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We report an analytical study of thermally activated motion of perfect dislocation loops with high mobility
in terms of an elastic model, where the dislocation loops are assumed to be smooth flexible strings under the
influence of a potential barrier. The activation energy and saddle point configuration of the dislocation loops
are analytically expressed within the present model. The activation energy monotonously increases with the
loop length and converges to a finite value. However, the features of the thermally activated motion remarkably
change depending on the loop length. If the dislocation loops are longer than a critical length Lc, the saddle
point configuration is the well-known double-kink type. On the other hand, if the dislocation loops are shorter
than Lc, the saddle point configuration is the so-called rigid type, that is, the dislocation loops overcome the
potential barrier without changing their shapes except for thermal fluctuations. The former is regarded as
dislocation-like transport, while the latter is point-defect-like migration. Therefore, as the dislocation loops
grow, a transition from point defect to dislocation substantially occurs for the dislocation loops.
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I. INTRODUCTION

Theoretical studies of the thermally activated motion of
dislocation loops have been so far performed by molecular
dynamics �MD� simulations. However, we have never inves-
tigated the motion in the framework of a conventional elastic
model. Although such model includes some approximations,
it will give a new perspective to the studies. In the present
paper, we present an elastic model corresponding to the ther-
mally activated motion of dislocation loops and analytical
solutions derived from it.

Prismatic dislocation loops are commonly observed in
metals irradiated with high-energy particles.1 The formation
of interstitial-type dislocation loops around displacement
cascades in the irradiated metals was first predicted by MD
simulations.2 In particular, one-dimensional �1D� motion of
the interstitial-type dislocation loops in a matrix under irra-
diations plays an important role in the evolution of the dam-
age structure. In fact, the 1D motion of such dislocation
loops along a close-packed row of atoms is essential for the
total understanding of the void swelling behavior in terms of
the so-called production bias model.3,4

MD simulations have been extensively performed to
study the thermally activated motion of the dislocation loops
in the irradiated metals. In the simulations, the interstitial-
type dislocation loops are described as clusters of self-
interstitial atoms �SIAs� accumulated in a crystal plane, that
is, the periphery of the planar SIA cluster corresponds to an
edge dislocation loop. The motion of each atom in the simu-
lation box containing the SIA clusters is computed using an
empirical interatomic potential. The atomic configuration in
finite temperatures and activation energy for the thermal dif-
fusion of the SIA clusters have been calculated in pure met-
als, especially in �-Fe.5–8 Special attention has been paid to
SIA clusters composed of the so-called “magic number,” 7,
19, 37, 61, 91,¯, SIAs because they are a stable subset of
SIA clusters due to the symmetrical hexagonal shape.5 These

simulations show that the SIA clusters are quite mobile and
migrate one-dimensionally along the close-packed directions
in metals. Such 1D high mobility is intuitively attributed to
the similar property of crowdions9 because an SIA cluster is
considered to be composed of the crowdions by taking into
account the atomic structure.5,6 Strictly speaking, �111� split
dumbbells and crowdions are distinguished by Wirth et al.5

but we merely call both of them crowdions in the present
paper.

While the motion of the dislocation loops has been stud-
ied by MD simulations in advance, we have never investi-
gated it in terms of an elastic model. On the other hand,
many phenomena associated with lattice defects in solids
have been studied in terms of appropriate elastic models. For
example, interaction between moving dislocations and inco-
herent precipitates in a matrix was initially proposed as the
well-known Orowan mechanism10,11 within the framework of
the elastic model, and it has been investigated by MD simu-
lations lately12 as a result of the increasing power of compu-
tational facilities. Needless to say, the results obtained from
the original elastic model and those from the MD simulations
are usually different. However, the comparison of their re-
sults is often very suggestive and fruitful to make progress of
the studies. Thus, we undertake an analytical study of dislo-
cation loops within the framework of the conventional elastic
model.

One of the plausible elastic models is the so-called line
tension model �LTM�, where the dislocation is described as a
smooth flexible string with line tension under the influence
of a potential barrier. This LTM has been so far applied to the
investigations of the thermally activated motion of an infi-
nitely long or pinned straight dislocation under the influence
of a variety of Peierls potentials.13–15 Then, the activation
energy for thermal diffusion of the dislocation was estimated
on the basis of a classical rate theory,16 that is, the thermally
activated process can be described as the so-called minimum
energy path from a stable state to another in configurational
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space; the state with the highest energy along the minimum
energy path is the saddle point; the associated activation en-
ergy is defined as the energy difference between the saddle
point and the initial stable state.

The present work stands on this line of the investigation
history and extends this method to the studies of dislocation
loops. For this purpose, we introduce a modified LTM, where
an edge dislocation loop is bound on the lateral surface of a
circular cylinder and its glide motion is restricted within the
surface, as schematically shown in Fig. 1. The edge disloca-
tion loop corresponds to the periphery of an SIA cluster in a
plane normal to the z axis, and so the Burgers vector is
parallel to the z axis in this case. The 1D motion of SIA
clusters observed in actual metals and MD simulations is
well taken into account in the present model.

We will discuss the validity, reliability, etc. of the present
LTM later because this model includes some approximations.
We had opportunities to discuss the problems of the present
work with some researchers and obtained suggestions. For
example, SIA clusters in �-Fe are usually located in the
�110� plane rather than �111�.5 Thus, the direction where SIA
clusters in actual metals move do not always correspond to
the normal vector of the habit plane. However, such prob-
lems will be solved by improving the present LTM in the
future. The most serious problem pointed out by them was
the influence of the self-interaction between dislocation
segments.17,18 In particular, the motion of small-size disloca-
tion loops had been expected to be crucially affected by the
self-interaction. However, we originally ignored the self-
interaction within the present LTM without justification to
obtain analytical solutions. We will discuss the effect of the
self-interaction on the dislocation motion in detail later. For-
tunately, the effect is proved to be unexpectedly small.

From now on, we mainly mention interstitial-type dislo-
cation loops in bcc metals, in particular �-Fe, as an example
of actual metals. However, the results obtained from the
present analysis can be applied to dislocation loops in other
crystals, e.g., fcc metals,19 by making a few modifications on
the present model, if the dislocation loops are glissile and
unfaulted type.

II. FUNDAMENTAL EQUATIONS

We derive analytical solutions for describing the saddle
point configuration of a dislocation loop within the frame-

work of the LTM. The dislocation loop is assumed to be on
the lateral surface of the circular cylinder as shown in Fig. 1.
The potential barrier V�z� has minimum at z= ±b /2 and
maximum at z=0. From now on, we display the displace-
ment of the dislocation line on a flat plane as shown in Fig.
2. Thus, the periodic boundary condition is imposed along
the horizontal axis. In the case of a straight and infinitely
long dislocation, the saddle point configuration is the well-
known double-kink-type solution.13–15 Therefore, we initially
assume that the saddle point configuration of the dislocation
loop is also the conventional double-kink type solution likely
depicted in Fig. 2. The parameter z0 in Fig. 2 indicates the
magnitude of the bow-out of the dislocation. It is a quite
important variable to obtain the analytical solutions for the
saddle point configuration of the dislocation loop. Although a
multiple-kink type solution20 can also be the saddle point
configuration, its total energy is most likely higher than that
of the double-kink one.

According to the LTM,13–15 the total energy Et of the dis-
location loop is written as

Et = �
−L/2

L/2 �1

2
�0	dz

dr

2

+ V�z��dr . �1�

In Eq. �1�, z�r� is the displacement of the dislocation line at
the point r, �0 is the energy per unit length of the dislocation,
and L is the length of the dislocation loop. Strictly speaking,
the parameter L indicates the circumference of the circular
cylinder surrounded with the dislocation loop. However, we
simply regard L as the loop length because it is almost con-
stant during the thermally activated motion, as mentioned
later. We here assume that the dislocation line is sufficiently
smooth, i.e., the value of dz /dr is small everywhere along
the dislocation line. In fact, the maximum value of dz /dr
estimated from Eq. �4� is certainly proved to be small after-
ward.

One obtains the equilibrium condition satisfied at the
stable state and saddle point �unstable equilibrium state� as
follows;

�0
d2z

dr2 =
dV

dz
�2�

One of the trivial solutions to Eq. �2� is

z�r� � 0. �3�

Then, we look for nontrivial solutions of the double-kink
type likely depicted in Fig. 2. Integration of Eq. �2� yields

FIG. 1. Dislocation loop within the line tension model �LTM�. A
flexible edge dislocation with Burgers vector parallel to the z axis is
on a circular cylinder. The potential barrier has maximum at z=0
and minimum at z= ±b /2.

FIG. 2. Schematic view of the saddle-point configuration of the
dislocation loop of double-kink type. Parameter z0 indicates the
magnitude of the bow-out of the dislocation.
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�0

2
	dz

dr

2

= V�z� − C0, �4�

where C0=V�z0�. By separation of variables, one obtains

L = 22�0�
0

z0 1
V�z� − C0

dz . �5�

Inserting Eq. �4� in Eq. �1�, and using Eq. �4� again, the
saddle point energy Es is found to be

Es = C0L + 4�0�
0

L/4 	dz

dr

2

dr

= C0L + 42�0�
0

z0 V�z� − C0dz . �6�

As a result, we obtain two fundamental equations, �5� and
�6�, on the basis of the LTM.

We take a sinusoidal function �sine-Gordon� as the poten-
tial barrier for the motion of the dislocation loop:

V�z� = V0	1 + cos
2�z

b

 . �7�

Inserting Eq. �7� to Eqs. �5� and �6�, we obtain

L =
2b

�
�0

V0
K�s0� , �8�

Es =
4E0

�
	2E�s0� − cos2 �z0

b
K�s0�
 , �9�

E0 = �0V0b , �10�

where s0=sin �z0 /b, and K and E are complete elliptic inte-
grals of the first and second kinds, respectively,21

K�k� = �
0

1 1
�1 − t2��1 − k2t2�

dt .

E�k� = �
0

11 − k2t2

1 − t2 dt �11�

In Eq. �10�, E0 means a characteristic energy unit. We
add that periodic systems similar to ours have been already
investigated, especially in the field of the solitons.22 Inserting
Eq. �7� in Eq. �4�, we obtain saddle point configurations
of the dislocation loop of the double-kink type, as shown
in Fig. 3.

III. ACTIVATION ENERGY AND CRITICAL LENGTH

We mention here a remarkable feature of the thermally
activated motion of the dislocation loop on the basis of the
analytical solutions. The trivial solution in Eq. �3� can be the
saddle point configuration of the dislocation loop of arbitrary
length. On the other hand, the conventional double-kink-type
solution is restricted with respect to the loop length L, ac-

cording to Eq. �8�. Let us define a critical length here:

Lc =�0

V0
b . �12�

When and only when Lc�L, there exists a real solution to
Eq. �8�, because the complete elliptic integral of the first kind
K is larger than � /2.21 Therefore, both solutions �trivial and
double kink� can be the saddle point configuration simulta-
neously in the range Lc�L. We will soon answer which the
true saddle point is. On the other hand, the trivial solution in
Eq. �3� is the unique saddle point configuration of the dislo-
cation loop in the range 0�L�Lc.

As shown in Fig. 4, the profile of the activation energy Ea
drastically changes at the critical length, L=Lc. The activa-
tion energy Ea is merely proportional to the loop length L in
the range 0�L�Lc, which is easily explained by consider-
ing that the saddle point configuration is the trivial solution.
With increasing the loop length L, the two solutions �trivial
and double kink� bifurcate at L=Lc, and both of them can be
the saddle point configuration in the range Lc�L. Practi-
cally, the double-kink-type solution is realized in this range
because the energetically lowest saddle point is chosen
among plural saddle points,16 which is frequently used logic
in the field of chemical reactions.23 In brief, the activation
energy Ea is initially proportional to the loop length L as
shown by the line A in Fig. 4, subsequently bifurcates at
L=Lc, gradually increases along the line B, and finally con-
verges to the finite value of 8E0 /�. This value is, of course,

FIG. 3. Saddle point configurations of the dislocation loop of the
double-kink type. Lines A, B, C, and D correspond to the analytical
solutions for a variety of values of the bow-out of the dislocation,
z0=0.3b, 0.4b, 0.48b, and 0.498b, respectively. The characteristic
length Lc is defined in Eq. �12�.

FIG. 4. Activation energy Ea versus dislocation loop length L.
Lines A and B correspond to the saddle point energy of the trivial
and double-kink-type solutions, respectively. The solid line repre-
sents activation energy realized within the present model. The mag-
nitude of the bow-out of the dislocation z0 is exhibited at some
points.
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equal to the double-kink formation energy on the infinitely
long dislocation.13

Needless to say, the present analysis is inappropriate to
apply to small-size loops where the elasticity theory is not
valid. We will estimate the critical length Lc in actual metals
later to determine the range in which the present analysis is
reliable.

IV. TRANSITION BETWEEN POINT DEFECT
AND DISLOCATION

We present a new concept of the thermally activated pro-
cess of the dislocation loops �SIA clusters� on the basis of the
present analysis. SIA clusters in bcc metals are composed of
parallel crowdions by taking the atomic structure into con-
sideration. Furthermore, an edge dislocation is also regarded
as a large bundle of crowdions.24 The reason is that the edge
dislocation is made up by inserting an extra half-plane com-
posed of an infinite number of SIAs into a perfect crystal. In
brief, the single crowdion, SIA clusters of a variety of sizes
�dislocation loops�, and edge dislocation are essentially the
same interstitial-type defects but different in size, as shown
in Fig. 5. However, we infer that these SIA clusters should
qualitatively change from point-defect-like to dislocation-
like somewhere.

We propose that the critical length Lc defined in Eq. �12�
would be an appropriate criterion to distinguish between
point defect and dislocation. As mentioned before, disloca-
tion loops shorter than Lc are expected to transfer to a next
stable state without the double-kink formation, that is, the
dislocation loops overcome the potential without changing
their shapes except for thermal fluctuations. This so-called
rigid motion can be regarded as point-defect-like migration.
On the other hand, the dislocation loops longer than Lc trans-
fer with the conventional double-kink formation, which is
supposed to be dislocation-like transport. This result implies
that a transition between point defect and dislocation sub-
stantially occurs for the dislocation loops depending on the
loop length.

V. VALUES OF E0 AND Lc IN ACTUAL METALS

We here estimate the values of E0 and Lc in actual metals
from Eqs. �10� and �12� by evaluating �0 and V0. Although
this estimation is somewhat crude, it is available and inevi-
table to determine the range where the present model is
valid. We estimate these values in �-Fe, as an example of
actual metals.

To estimate V0, we assume that the potential barrier of the
dislocation loops is identical to the Peierls potential of an
infinitely long dislocation, which is plausible for somewhat
long dislocation loops. One obtains a relation to calculate V0
from the Peierls stress �P, the minimum external stress to
move a straight dislocation, assuming that the potential is the
sinusoidal one in Eq. �7�,13

V0 =
b2

2�
�P. �13�

However, many researchers have extensively investigated the
Peierls stress of screw dislocations ��P

s � in bcc metals25,26 but
not so much of edge dislocations ��P

e � because plastic defor-
mation of actual bcc metals is controlled by the motion of the
screw dislocations. Ab initio calculations have so far been
performed for the screw dislocations.27 The magnitude of �P

s

is roughly of order of 10−3G,28 where G is shear modulus.
On the other hand, there is only a little knowledge about the
plastic deformation due to nonscrew dislocations, e.g., a se-
ries of microyielding experiment29,30 and simulations.31 Any-
way, they inferred that the value of �P

e should be about an
order of magnitude smaller than �P

s . Recently, we also esti-
mated as �P

e =4�10−4G in �-Fe �Ref. 32� using Finnis-
Sinclair potential,33 which is acceptable in comparison with
the above discussion.

About the energy per unit length of the dislocation �0,
some researchers recommended that it is of the same order as
or smaller than core energy.13,15,34 We made sure that the
value of �0 is almost constant for long dislocation loops,
L�30b by simulations.32 Accordingly, we here assume that
�0=0.2Gb2.

As a result, we obtain the critical length Lc=56b
from Eqs. �12� and �13�, and the characteristic energy unit
E0=0.040 eV from Eq. �10� as one example, where
G=117 GPa.35 Therefore, the activation energies Ea for suf-
ficiently long dislocation loops are estimated as about
0.10 eV. The critical length estimated here, Lc=56b, gives
the loop diameter of about 20b. This size is considered to be
large enough for the elasticity theory to be valid. In addition
to it, we obtain from Eq. �4� that the absolute value of the
gradient of the dislocation line dz /dr is less than 0.036.

VI. INFLUENCE OF SELF-INTERACTION

The influence of the self-interaction between dislocation
segments was ignored in the present analysis, which was
pointed out as a serious problem by some researchers. There-
fore, we discuss the validity of this approximation in detail
here. In order to investigate the influence of the self-
interaction easily, we introduce two variables, E1 and E2,
which indicate the magnitude of the self-energy of the dislo-
cation loop at two states within the present model.

E1: stable state, i.e., z� ±b /2.
E2: saddle point, i.e., analytical solution derived from Eq.

�4� using the sinusoidal potential in Eq. �7�.
Strictly speaking, in order to estimate the exact magnitude

of the self-energy of the dislocation loop at the saddle point,
we should determine the exact saddle point configuration by

FIG. 5. Schematic view of formation of an edge dislocation in
bcc by growth of SIA clusters in the �111� plane. Open circles
represent SIAs �crowdions perpendicular to the plane�.

K. OHSAWA AND E. KURAMOTO PHYSICAL REVIEW B 72, 054105 �2005�

054105-4



taking into account the influence of the self-interaction, but it
would be difficult. Instead of it, we use here the analytical
solution as a substitute for the exact saddle point configura-
tion. Although it is an approximation, we can estimate an
upper limit of the activation energy increased due to the in-
fluence of the self-interaction, as mentioned later.

It should be emphasized that the contribution of the self-
energy to the activation energy is not the absolute value itself
but the energy difference between the saddle point and the
initial stable state.16 In addition to it, the self-energy depends
only on the dislocation shape.17 Therefore, as a special case,
there is no contribution of the self-energy to the activation
energy in the case of dislocation loops shorter than the criti-
cal length Lc within the present model, because the saddle
point configuration is the trivial solution, that is, the disloca-
tion loops are not deformed at all during the thermally acti-
vated motion. On the other hand, we have to actually calcu-
late the self-energy at the saddle point for dislocation loops
longer than Lc because they are transformed in the thermally
activated motion.

The interaction energy between two dislocations is ana-
lytically expressed by a double integral along the dislocation
lines.17 The self-energy is similarly given by the double in-
tegral, but a cutoff length �dislocation core size� �c has to be
introduced to avoid the energy divergence. We are provided a
computer code to calculate the interaction energy of disloca-
tions with arbitrary shapes.36 Table I shows the magnitude of
the self-energies of dislocation loops at the stable state �E1�
and saddle point �E2� in �-Fe estimated with the computer
code. Then, we take a variety of cutoff lengths �c=0.707b,
2.0b, and 4.0b, and calculate E2, where G=117 GPa,
	=0.31, and b=0.248 nm.35 With increasing the cutoff
length �c, the self-energy and its difference E2−E1 decrease.
As an example, Witrh et al. recommended it to be �c=2.9b in
�-Fe.5

The lines Si �i=1,2 ,3� in Fig. 6 shows the sum of the
original activation energy calculated within the LTM and dif-

ference of the self-energies, E2−E1, where Gb3 is estimated
as 11 eV in �-Fe. The sum is not necessarily the exact acti-
vation energy taking into account the influence of the self-
interaction but gives its upper limit. The reason is that the
dislocation loops are intuitively most distorted at the saddle
point in the thermally activated motion, and so the largest
self-energy is achieved at that point. Therefore, the simple
sum of the original activation energy and self-energy differ-
ence indicates sufficiently large energy for dislocation loops
to overcome the potential barrier. Presumably, the exact ac-
tivation energy taking into account the self-energy is lower
than the magnitude of the simple sum by energy relaxation.

In conclusion, if the self-interaction is introduced in the
present model, the activation energy most likely increases.
However, the values of E1 and E2 are very close, as shown in
Table I. Thus, the increment is so small that the self-
interaction would not greatly affect the motion of the dislo-
cation loops.

VII. DISCUSSION

The thermally activated transport of dislocation loops
from a stable state to the next one is investigated within the

TABLE I. Bow-out of the dislocation z0, loop length, and self-energy of dislocation loops in �-Fe. The self-energies at the stable state
and saddle point are E1 and E2, respectively, where cutoff lengths �c are 0.707b, 2.0b, and 4.0b. Similarly, loop lengths of the stable state
and saddle point are L1 and L2, respectively. Differences, L2−L1 and E2−E1, are written in the parentheses.

z0 �b�

loop length �b� self-energy �Gb3�

L1

L2

�L2−L1�

�c=0.707b �c=2.0b �c=4.0b

E1

E2

�E2−E1� E1

E2

�E2−E1� E1

E2

�E2−E1�

0 �56 ¯ ¯ ¯ ¯ ¯ ¯ ¯

�0.0�
0.3 71.838 71.851 26.262 01 26.263 35 17.660 48 17.661 20 11.965 46 11.965 79

�0.013� �0.001 34� �0.000 72� �0.000 33�
0.4 92.768 92.787 36.647 81 36.650 09 25.533 08 25.534 42 18.154 08 18.154 84

�0.019� �0.002 28� �0.001 34� �0.000 76�
0.48 148.345 148.367 66.633 20 66.636 68 48.849 29 48.851 57 37.013 61 37.015 18

�0.022� �0.003 48� �0.002 28� �0.001 57�
0.498 230.374 230.397 115.173 03 115.177 64 87.548 94 87.552 13 69.147 60 69.150 05

�0.023� �0.004 61� �0.003 19� �0.002 45�

FIG. 6. Upper limits of the activation energy increased due to
the influence of the self-interaction. Lines S1, S2, and S3 correspond
to the cutoff lengths �c=0.707b, 2.0b, and 4.0b, respectively. Lines
A and B mean the same saddle point energy in Fig. 4 derived from
the LTM.
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framework of the conventional LTM. As a result, we find that
the saddle point configuration of the dislocation loops
changes from the trivial solution to the double-kink one with
increasing the loop length, and so the transition between
point defect and dislocation is expected. Although the sinu-
soidal potential is used in the present work, such transition is
not related to the specific potential but most likely occurs for
many other potentials generally.

We are concerned about the influence of the self-
interaction neglected in the present analysis but the effect is
small. The reason why the self-energies, E1 and E2, are very
close is intuitively explained, as follows. According to Table
I, the dislocation loops elongate only a little in the thermally
activated transport. In addition to it, the critical length is
approximately estimated as Lc=56b. Therefore, the loop
length is sufficiently long compared with the elongation.
This result implies that the dislocation loops are deformed
only slightly during the thermally activated transport, and so
the associated fluctuation of the self-energy is quite small.
Even if the effect of the self-interaction is taken into account,
the activation energy would increase only a little, and the
value of the critical length introduced to distinguish between
point defect and dislocation would also increase only
slightly. Anyway, the self-interaction does not greatly affect
the qualitative analysis such as the present work.

We have mainly mentioned dislocation loops in �-Fe as
an example of actual metals because we have much knowl-
edge about �-Fe by experimental results and simulations.
However, the present analysis is generally applicable to dis-
location loops in other bcc and fcc metals, if they are glissile
perfect dislocations. Furthermore, it is possible to apply this
to vacancy loops as well as interstitial loops. However, the
present analysis gives the same results for both loop types
because the parameters, V0 and �0, of the vacancy loops are
the same as those of the interstitial loops. This is a contra-
diction compared with other works. We have to improve the
present work but it has not yet been considered.

We often see that SIAs or SIA clusters make continuous
jumps over a few lattice sites in MD simulations. This fact
means that the phenomena investigated in the MD simula-
tions are affected by the so-called inertia effect, i.e., dynami-
cal process. On the other hand, the present work is a kind of
static method, i.e., the analysis on the basis of finding the
saddle point along the minimum energy path in configura-
tional space. The comparison of these results obtained from
both methods would be useful for understanding of the ther-
mally activated process. The studies on the basis of the mini-
mum energy path have been performed in some fields lately,
since an excellent algorithm �nudged elastic band method�
was established to find the saddle points in systems with
large degrees of freedom.37 It has been applied to the re-
search on the thermally activated motion of a straight

dislocation38 and crack tip39 in crystal lattices.
The mechanism for the thermally activated transport of

the dislocation loops �or SIA clusters� in metals has still been
controversial. Osetsky et al.6 showed the activation energies
of SIA clusters in �-Fe do not depend on the cluster size
�0.021–0.024 eV� and suggested that crowdions composing
the SIA clusters independently migrate. This energy depen-
dence is similar to our result for sufficiently long dislocation
loops. However, we rather assume a kind of collective mo-
tion of each dislocation loop from a stable state to the next
one. Soneda et al.7 and Marian et al.8 obtained similar re-
sults: the migration energies are calculated for SIA clusters
composed of up to about 20 SIAs; the single and small SIA
clusters, I2 and I3, have somewhat larger migration energies
than others. Wirth et al.5 investigated SIA clusters composed
of “magic number” SIAs; the activation energies for I19 and
I37 are 0.023 eV and 0.052 eV, respectively. The main reason
why these results are different is that they used different
interatomic potentials.

VIII. SUMMARY AND CONCLUSIONS

We study the thermally activated motion of the perfect
dislocation loops within the framework of the conventional
line tension model �LTM�. The dislocation loops correspond
to the periphery of self-interstitial atom �SIA� clusters. The
associated activation energy is calculated from the saddle
point configuration of the dislocation loops. We obtain ana-
lytical solutions for the saddle point configurations of the
dislocation loops and the critical length Lc. The saddle point
configurations are classified into two types, i.e., trivial solu-
tion and double-kink-type one. According to the classifica-
tion, dislocation loops shorter than Lc are regarded as point
defect. On the other hand, longer ones are the conventional
dislocation. As a result, we propose the transition of the dis-
location loops between point defect and dislocation. We es-
timate the critical length as Lc=56b and characteristic energy
unit as E0=0.040 eV in �-Fe, as an example of the actual
metals. The influence of the self-interaction of the disloca-
tion loops is not initially considered in the present work.
However, the influence is proved to be small, and we con-
clude that it does not seriously affect the motion of the dis-
location loops.
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