�, and �
=30 �m �c� and �d�, respectively. �a� and �c� show vx�y� for constant values z and �b� and �d� show vx�z� for constant values y. All numerical
calculations were carried out for an irradiation with 600 MeV Au ions at T0=300 K and ion flux 
0=4.4�1010 cm−2 s−1. The maximum
deformation length is �0�−40 �m.
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�xz�y,z� =
− 1

2k0

�
n=1

�

anbn sin�bnz�exp�bny� . �33b�

The stresses �xy�0,0� and �xz�0,−d� approach ±�. This un-
physical result is due to the idealized assumption �=0.

The more realistic case is given by ��0. Equation �23�
now reads

0 =
�2

�y2vx�y,z� +
�2

�z2vx�y,z� + ��y�
�

�y
vx�y,z� , �34�

with the boundary conditions

y → �: vx = 0,

y → − �: vx = vx
c,

z = − d: vx = 0,

z = 0: �xz = 0. �35�

Equation �34� can be transformed into a Ricatti differential
equation, but we have not found an analytical solution.
Therefore, Eq. �34� was solved numerically by using a finite-
element code. The reliability of the code was tested by ap-
plying it to Eq. �27� with the boundary conditions of Eq.
�28�. The numerical solution was identical with the analytical
one in Eq. �29�.

In Figs. 6�c� and 6�d�, the results are shown using �
=30 �m and the same irradiation conditions as in Figs. 6�a�
and 6�b�. The shear stresses �xy�y ,z� and �xz�y ,z� deter-
mined by Eqs. �22d� and �22e� remain finite and exhibit a
continuous decay in the region y�0.

In Fig. 7, the shifts at the surface are shown for various
values ��0 in comparison with the corresponding solution
for �=0. It can be seen that the total transition width from
�x=0 to �xc does not change dramatically even when �
=6d. The transition width represents a convenient fit param-
eter for the experimentally observed effects. Apparently, the
best fit to the underlying micrograph from Fig. 8�a� is given
by �=10 �m �Fig. 8�b��.

2. Shear flow of thick layers

In thick amorphous layers, the dependence Se��� needs to
be taken into consideration. Applying Eq. �14� with Se0=0,
Eq. �26� results in

��z� = −
1

Se�z�
�Se�z�

�z
= −

1

cos �Se���
�Se���

��
. �36�

In this way, Eq. �23� has to be solved with � as a free pa-
rameter and the boundary conditions given by

y � 0 �� = 0�: vx = 0,

y → � �� � 0�: vx = 0,

y → − �: vx = vx
c,

z = �0 cos �: vx = 0,

z = 0: �xz = 0. �37�

In Fig. 9, the numerical solution of Eq. �23� with the
boundary conditions of Eq. �37� is shown for the irradiation
of the crown glass with 600 MeV Au ions at T0=300 K and
ion flux 
0=4.4�1010 cm−2 s−1 taking into account a tran-
sition width �=0 and �=30 �m, respectively. For the calcu-
lations, Se��� was taken from Fig. 2�b� with �0=−40 �m.
The value for � was taken from the experiment �cf. Sec. IV�.
Similarly to thin layers, the transition from vx=0 to vx=vx

c

occurs within a distance of less than 5�0. Because of the
larger deformation length in comparison with � the transition
is somewhat less blurred for the crown glass.

In Fig. 10, a comparison of the numerical result of the
shift at the specimen surface �x�y ,z=0, t� with the experi-
ment is shown. Because the aperture was not moved during
irradiation, we expect ��10 �m. In fact, �=0 yields the
best approximation. Although the theoretical approach shows
a fairly good description, there are still small discrepancies
near the y boundary. These discrepancies cannot be assigned
to the unknown exact position of y=0. But they could be due
to the omitted energy-deposition threshold Se0, the modeling
of A0�Se� and k0�Se�, and/or due to the ignorance of the ten-
sorial character of the fluidity.

C. Irradiation effects at the x boundaries

At x boundaries any plane parallel to the x-z plane is a
symmetry plane. Therefore, the derivatives � /�y and vy must
vanish everywhere. A closer inspection of Eqs. �4�–�10�
shows that �xy and �yz must also vanish. The permanent
change of shape and size of the ditches and dikes suggests
that under the irradiation conditions of this work no steady
state is reached. Therefore, the solution of Eqs. �7� and �10�

FIG. 10. Comparison of the calculated shift at the surface for a
y boundary, �x�y ,z=0, t�, of the crown glass with the experimental
result. The underlying micrograph of the specimen surface was
taken after an irradiation with 600 MeV Au ions at T0=300 K, flux

0=4.4�1010 cm−2 s−1 and fluence 
0t=1�1014 cm−2. For the
calculation, a transition width �=0 �m was used. The location of
y=0 was chosen to give optimum agreement with the experiment.
The origin of the x scale is arbitrary.
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depends explicitly on time and requires considerable numeri-
cal effort.

Abstaining from the precise modeling of the ditch and
dike structures, they can be grossly characterized in the fol-
lowing way. Since the plastic flow occurs without material
loss and assuming constant mass density, the cross sections
of the ditch Fd and dike FD at the x boundaries as well as that
of the laterally transported matter in the central region Fc
must be equal. This cross section Fc is determined by the
integration of the shift �x�z , t�, resulting from Eq. �12�, over
the entire deformation depth z0=�0 cos � according to

Fc = 

z0

0

�x�z,t�dz = 

z0

0 

0

t

vx�z�dt dz

= 3
0t sin 2� cos �

z0

0 

�0

z/cos �

A0�Se����d� dz .

�38�

For thin surface layers, where Se=const across the layer
thickness, the value Fc reads

Fc�t� =
3

2
d2A0
0t sin 2� =

d

2
�x�z = 0,t� . �39�

In Table II, a comparison of the measured values Fd, FD, and
their mean value Fm with Fc is listed for the irradiations of
the a-Si samples. It can be seen that the experimental results
agree well with the values derived from the viscoelastic
model by means of Eq. �39�.

Ditch and dike structures have been first observed by
Gutzmann et al. in the metallic glass Fe40Ni40B20,

45,51 and
somewhat later by Cliche et al. in a variety of amorphous
materials.13,14 The latter authors ascribed the formation of
these structures to an effect of momentum conservation and
regarded ion hammering as a different phenomenon. How-
ever, the agreement of the cross sections in the central region
Fc with those at the x boundaries Fm demonstrates clearly
that ditch and dike formation is the consequence of shear
flow which is a consequence of ion hammering. An addi-
tional concept such as momentum transfer is not necessary.

VI. CONCLUSION

The macroscopic plastic flow of thin amorphous surface
layers and amorphous bulk materials, which occurred during
swift heavy-ion irradiation, was studied experimentally and
theoretically within the viscoelastic effective-flow-
temperature approach. The experimental investigations were
performed using a-Si surface layers and crown glass samples
as representatives for both geometry types.

Far away from any symmetry-breaking boundaries, a
steady state of ion hammering and irradiation creep occurs

after about one complete coverage of the surface area with
ion tracks. Depending on material properties and irradiation
conditions such as the electronic energy deposition and the
ion’s incidence angle, this steady state is characterized by a
shear velocity in the direction of the projection of the ion
beam onto the surface, in-plane stresses, and a constant den-
sity of the irradiated material. When a borderline between
irradiated and unirradiated specimen parts runs parallel with
the shear velocity, flow is hampered and a reduction of the
steady-state shear velocity occurs. The width of the transition
from zero velocity to fully developed shear flow is deter-
mined by the maximum deformation depth and �, the tran-
sition width of the ion flux. For thin amorphous surface lay-
ers and �=0 an analytical description for the lateral shear
velocity is given. The case ��0 requires numerical calcula-
tions, removes the divergence of shear stresses and ensures
excellent agreement with the experimental results. In the
case of bulk amorphous materials, the depth dependence of
the electronic energy deposition has to be taken into account,
since it dominates the location dependence of the shear ve-
locity and the influence of a finite transition width is less
pronounced.

At a boundary which runs perpendicular to the shear ve-
locity, a ditch or a dike appears as a result of the homoge-
neous lateral mass transport. Since the shape of the irradiated
boundary region is under permanent change, a steady state
cannot be reached. The consistency of the cross sections of
ditch and dike as well as that of the uniform flow in the
central region shows that no measurable density change in
these lateral boundary regions occurs.

In summary, the very good agreement between the ana-
lytical and numerical solutions derived from the modified
viscoelastic Maxwell model with the experimental results
further support the idea of an efficient shear-stress relaxation
along the ion path during the thermal spike period. Using
general theorems on elasticity37 the constitutive equation of
ion hammering, Eq. �7�, imposes rather narrow boundary
conditions on the microscopic processes in the ion tracks.
The viscoelastic models of Trinkaus and Ryazanov,15

Trinkaus,16–19 and van Dillen et al.38 are in full agreement
with Eq. �7�. However, those models are not undisputed!
Unfortunately, alternative models10,52 are less advanced and,
at present, it is not clear whether they lead to the form of
constitutive equation as presented by Eq. �7�.
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