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Contribution of hysteretic mechanical elements to the stress/strain relationship of microinhomogeneous
material is analyzed within the framework of a model where the transitions between the different mechanical
states of the individual elements in addition to acoustic loading can be induced by thermal fluctuations. The
model provides explanation for the dependence of the type and order of the acoustic nonlinearity on the wave
amplitude observed in experiments with microinhomogeneous materials, where, with increasing wave ampli-
tude, transition from behavior characterized by the dominance of the quasinonhysteretic nonlinearity to another
characterized by the dominance of hysteretic quadratic nonlinearity takes place. Analytical evaluation of the
model for the acoustic hysteresis is shown to confirm the expectation that thermal relaxation effects are capable
of inducing dispersion in both the linear and nonlinear acoustic properties of the material.
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I. INTRODUCTION

Due to the high acoustic nonlinearity of microinhomoge-
neous materials such as rocks, polycrystalline metals, and
ceramics, for example, the methods of the nonlinear acous-
tics have become increasingly applied for their nondestruc-
tive characterization.1–4 Currently there exists a consensus,
that mechanical properties of these materials are dominated
by the hysteretic nonlinearity, as opposed to the nonlinearity
of the interatomic interactions and the kinematic non-
linearity.5,6 Hysteretic nonlinearity is understood phenom-
enologically in terms of the nonlinear motion of the mesos-
copic mechanical elements such as dislocations, intergrain
contacts, or defects, for example, with the dimensions ex-
ceeding interatomic distances but significantly smaller than
the acoustic wavelength.1,3 As the mathematical tools for the
description of nonlinearity hysteresis, different modifications
of the Granato-Lucke theory for the acoustically induced
motion of the dislocations7,8 or the Preisach-Mayergoyz
model of the hysteresis9–13 can be applied. In their simplest
formulations both approaches predict that the dominant hys-
teretic nonlinearity is quadratic �i.e., even� in acoustic wave
amplitude, but that nonlinearity acts as an odd type nonlin-
earity in its physical manifestations.1–4,14–17 For example, the
harmonics excited in the propagation of an initially sinu-
soidal wave are at short distances quadratic in the initial
wave amplitude; however the quadratic nonlinearity yields
only odd harmonics in the experimentally observed Fourier
decomposition of the wave.14,15 Existing models explain
what is perhaps the best known and the most common mani-
festation of the hysteretic quadratic nonlinearity which is the
shift of the resonance frequency of a solid microinhomoge-
neous bar proportional to the wave amplitude in the bar.1–4

The theoretical analysis presented below was initially mo-
tivated by a recent communication18 reporting that at very
low acoustic strain amplitudes the shift of the resonance in
rock rods is not linear in wave amplitude and that there exists
a critical strain amplitude O�10−6� at frequencies as low as
0.5–3 kHz where the transition to common linear depen-

dence takes place with increasing wave amplitude. Surpris-
ingly a similar transition has been reported in classical ex-
periments on single crystal metals with dislocations at a
strain level O�10−7� at a frequency of 39 kHz over 50 years
ago,19 but which appears to be without citation in the litera-
ture. A recent communication �Ref. 20�, reported the same
phenomenon in polycrystalline metal at strain levels of 2.5
�10−6–5�10−6 at frequencies 2.7–13.5 kHz. Consequently
a low amplitude threshold for the manifestation of the fre-
quency shift linear in wave amplitude �typical to the
Preisach-Mayergoyz model of hysteresis� appears to be well
documented in a number of mesoscopic materials, while the
model itself does not predict this threshold.

In order to resolve this contradiction we propose here to
take into account that hysteresis is always a dynamic phe-
nomenon. If the thermal fluctuations, pushing the system to a
unique equilibrium state, are taken into account in the de-
scription of the mesoscopic elements, then there will be no
hysteresis in the static limit. The hysteresis will appear in
quasistatics at such frequencies where the thermal fluctua-
tions have insufficient time to put the system in its absolute
minimum of free energy during the wave period and the
system can be found in a local minimum, which constitutes a
metastable state. Consequently, the nonlinear mesoscopic
mechanical elements, in reality, are nonhysteretic in the static
limit and hysteretic only in their dynamic behavior. Then
there are certainly sufficiently low frequencies where the
nonlinear behavior is predominantly nonhysteretic rather
than hysteretic, and the transition from one type of nonlin-
earity to another can be achieved by increasing the fre-
quency. With this statement in hand a possible explanation
for the observed low-amplitude threshold for the observation
of the hysteretic quadratic nonlinearity might be provided by
a proof that the transition in the behavior of mesoscopic
elements to one described the PM model can be initiated not
only by increasing the acoustic frequency but also by in-
creasing the acoustic amplitude. It is shown here that the
behavior of this transition with increasing wave amplitude
can be described, in particular, by the Preisach-Arrhenius

PHYSICAL REVIEW B 72, 054104 �2005�

1098-0121/2005/72�5�/054104�19�/$23.00 ©2005 The American Physical Society054104-1

http://dx.doi.org/10.1103/PhysRevB.72.054104


model for the acoustic response of microinhomogeneous
�mesoscopic� materials.

In the present publication we analyze the dependence of
the elastic acoustic nonlinearity on acoustic wave amplitude
and frequency, as well as the frequency-dependent nonlinear
sound decrement within the framework of the Preisach-
Arrhenius model for hysteresis. We note parenthetically here
that the Preisach �Preisach-Mayergoyz� formalism9–13 at-
tributes hysteresis in the nonlinear stress/strain relationship
to superposed behavior of individual noninteracting bistable
�two-level� hysteretic mechanical units, sometimes referred
to as hysterons.12,21–23 The transitions between two possible
states, i.e., energy levels, are assumed to take place instanta-
neously and exactly at some critical levels of varying stress
�strain�. For different individual mechanical elements the
levels are different. This model of the hysteretic nonlinearity
is essentially dispersionless, that is frequency-independent,
because there are no characteristic scales of either time or
length in the model. The Preisach-Arrhenius model applied,
in particular, for the description of thermally activated relax-
ation, or “aftereffect,” in magnetic materials13,21–25 takes into
account that the transitions between the energy levels of the
system can be thermally activated and that the probabil-
ity of the transition is controlled by the Boltzmann factor
exp�−�E /kBT�, where �E is the energy barrier between the
levels, or some activation energy, kB is the Boltzmann con-
stant, and T is the absolute temperature. The thermally con-
trolled transition is not instantaneous, rather, there is a char-
acteristic time scale for each individual mechanical element
that can be estimated by �0 exp��E /kBT� as defined by the
Arrhenius formula for the transition time, where �0 is some
characteristic attempt time associated with the jump
�Barkhausen jump13,24� between the energy levels. Conse-
quently dispersion in the acoustic nonlinearity is expected in
the Preisach-Arrhenius model. The acoustic wave influences
the system through the modulation of the energy barrier �E
between the energy levels. Thus the acoustic wave influences
thermally activated relaxation processes in the system mak-
ing them amplitude-dependent. Qualitatively speaking, the
Preisach-Arrhenius model describes nonlinear temperature-
dependent relaxation of the nonlinear hysteretic mechanical
elements. Consequently it might be expected that the nonlin-
earity of the system is due not only to the intrinsic nonlin-
earity of the bistable hysteretic elements but also due to the
nonlinearity of the relaxation process.

It should be mentioned that some time ago the possibility
of thermal activation of the unpinning process had been in-
troduced in the theory of acoustic damping due to dislocation
motion.26,27 However, to the best of our knowledge, no
analysis of the dispersion of the acoustic properties and their
detailed dependence on the acoustic wave amplitude was un-
dertaken.

The text is organized as follows: In Sec. II we present the
derivation of the stress/strain relationship for an arbitrary
strain loading history within the framework of the Preisach-
Arrhenius model. Sections III–VI include the results of ana-
lytical evaluation of the elastic and inelastic linear and non-
linear properties of the model as a function of the sinusoidal
or quasisinusoidal strain amplitude and frequency.
Asymptotic analytical results have been obtained in the lim-

its of low and high acoustic frequencies, and in the limit of
weak amplitude and high amplitude acoustic excitation. Dis-
cussion of the theory is presented in Sec. VII followed by the
conclusions in Sec. VIII. The goal of our research was to
analyze theoretically various possible cases related to char-
acteristic parameters of the model rather than to seek quan-
titative agreement with real experimental situations.

II. PREISACH-ARRHENIUS MODEL FOR ACOUSTIC
RESPONSE OF MICROINHOMOGENEOUS MEDIA

There exists a consensus that microinhomogeneous mate-
rials may contain some mechanical elements which are me-
soscopic �with the dimensions exceeding the atomic scale
but significantly smaller than acoustic wavelength� and hys-
teretic �like reversible Griffith cracks10 or contacts with
adhesion,28 for example�. The hysteresis in the behavior of
an individual mechanical element might be imagined in the
simplest way as being related to possibility for the element to
be in different states �or configurations� under the same me-
chanical loading. In which state actually might be found the
mechanical element depends on the acoustic loading history.
Both in the Preisach-Mayergoyz �PM� �Refs. 9–13� and the
Preisach-Arrhenius �PA� �Refs. 13 and 21–25� models it is
assumed that the mechanical elements have two states �two
level systems� and that the contribution �� of an element to
stress depends on its state. This is a phenomenological de-
scription in which the multilevel multistable free-energy
structure �of interacting between themselves and with the
matrix mechanical elements� is decomposed into many two-
level bistable contributions.13 In the PM theory the transition
of an element from state 1 to state 2 takes place with increas-
ing strain s when �s /�t�0, s=s2, while the inverse transition
with decreasing strain takes place when �s /�t�0, s=s1�s2
�Fig. 1�. It is the difference between the critical switching
strains s2 and s1 �s2�s1� that gives opportunity to call an
element hysteretic.

We are using a strain controlled hysteretic element �Fig.
1�, but not a stress controlled element. The most important
point here, in our opinion, is that in nonlinear acoustics both
approaches are absolutely equivalent from the physics point
of view. When we are analyzing weak �acoustic� loading of a
material the nonlinearity of the material �i.e., the deviation

FIG. 1. Contribution �� of an individual mechanical element to
stress in the framework of the Preisach-Mayergoyz model. Arrow-
heads indicate direction of strain variation in time.
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from the Hooke’s law in the diapason of load variation� is
weak. The relation between stress and strain in acoustic wave
is in the leading �dominant� order linear and controlled by
the linear elastic modulus E. In acoustic experiments the
wave controls local load on the mechanical system both in
terms of stress and in terms of strain �which are just related
via the elastic modulus�. To analyze the modification of an
element by the acoustic strain, it is sufficient to evaluate the
additional to prescribed by the Hooke’s law strain-induced
variations of stress �as thermodynamically conjugated vari-
able to strain� and to neglect the accompanying strain-
induced strain variations, thus considering the element as
being strain controlled. To analyze the modifications of an
element by acoustic stress it is sufficient to evaluate the ad-
ditional to prescribed by the Hooke’s law stress-induced
variations in strain �as thermodynamically conjugated vari-
able to stress� and to neglect the accompanying stress-
induced stress variations, thus considering the element as
being stress controlled. We prefer to analyze strain controlled
mechanical elements, because then we directly get the addi-
tional �due to hysteretic elements� contribution to stresses
and these are stress gradients that are �in accordance with
elasticity theory� providing acceleration of a medium. It has
been demonstrated that both strain controlled and stress con-
trolled hysterons provide the same functional form of non-
linearity in acoustics.16

If the notation f�s1 ,s2� is introduced for the distribution
function of the elements in the plane �s2 ,s1� �PM plane� then
the contribution of all the elements to the stress can be pre-
sented as

� = �
−�

s2

ds1�
s1

�

ds2���s1,s2,s�f�s1,s2� . �1�

Here f�s1 ,s2�ds1ds2 is the number of elements with critical
strains belonging to the intervals �s1 ,s1+ds1� and �s2 ,s2

+ds2� of the PM plane �s2 ,s1�. Due to the assumed condition
s2�s1 the integration in the PM plane is in the half-space at
the right of the diagonal s2=s1 �Fig. 2�. The arguments of the
function ���s1 ,s2 ,s� indicate that in general the contribution
of an element to the total stress depends on its position at the
PM plane and the loading history as it is presented in Fig. 1.
Important feature of the PM model is that hysteresis in the
mechanical behavior of the individual elements exists inde-
pendently of the strain rate magnitude �there is only the de-
pendence on the sign of the strain rate�. It is assumed that
transitions at critical levels s2 and s1 are instantaneous. It is
assumed that the transition 1⇒2 will always happen when
strain s ��s /�t�0� exceeds s2 independently of how fast s
returns back to the region s�s2 after that. From a physics
point of view in the PM model it is the acoustic loading that
not only creates the conditions for the transition but also
induces the change of the state. In the theory of magnetism
the Preisach-Mayergoyz model is considered as a zero-
temperature model of rate-independent hysteresis.13

The physical nature of ���s1 ,s2 ,s� behavior in the
Preisach-Arrhenius model is very different. It is not only the
acoustic field, which can itself transfer the mechanical ele-
ments between the states 1 and 2. These are also thermal

fluctuations that statistically can always cause the transitions.
Thus in the PA model the transition from the state 1 to the
state 2, for example, is not restricted to s=s2 ��s /�t�0� and
instantaneous, but is possible for all s although with a finite
probability depending on the level of s relative to s2. Once
the temperature is introduced the element can overcome the
energy barrier by thermal activation at lower strains
�stresses� as long as there is a second �local� energy mini-
mum in which to jump. Qualitatively speaking thermal fluc-
tuations accelerate the transitions below the critical level of
strain s2.

In the Arrhenius model of thermally initiated transitions,
the transition time �12 from level 1 to level 2 is equal to

�12 = �0 exp�d�s2 − s�/kBT� , �2�

where �0 is the so-called attempt time,13,21,26,29 d is the pa-
rameter describing the variation of energy difference be-
tween the states 1 and 2 with strain �deformation potential�,
and kBT is the characteristic thermal energy. There are few
restrictions on the applicability of the model in Eq. �2�. First,
the model in Eq. �2� is theoretically established for the situ-
ation when two free energy minima exist simultaneously13,21

i.e., in the strain interval s1	s	s2. However, by extending
the application of the model in Eq. �2� to s
s2, for example,
one could try to qualitatively account for the fact that the
transition between two configurations even in the absence of
the potential barrier between them could have taken some
time. Note that in accordance with Eq. �2� the transition time
�12 diminishes exponentially fast below the value of �0 with
increasing strain when strain passes the critical level s2. So
the extension of Eq. �2� to s
s2 insures that in the dynamic
regime of loading the transition to a second single energy
minimum �stable state� will take place after the disappear-
ance of the first �metastable� state. Otherwise Eq. �2� can be
viewed as a smooth approximation for the theoretical �12,

FIG. 2. Presentation of mechanical element distribution at
Preisach-Mayergoyz plane �s2 ,s1�, where s2 and s1 are the critical
strain values for switching the elements between the levels. In gen-
eral the elements can occupy the complete half-plane s2�s1 �s�

= �s2−s1� /2�0�. A distribution, limited in the PM plane by s�

	s�
max and s�

min	s� = �s2+s1� /2	s�
max, is presented in gray as an

example.
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which is equal to infinity when s�s1, is described by Eq. �2�
when s1	s	s2, and is equal to zero when s
s2. Third, in
the following it will be considered that the deformation po-
tential is the same for all the Preisach units �d does not
depend on s1 and s2�. This approximation correlates with the
fundamental requirements for validity of Preisach approach
to description of the hysteretic systems, i.e., with the possi-
bility of the decomposition of the free energy of the system
into elementary noninteracting bistable contributions �even if
we do not know why this decomposition is possible13…�. It
is important that the dependence of the “amplitudes” of the
individual Preisach units contribution to stress ����s1 ,s2 ,s�
in Eq. �1�� on s1 and s2 can be incorporated in their distribu-
tion function f�s1 ,s2�. See for the details the discussion fol-
lowing Eq. �9� below. Thus the Preisach decomposition into
the equal amplitude hysterons �with equal �1�−�2� in Fig. 1
for all the elements� is possible. The deformation potentials
for the units of equal amplitude are equal �see, for compari-
son, Fig. 13.1 from Ref. 13�.

Similarly to �12 the time �21 of the inverse transition is

�21 = �0 exp�d�s − s1�/kBT� . �3�

The transition times �12 and �21 control the probabilities W1
and W2 to find the element in the states 1 and 2, respectively,

�W1/�t = − W1/�12 + W2/�21,

�W2/�t = W1/�12 − W2/�21, W1 + W2 = 1. �4�

These equations are sufficient to describe the dynamics of
stress in response to acoustical loading. Actually the average
level of ���s1 ,s2 ,s� in the absence of the acoustic wave does
not contribute to dynamic stress in Eq. �1�. Thus it is useful
to evaluate the variations of ���s1 ,s2 ,s� relative to the aver-
age level ��1�+�2�� /2, where �1� and �2� are the contributions
to stress when the element is in the positions 1 and 2, respec-
tively. Then the contributions of the states 1 and 2 to stress
that can be modified by acoustic excitation are described as
��1�−�2�� /2�����s1 ,s2� and ��2�−�1�� /2�−����s1 ,s2�, re-
spectively. Taking into account the probabilities to find the
element in the corresponding states, the strain dependent
contribution ���s1 ,s2 ,s� to ���s1 ,s2 ,s� can be presented as

���s1,s2,s� = − ����s1,s2�W2 + ����s1,s2�W1 = ����s1,s2�

��W1 − W2� � ����s1,s2�Q . �5�

The relations �4� lead to a single equation describing the
dynamics of the introduced in Eq. �5� function Q, which
characterizes the asymmetry of the element distribution be-
tween the two levels,

�Q/�t + �1/�21 + 1/�12�Q = �1/�21 − 1/�12� . �6�

An evident but important conclusion based on Eq. �6� is the
absence of the hysteresis in the contribution of an element to
stress under the static conditions. For � /�t→0 �zero fre-
quency of the acoustic action� the solution of Eq. �6� is

Q0 = − tanh�d	s −
s1 + s2

2

/kBT� . �7�

Thus, in contrast to the PM model the hysteresis in the PA
model is a dynamic phenomenon due to the finite rate of
acoustic loading �compare the solutions for �� in Fig. 1 and
in Fig. 3�.

For the following analysis the characteristic strain s0
=kBT /d, which provides a scale for the amplitude of acoustic
loading necessary for significant �e times� modification of
the relaxation times �12 and �21, is introduced. All the strains
are normalized to this level �s /s0�s , s1,2 /s0�s1,2�. Two
new variables s� = �s2+s1� /2 and s�= �s2−s1� /2 are then in-
troduced. The modulus of the first one characterizes the av-
erage acoustic strain necessary for initiation the transitions in
the element �s1 ,s2� of the PM space. The second one char-
acterizes the separation of forward and backward transitions.
Qualitatively speaking �s�� characterizes the average energy
of the mechanical element �from the acoustics point of view�
while s� characterizes the separation of the energy levels 1
and 2 in the absence of the acoustic loading. On the other
hand s� and s� have a clear geometrical sense being propor-
tional in the PM plane to the coordinates measured along the
diagonal s2=s1 and perpendicularly to the diagonal,
respectively13,30,31 �Fig. 2�.

Just to give the readers an idea of a plausible value for the
scale s0, it is worth to present here the estimates of s0,
obtained later in Sec. VII via the comparison of the predic-
tions of the developed theory with some available experi-
mental data. It is estimated that at room temperatures
s0� �1–2��10−8 in single crystal metals �where the plau-
sible micromechanical elements are dislocations� and
s0� �3–6��10−8 in rocks.

Note, that as far as T�0 �corresponding to experimental
reality� there is no problems in normalization of strains to
s0=kBT /d�0. The normalization to s0 has no sense only in
the theoretical limiting point T=0, where however the
Preisach-Mayergoyz model of the rate-independent zero-
temperature hysteresis can be used just from the beginning.
The answer to the question, why the PM model of rate-

FIG. 3. Contribution �� of an individual mechanical element to
stress in the framework of the Preisach-Arrhenius model in the case
of infinitely low frequency of acoustic action. The element behaves
in response to strain variation as a two-level but a nonhysteretic
unit.
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independent zero-temperature hysteresis describes success-
fully some experiments conducted at finite temperatures T
�0 and under what conditions it is possible to use the PM
model, is given later in Sec. VI. There it is demonstrated that
these are conditions simultaneously on the normalized acous-
tic wave amplitude �sA /s0�1/T� and the normalized acoustic
frequency �F=�0 /TA�.

In the introduced notations Eq. �6� takes the form

�Q/�� + �2/F�exp�− s��cosh�s��� − s��Q

= − �2/F�exp�− s��sinh�s��� − s�� . �8�

Here the time is normalized to the period TA of acoustic
loading �= t /TA, and the parameter F=�0 /TA is the normal-
ized frequency of the acoustic action. This particular normal-
ization is chosen, because in the following the analysis will
be concentrated on the case of a sinusoidal loading, charac-
terised by a single time-scale TA. The integral relation �1� for
the evaluation of the stress becomes

� = s0
2�

0

�

ds��
−�

�

ds�����s�,s��f�s�,s��Q�s�,s�,s� . �9�

The formulas �8� and �9� with an appropriate modeling of
the distributions ����s� ,s�� and f�s� ,s�� are sufficient for
the description of the acoustic response of materials in the
frame of the PA model. It is clear that the analysis should be
first fulfilled for the simplest model of ����s� ,s�� and
f�s� ,s�� variation in the PM plane �s� ,s��. For this purpose
the product ����s� ,s��f�s� ,s�� will be characterized by its
characteristic value ����f�0 and the extent of the elements
distribution in the PM plane will be assumed limited by the
boundaries 0	s�	s�

max, s�
min	s� 	s�

max �s�
min�0, s�

max�0�
�Fig. 2�. Under these assumptions Eq. �9� simplifies

� = s0
2����f�0�

0

s�
max

ds��
−�s�

min�

s�
max

ds�Q�s�,s�,s�t�� . �10�

Note that later the influence of the deviation of
����s� ,s��f�s� ,s�� distribution from the one accepted here
will be discussed �see Sec. VII�. It is worth mentioning that
the assumption ����s� ,s��f�s� ,s��
const is rather common
in applications of the Preisach-Mayergoyz model to acous-
tics, because only a small area of the PM plane with the
dimensions �sAsA /2 �where sA is the amplitude of the acous-
tic wave� interacts with sound in the PM model. In this case
the details of the ���f distribution outside this small area
plays no role. In the Preisach-Arrhenius model the situation
is different because acoustic wave perturbs the relaxation of
all the elements of the PM plane and in principle the precise
form of the distribution of the elements in the complete half
plane should be known for the analysis of Eq. �9�. However,
from the physical considerations both the elastic energies of
micromechanical elements ���s��� and the energy differences
between the levels ���s��� are limited from above. In other
words the distribution f�s� ,s�� is in reality localized near the
diagonal s1=−s2 and simultaneously near the diagonal s1
=s2 ����f diminishes both when �s��→� and when s�→��.
The latter conclusion is confirmed by the processing of the
available experimental data.34 Surely, the description of the

real distribution function f�s� ,s�� could require the introduc-
tion of the multiple scales both along the s� axis and along
the s� axis to account for a possible complicated relief of
f�s� ,s��. However, in the first simplest analysis of the influ-
ence of the elements localization on the acoustic properties it
looks reasonable to neglect a possible fine structure of
f�s� ,s�� and just to account for the distribution localization
by introducing a minimum number of the parameters. Thus
we naturally arrive to the simplest model in Fig. 2, where
s�

max and s�
max� �s�

min� characterize the localization of the ele-
ment distribution in the PM plane. The quantitative influence
of the introduced parameters s�

max and s�
max� �s�

min� on the
acoustic response will be clear from the asymptotic analysis
developed in Sec. III–V later. However, just now it is worth
presenting the following qualitative arguments. From the
structure of Eq. �8� it can be concluded that the characteristic
relaxation cyclic frequency �i.e., the inverse relaxation time�
for the function Q in the case of weak acoustic loading �s
→0� can be estimated �from the coefficient in front of Q in
the left-hand side of Eq. �8�� as


0 = �2/�0�exp�− s��cosh�s�� . �11�

Consequently the boundaries of the elements distribution in
the PM plane control the lowest �
L= �2/�0�exp�−s�

max�� and
the highest �
H= �2/�0�cosh�s�

max�� relaxation frequencies of
the elements in the system. Here and in the following we
consider for compactness that s�

max� �s�
min�. In accordance

with Eq. �11� the relaxation frequency is lower for the ele-
ments with larger separation of the levels ��
0 /�s��0� and
is higher for the elements with higher average energy of the
levels ��
0 /��s���0�. In the PM plane the relaxation fre-
quency of the elements diminishes with the deviation from
the diagonal s�=0 and increase in both directions along the
diagonal. Using the derived 
L and 
H it is possible to pre-
dict that the PA system will definitely reply to weak acoustic
loading as a quasiequilibrium one if 2� /T�
L ��F
�exp�−s�

max�� and as a quasifrozen one if 2� /T�
H ��F
�cosh�s�

max��. In the former case the relaxation frequencies
of all the elements are higher than the frequency of the
acoustic excitation and the element state follows the acoustic
loading with a very short delay �quasistatically�. In the latter
case the unperturbed by sound relaxation frequency of all the
elements are lower than the frequency of the acoustic exci-
tation and the elements have not enough time to change the
state �they are quasifrozen�.

It is worth mentioning here that in the most of the current
physical theories it is accepted that the inverse attempt time
�attempt frequency� 1/�0 is poorly known13 and is difficult to
estimate. In addition, strictly speaking, it is not a constant. In
particular, it depends on temperature. However the depen-
dencies on other parameters are usually assumed to be of
minor importance in comparison with strong exponential de-
pendence, which is present in Eq. �2� and in Eq. �3�. Values
of 1 /�0 in the range from 108 to 1012 Hz may be
expected.13,27,29 They are expected to be related to the spec-
trum of phonons �vibrations� in the system. Consequently the
nonequilibrium response of the Preisach-Arhenius system at
acoustic and even ultrasonic frequencies �rather than at hy-
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personic frequencies in the range 109–1012 Hz� might be ex-
pected if there are elements with exp�−s���1. Because of
this in the following �and, particularly, in the presentation of
the asymptotic results in Sec. III–V� it will be assumed that
the inequality

exp�− s�
max� � 1 �12�

holds. That is at least s�
max
4. The analysis demonstrates

that the conditions on s�
max� �s�

min� could be important only for
hypersonics. In the following for the generality it will be
assumed that

exp�s�
max� � exp��s�

min�� � 1. �13�

Under the conditions �12� and �13� the relation �11� predicts
the existence of three well-separated frequencies in the sys-
tem 
0�s�=s�

max,s� =0�= �2/�0�exp�−s�
max� 
0�s�=0,s� =0�

= �2/�0��
0�s�=0,s� 
s�
max� �s�

min��= �1/�0�exp�s�
max�. As a

consequence it is expected that system response to low-
amplitude acoustic loading might have different behavior in
the following four frequency regions �F�exp�−s�

max�,
exp�−s�

max���F�1, 1��F�exp�s�
max� /2, and

exp�s�
max� /2��F. If the conditions in Eqs. �12� and �13� are

not fulfilled then the two intermediate frequency intervals
will disappear. Thus, it is the situation, the most interesting
from the point of view of generality of the theoretical analy-
sis, which is chosen in the following. It should be also men-
tioned that there are experimental indications32 that the at-
tempt frequency itself might be significantly lower than the
value �108–1012 Hz presented above if there are mechanical
resonances in the system that are able to enhance the role of
low frequency phonons. In the microinhomogeneous systems
these might be the resonances of the grains, perhaps.

To investigate both linear and nonlinear acoustic proper-
ties of the Preisach-Arrhenius model Eq. �8� is integrated.
The exact solution subjected to the conditions of periodicity
�Q��+1�=Q���� is

Q = −

�
�

�+1

d� �gs�� ��exp�− �
� �

�+1

gc�� ��d� ��
1 − exp�− �

�

�+1

gc�� ��d� �� , �14�

where gs= �2/F�exp�−s��sinh�s���−s��, gc= �2/F�exp�−s��
�cosh�s���−s��. It can be verified that if the distribution
���f has the symmetry property ����s��f�s��=����−s��
�f�−s�� �which reduces to s�

max= �s�
min� in the model �10��,

then in addition to periodicity ���+1�=���� the stress satis-
fies the condition ���+1/2�=−����. The latter equality en-
sures that the nonlinearity of the system is of the odd type.
Even type nonlinearity can exist in the PA model only due to
the asymmetry of the ���f distribution relative to �2s� axis
of the PM plane. It is worth mentioning here that even type
nonlinearities do not shift the resonance frequencies of the
bars.

In Fig. 4 the results of the numerical evaluation of the
hysteresis stress/strain loops predicted by Eqs. �10� and �14�
are presented for the particular case of sinusoidal strain
variation and homogeneous element distribution inside the

rectangular s�	s�
max=10, −10=s�

min	s� 	s�
max=10. The

path of the system state variation is directed clockwise along
the loops. Modification of the hysteresis loop with increasing
wave amplitude at fixed low nondimensional frequency F
=0.016 is demonstrated in Fig. 4�a�. Modification of the hys-
teresis loop with increasing wave amplitude at intermediate
nondimensional frequency F=1 is demonstrated in Fig. 4�b�.
Modification of the hysteresis loop with increasing frequency
for the fixed wave amplitude sA=1 is demonstrated in Fig.
4�c�. The transformation of an elliptical loop �typical for lin-
ear hysteresis in stress/strain relationship� to a nonelliptical
loop �typical of nonlinear hysteresis� with increasing wave
amplitude is clearly seen in Figs. 4�a� and 4�b�. Comparison
of the loops presented in Figs. 4�a� and 4�b� for the same

FIG. 4. Numerically obtained normalized stress/strain hysteretic
dependences in the case of homogeneous element distribution in-
side the rectangular s�	10, −10	s� 	10. The path of the system
state variation is directed clockwise along the loops. Modification
of the hysteresis loop with increasing wave amplitude at fixed fre-
quency F=0.016 �a�. Modification of the hysteresis loop with in-
creasing wave amplitude at fixed frequency F=1 �b�. Modification
of the hysteresis loop with increasing frequency for the fixed wave
amplitude sA=1 �c�.
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amplitude of strain, as well as Fig. 4�c� demonstrate the
opening of hysteresis loops with increasing frequency, indi-
cating a dynamic nature of hysteresis phenomenon captured
by the Preisach-Arrhenius model.

The solution for the stress provided by Eqs. �10� and �14�
will be used later for the evaluation of the system response in
the case of the high amplitude acoustic loading �when the
inequality sA�1 is valid for the acoustic wave amplitude
normalized to s0�. For the analytical evaluation of the PA
model behavior in some other limiting cases it appeared to
be more suitable and much more instructive to find solutions
for the asymptotic approximations of Eq. �8� than to fulfill
asymptotic expansions of the exact solution �14�.

III. QUASIEQUILIBRIUM STRESS/STRAIN
RELATIONSHIPS

For the analysis of the quasiequilibrium �low frequency,
quasistationary, quasistatic� response of the Preisach-
Arrhenius system of hysteretic mechanical elements to
acoustic loading it is useful to rewrite Eq. �8� as

Q = − tanh�s − s�� + 	−
F exp�s��

2 cosh�s − s��

 �Q

��
. �15�

The quasistationary solution �7� of Eq. �15� Q0=−tanh�s
−s�� is obtained by neglecting the derivative over time in the
right-hand side �r.h.s.� of Eq. �15�. The corrections to this
solution are obtained by successive approximations, resulting
in the following exact analytical solution:

Q = �
n=0

�

Qn = − �
n=0

� 	−
F exp�s��

2 cosh�s − s��

n � n

�� n tanh�s − s�� .

�16�

Surely solution �16� is valuable only if it is possible to use
the limited �finite� number of terms in it. In other words the
series �16� should contain a small parameter giving opportu-
nity to neglect the higher order terms in the analysis. The
leading terms of the expansion �16� are

Q0 = − tanh�s − s��, Q1 = 	F exp�s��
2


 1

cosh3�s − s��
�s

��
,

Q2 = − 	F exp�s��
2


2 1

cosh4�s − s��
� �2s

��2 − 2 tanh�s − s��

�	 �s

��

2� . �17�

It is straightforward to formulate sufficient conditions
when the successive terms Qn in Eq. �17� are smaller and
smaller in amplitude for all the elements in the PM plane. It
is sufficient to require �F�exp�−s�

max�. To derive this in-
equality it has been taken into account that �for the acoustic
loading s expressed in terms of trigonometric functions� each
differentiation over time � provides additional multiplier 2�.
When using Eq. �16� or Eq. �17�, all the integrations in Eq.
�10� can be done analytically for all n. The leading terms of
the series �=�n=0

� �n are

�0 = s�
max�ln�cosh y��

y=−�s�
min�−s

y=s�
max−s

,

�1 = 	F exp�s�
max�

2

1

2
� tanh�y�

cosh�y�

− arctan�sinh y��
y=−�s�

min�−s

y=s�
max−s 	 �s

��

 ,

�2 = −
1

2
	F exp�s�

max�
2


2��tanh�y� −
tanh3�y�

3
�

y=−�s�
min�−s

y=s�
max−s

�	 �2s

��2
 + � 1

2 cosh4�y��y=−�s�
min�−s

y=s�
max−s 	 �s

��

2� . �18�

Here and everywhere in the following the stress is normal-
ized to the characteristic value ����f�0s0

2 and the inequalities
�12� and �13� are used to simplify the formulas where it is
possible.

First the low-amplitude asymptotic behavior of the solu-
tion �18� is analyzed under the condition sA�s�

max, �s�
min�. In

the following as before we will always consider that s�
max

� �s�
min� and will never analyze the intermediate situations

s�
max�s� �s�

min� or s�
max�s� �s�

min�. Retaining in the Taylor
expansion of Eq. �18� only the terms up to the third order in
excitation amplitude, it is derived

�0 
 s�
max�s�

max − �s�
min� − 2s + 2�e−2s�

max
− e−2�s�

min��s2

+ 4
3 �e−2s�

max
+ e−2�s�

min��s3� ,

�1 
 	F

2
es�

max
��

2

�s

��
− 8�e−3s�

max
− e−3�s�

min��s
�s

��

− 12�e−3s�
max

+ e−3�s�
min��s2 �s

��
� ,

�2 
 −
1

2
	F

2
es�

max
2�4

3

�2s

��2 − 16�e−4s�
max

− e−4�s�
min���s

�2s

��2

−
1

2
	 �s

��

2� − 32�e−4s�

max
+ e−4�s�

min���s2 �2s

��2 − s	 �s

��

2�� .

�19�

The structure of the derived asymptotic solution �19� dem-
onstrates that it is a valuable expansion at low frequencies in
terms of the small parameter �F exp�s�

max��1, because the
terms of the same order in wave amplitude contributing to
different �n are decreasing with increasing integer n under
the latter condition. Consequently the derived solution pro-
vides asymptotic description of the quasiequilibrium regime
defined by the inequality �F�exp�−s�

max�.
For the description of the dispersion of the particular non-

linear effects only the leading order term in the parameter
�F exp�s�

max��1 should be retained. The analysis of Eq. �19�
leads to the following conclusions.

�1� In the case of the asymmetric distribution of the ele-
ments �s�

max� �s�
min�� there is a residual stress �strain indepen-
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dent contribution to �0�, which does not influence the propa-
gation of the acoustic waves.

�2� The stress component ��1� �describing the linear prop-
erties of the material� can be approximated as

��1� 
 − 2s�
maxs + 	F exp�s�

max�
2


�

2

�s

��
. �20�

Due to the condition �F exp�s�
max��1 the second term in

Eq. �20� is significantly smaller than the first one. How-
ever it should be retained to describe hysteretic linear
absorption of the acoustic waves. In fact, the decre-
ment of the acoustic wave D is proportional to the work
done by the wave in a period �D=��

�+1�ds / �2W�
=��

�+1���s /���d� / �2W�, where W�sA
2 is the energy density

in the wave averaged over acoustic period�. In the case of
the sinusoidal loading W
E0sA

2 /2, where E0 denotes the
elastic modulus of material in the absence of small con-
tribution from the hysteretic elements. In accordance with
this relation only the second term of Eq. �20� �which is
out-of-phase with strain variation� contributes to linear
absorption of sound. To get positive losses and stability of
the system in response to weak acoustic perturbations it
should be admitted that ��� is positive as it has been
explicitly assumed in Fig. 1. Consequently, in the follow-
ing it should not be forgotten that the stress is normalized
to the positive value ����f�0s0

2�0. The linear decrement
in the Preisach-Arrhenius model in the quasiequilibrium
conditions is proportional to acoustic frequency �D�1�

�FsA
0�. This corresponds to linear absorption coefficient

��1� proportional to square of frequency ���1��D�1�F
�F2sA

0�. The first term in Eq. �20� describes the linear
contribution E�1� of the hysteretic elements to elastic
modulus. For the analysis presented in the following it is
sufficient to use for the evaluation of the hysteretic ele-
ments contribution E to the elastic modulus the relation
E=��

�+1��� /�s�d�. In the quasiequilibrium regime E�1� is
found to be frequency-independent in the leading order
�E�1��−F0sA

0�. Note that the presence of hysteretic ele-
ments causes the softening of the material due to ���
�0.

�3� The leading contribution to quadratic nonlinearity, re-
sponsible for the second harmonic excitation and rectifica-
tion process, also appears to be frequency-independent in the
leading order,

��2� 
 2s�
max�e−2s�

max
− e−2�s�

min��s2. �21�

The frequency-dependent corrections to ��2� in Eq. �21� can
be identified in Eq. �19�, but they are weak in the considered
approximation. In accordance with Eq. �21� what happens
with the material due to rectification of the acoustic wave
�i.e., expansion or contraction� depends on the sign of the
difference s�

max− �s�
min�.

�4� The leading terms describing the cubic nonlinearity
are

��3� 

4

3
s�

max�e−2s�
max

+ e−2�s�
min��s3 − 12	F

2
es�

max
�e−3s�
max

+ e−3�s�
min��s2 �s

��
. �22�

In accordance with Eq. �20� and Eq. �22� cubic nonlinearity
in the quasiequilibrium regime of the PA model diminishes
amplitude-independent contributions both to hysteretic ab-
sorption and to elastic modulus �i.e., the nonlinear contri-
butions are of the opposite sign to linear contributions�.
In particular, cubic nonlinearity leads to transparency �D�3�

�−FsA
2�. It is worth noting here that the predicted frequency-

dependent transparency for the PA model differs from the
frequency-independent quasi-static induced absorption in the
PM model also in its dependence on the wave amplitude. In
the PM model the induced decrement is linear in wave am-
plitude for low-amplitude acoustic waves,1–4,14,15 while D�3�

is proportional to the square of the wave amplitude. In ac-
cordance with Eq. �22� the nonlinear variation in the elastic
modulus is frequency-independent in the leading approxima-
tion �E�3��F0sA

2�. It also differs in the dependence on the
amplitude from what is expected in the PM model, where the
variation of modulus is proportional to the wave
amplitude.1–4,14,15 Note that in the quasiequilibrium PA
model the material with increasing wave amplitude becomes
stiffer while in the PM model it becomes softer.1–4,14,15 As it
will be demonstrated later �in Secs. VI and VII� these differ-
ences are due to the fact that Preisach-Mayergoys model
does not correspond to the quasiequilibrium limit of the
Preisach-Arrhenius model. From the physics point of view
the quasiequilibrium limit of the PA model is also a quasi-
nonhysteretic limit, where the behavior of the individual el-
ements is much closer to one presented in Fig. 3 than to one
presented in Fig. 1.

For the analysis of the high-amplitude asymptotic behav-
ior of the solution �18� under the condition sA�s�

max, �s�
min�

only the terms of the first order in s�
max and �s�

min� are retained
in the corresponding Taylor expansion

� 
 − �s�
max + �s�

min���s�
max tanh�s� + 	−

F exp�s�
max�

2



�
1

cosh3�s�
�s

��
+

1

2
	−

F exp�s�
max�

2

2

�� 1

cosh4�s�
�2s

��2 + 2
tanh�s�
cosh4�s�

	 �s

��

2�� . �23�

Under the quasiequilibrium condition �F exp�s�
max��1, Eq.

�23� appears to be a nicely ordered expansion in this small
parameter. In accordance with Eq. �23� the elastic modulus
weakly depends on frequency. The leading frequency-
independent contribution to stress describes stress saturation
with increasing level of the acoustic excitation

�elastic 
 − �s�
max + �s�

min��s�
max tanh�s� . �24�

The structure of Eq. �24� �where �elastic is proportional to the
total number of the hysteretic elements ��s�

max+ �s�
min��s�

max�
indicates that the saturation is due to the fact that increasing
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wave amplitude does not involve additional elements in the
relaxation process. It should be noted that under the assump-
tion exp�s�

max��1, assumed everywhere in the analysis, the
condition sA�s�

max, �s�
min� requires sA�1. Using this condi-

tion it is possible to estimate the hysteretic modulus for the
case of sinusoidal loading �s=sA sin 2��� in the considered
regime. It is found that E�−FsA

−1. The material becomes
more and more rigid with increasing wave amplitude �we
remind here that at very low amplitudes E�0�.

In order to get terms describing even elastic nonlinearity
it is necessary to keep in expansion �23� also the terms pro-
portional to ��s�

max�2− �s�
min�2� originating from the asymme-

try of the element distribution. In the considered approxima-
tion they are at least by a factor of ��s�

max�− �s�
min�� /sA�1

smaller.
The leading inelastic contribution to stress �inelastic in Eq.

�23� is

�inealstic 
 �s�
max + �s�

min��	F exp�s�
max�

2

 1

cosh3�s�
�s

��
.

�25�

It describes hysteretic absorption. Here and in the following
we are using term inelastic for the stress component respon-
sible for the irreversible losses of the acoustic energy. Using
the condition sA�1, it is possible to estimate the hysteretic
losses for the case of sinusoidal loading �s=sA sin 2��� in
the considered regime. It is found that D�FsA

−1. The material
becomes more and more transparent with increasing wave
amplitude. This prediction correlates with results obtained in
Ref. 31 from the analysis of the Preisach-Mayergoyz model
with element density decreasing in the normal direction to
the PM plane diagonal.

The analysis of the limiting cases of low and high ampli-
tude acoustic action demonstrated that increase of wave am-
plitude leads to induced transparency in the quasiequilibrium
regime of the Preisach-Arrhenius system response. Detailed
analysis of the ��1� contribution in Eq. �18� indicates that this
is true for arbitrary wave amplitudes.

IV. QUASIFROZEN STRESS/STRAIN RELATIONSHIP

The structure of Eq. �8� indicates that at high frequencies
there might be possible to construct an asymptotic solution in
the form of infinite series based on a small parameter pro-
portional to 1/F�1. Taking into account, that the high fre-
quency action on the system might be rectified �due to the
nonlinearity of the process�, the solution should be presented

in the form Q= �Q�+�n=1
� Q̃n, where �Q� is the time-

independent �averaged over the wave period� contribution,
while the subsequent terms are expected to be of increasing
order of smallness in terms of a parameter proportional to

1/F�1. Note that �Q̃n�=0. By substitution of this series in
Eq. �8� and averaging, the solution for �Q� is obtained in the
form

�Q� = −
1

�cosh�s − s���
��sinh�s − s��� − �

n=1

�

�cosh�s − s��Q̃n�� .

Then, by grouping the terms of the same order, it is possible
to construct the following formally precise solution for the

derivative �Q /��=�n=1
� �Q̃n /��

�Q̃1

��
= −

2

F
e−s� cosh�s − s���tanh�s − s�� −

�sinh�s − s���
�cosh�s − s���

� ,

�Q̃n
2

��
=

2

F
e−s� cosh�s − s���Q̃n−1 −

�cosh�s − s��Q̃n−1�
�cosh�s − s���

� .

�26�

For the calculation of averages it should be taken into ac-
count that, for the periodic process s symmetrical relative to
s=0 and, consequently, with zero average �s�=0, the equality
�sinh s�=0 holds. This provides opportunity to evaluate the
leading frequency-dependent oscillating contribution to Q
rate in Eq. �26�,

�Q̃1

��
= −

2

F
e−s�

1

cosh�s��
sinh s . �27�

When Eq. �27� is substituted into Eq. �10� it gives opportu-
nity to find the leading contribution to stress rate

��̃1

��

 −

2�

F
sinh s . �28�

Comparison of Eq. �28� with the next term ��̃2 /�� of the

stress rate expansion evaluated with the help of �Q̃2 /�� in-
dicates that the solution �28� provides the leading contribu-
tion to strain rate under the condition

�1/�F�s�
max exp��s�� � 1. �29�

Note that in the simplification of Eq. �29� the assumption
s�

max� �s�
min� has been extensively used. For the fixed high

frequency �F�1, Eq. �29� provides the restrictions on wave
amplitude necessary for the validity of Eq. �28�. From a
physics point of view the validity of the quasifrozen
asymptotic is always possible only in some restricted domain
of wave amplitudes, because the relaxation frequency of the
elements increases with wave amplitude. In fact, it is the
coefficient 
= �2/�0�exp�−s��cosh�s−s�� in front of the sec-
ond term in Eq. �8� that plays the role of the relaxation fre-
quency in the presence of the acoustic loading. Its averaging
over the wave period provides the qualitative description of
the average relaxation frequency

�
� = �2/�0�exp�− s��cosh�s���cosh�s�� . �30�

The relation �30� indicates the increase in the relaxation fre-
quency of all the elements with increasing level of the acous-
tic excitation. Consequently, if the wave amplitude can in-
crease without restriction, then sooner or later for the fixed
excitation frequency the elements will be transformed from
quasifrozen to quasiequilibrium.
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The solution �28� provides opportunity to evaluate the
leading contribution to hysteretic decrement �D
=��

�+1�ds / �2W�=−��
�+1sd� / �2W�=−��

�+1s��� /���d� / �2W��
at high frequencies of the acoustic action. Calculations for
the case of the sinusoidal loading lead to the conclusion that
in the quasifrozen regime the increase in wave amplitude
induces absorption. In the low-amplitude limit �sA�1� the
dependence of the decrement on frequency and amplitude is
D�F−1�1+ �3/4�sA

2 + ¯ �. In the high-amplitude limit �sA

�1� it is found that D�F−1sA
−3/2 exp�sA�. It is worth remind-

ing that the latter high-amplitude asymptotic is valid in the
restricted range of wave amplitudes. Though with increasing
F the obtained solution is valid for higher and higher wave
amplitudes �in the region sA	 ln��F /s�

max�� the acoustic dec-
rement at this upper boundary diminishes �D�sA

−3/2� when
the boundary becomes higher.

Importantly, from the derived asymptotic expansions it
follows that the magnitude of the contribution of hysteretic
elements to elastic modulus diminishes at very high frequen-
cies �corresponding to the quasifrozen regime� faster than
proportionally to 1/F. This prediction will be confirmed by
the low-amplitude asymptotic solution derived in the next
section.

V. STRESS/STRAIN RELATIONSHIP FOR LOW-
AMPLITUDE ACOUSTIC LOADING

To solve Eq. �8� in the case of weak acoustic loading we
are substituting in it formal Taylor expansions of the func-
tions cosh�s−s�� and sinh�s−s�� for �s�� �s��. Then Eq. �8�
takes the form

�Q/�� + ���
n=0

�

�− ���1−�− 1�n�/2sn/n!�Q

= − ���
n=0

�

�− ���1+�− 1�n�/2sn/n!� . �31�

Here the notations �= �2/F�exp�−s��cosh�s���
0T and �
=tanh�s�� are introduced. The solution in the form Q
=�n=0

� Qn �where Qn is assumed to be of the order sn� is
substituted in Eq. �31� and the terms of the same order in
powers of s are grouped into separate equations

�Qn/�� + �Qn = − ���− ���1+�− 1�n�/2sn/n!

+ �
m=1

n

�− ���1−�− 1�n�/2Qn−msm/m!� . �32�

The obtained equations in Eq. �32� can be solved succes-
sively one after another, taking into account that �Q0 /��=0
and that all Qn should be periodic. The solutions for Q1 and
Q2 found for the sinusoidal excitation s=sA sin�2��� are

Q1 = − sA�1 − �2�
�2

�2 + �2��2�sin�2��� −
2�

�
cos�2���� ,

�33�

Q2 = − sA
2 ��1 − �2�

2

�2

�2 + �2��2

��1 − Re�� − i2�

� + i4�
exp�i4����� . �34�

In the solution for Q3 only the contributions at the fundamen-
tal frequency �responsible for nonlinear induced variations of
elastic modulus and hysteretic absorption� are retained while
the terms describing the third harmonic excitation are omit-
ted for compactness

Q3 = − sA
3 �1 − �2�

4
���1 − �2�

�2

�2 + �2��2 + 4�2 �2

�2 + �4��2

− 2
�4

��2 + �2��2�2�sin�2��� − ���1 − 4�2�
�

�2 + �2��2

+ 16�2 �

�2 + �4��2 − 4
�3

��2 + �2��2�2�cos�2���� . �35�

The conditions for the validity of the obtained solution are
derived by the comparison of the different contributions to
the successive terms. From the comparison of the ampli-
tudes �Q1� from Eq. �33� and �Q2� from Eq. �34� it follows
that the condition �sA=tanh�s��sA��1+ �2� /��2 is required.
In general the domain of validity of the obtained results de-
pends on the excitation frequency and the wave ampli-
tude. In particular, the condition for the validity improves
with increasing frequency. Under the assumed condition
exp�s�

max��exp��s�
min���1, the inequality �sA=tanh�s��sA

��1+ �2� /��2 is satisfied in the whole part of the PM plane
occupied by the hysteretic elements and at all frequencies if
sA�1. So the latter inequality will be assumed in what fol-
lows in this section.

To obtain the linear stress/strain relationship, the solu-
tion for Q1 �Eq. �33�� is substituted into the integral
�10�. Using � and x=cosh�s�� as new integration variables
�ds�=−d� /� ,ds� =dx /�x2−1� the result for the normalized
stress after the integration over � is presented in the form

�1 
 sA�
1,1

exp�s�
max�/2,exp��s�

min��/2 dx

x2�x2 − 1
�1

2
ln�1

+ �2�sin�2��� − arctan���cos�2����
x/��F�

xe−s
�
max

/��F�

.

�36�

The linear acoustic decrement is proportional to the cosine
component � 1

c of �1. Due to the assumption �12� the
asymptotic behavior of � 1

c can be evaluated in three large
successive frequency ranges as

V. GUSEV AND V. TOURNAT PHYSICAL REVIEW B 72, 054104 �2005�

054104-10



� 1
c/sA


 ���2/2�exp�− s�
max�F � F , �F � exp�− s�

max�;
� � F0, exp�− s�

max� � �F � 1;

1/F � F−1, 1 � �F .
�

�37�

In practice the extraction of the asymptotics in Eq. �37� from
Eq. �36� is significantly simplified by the observation that the
factor 1 / �x2�x2−1� cuts the integration in Eq. �36� above x

2–3. The solution in Eq. �37� predicts the resonance curve
of the linear hysteretic absorption with a broad absolutely flat
extremum. The predicted dependence of the linear decrement
D�1� on frequency is qualitatively presented in Fig. 5�a�. The
low-frequency ��F� and the high-frequency ��F−1� behavior
precisely coincides with the description obtained earlier in
Secs. III and IV, respectively. Importantly, the Preisach-
Arrhenius theory naturally predicts that linear acoustic dec-
rement might be frequency-independent in the broad fre-
quency range exp�−s�

max���F�1. This corresponds to
absorption coefficient of acoustic wave linearly increasing
with frequency. Consequently, thermally activated relaxation
of hysteretic mechanical elements can provide contribution
to this type of absorption ���1��F� observed in multiple ex-
periments on different types of microinhomogeneous
materials.33–36 It should be mentioned that currently there is

no consensus on the mechanism of this experimentally ob-
served absorption.33,34,37–41

The sine component �1
s of �1 describes contribution of

hysteretic elements to elastic modulus. The asymptotic be-
havior of this component can be described by

�1
s /sA 
�

− 2s�
max�1 − �exp�2s�

max�/3s�
max���F�2� , �F � exp�− s�

max�;

− 2�1 − ln 2 − ln��F�� , ln��s�
max�exp�− s�

max� � �F � 1;

− 2 ln��F�/��F�2, 1 � �F � exp�s�
max�/2,exp��s�

min��/2;

− �1/2��s�
max + �s�

min��/��F�2 � F−2, exp�s�
max�/2,exp��s�

min��/2 � �F .
� �38�

Solution �38� describes that material becomes progressively
more and more rigid with increasing frequency. The low fre-
quency asymptotic in Eq. �38� coincides with one derived in
Sec. III. The prediction that at high frequencies ��F�1� the
contribution to modulus falls faster than inverse proportion-
ally to frequency also correlates with the analysis of the
quasifrozen regime in Sec. IV. The predicted dependence of
the linear modulus E�1� variation on frequency is qualita-
tively presented in Fig. 5�b�. It should be mentioned that due
to the factor 1 / �x2�x2−1� in Eq. �36� the integration limits
over s� play role only in the evaluation of the last of the
asymptotics from those presented in Eqs. �37� and �38�. It is
also worth mentioning that most of the boundaries between
the different frequency regions in Eq. �37�, Eq. �38� and in
the analysis presented later in this section coincide with the
characteristic frequencies defined in Sec. II on the basis of
qualitative arguments.

The structure of Q2 in Eq. �34�, where the multiplier �
=tanh�s�� makes it an odd function of s�, suppresses its con-
tribution to stress by reducing the integration space over s� to

the interval between s�
max and �s�

min� �in comparison with the
integration region −�s�

min�	s	s�
max effective for Q1 and Q3�.

Here only the dispersion of the demodulation �rectification�
process caused by the quadratic nonlinearity will be demon-
strated. The dependence on frequency of the processes re-
sponsible for the second harmonic excitation �second term in
Eq. �34�� is expected to be qualitatively similar. Evaluating
with the help of the first term in Eq. �34� the time-
independent contribution �2

0 to stress, it is obtained

�2
0 
 sA

2�
exp��s�

min��/2

exp�s�
max�/2 dx

x3�1

2
ln�1 + �2��

x/��F�

x exp�−s�
max�/��F�

.

�39�

Solution �39� demonstrates once again that quadratic nonlin-
earity in the system can be due only to the asymmetry of the
element distribution. The asymptotic behavior of the qua-
dratic nonlinearity in different frequency intervals is de-
scribed by

FIG. 5. Schematic illustration of the variation with frequency of
the amplitude-independent decrement D�1� �a� and of the amplitude-
independent modulus defect E�1� �b� in the case of the low-
amplitude acoustic loading.
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�2
0/sA

2 
�− 2s�
max�e−2�s�

min� − e−2s�
max

��1 − �e2s�
max

/s�
max��e−2�s�

min� + e−2s�
max

���F�2� , �F � e�s�
max−s�

max�/2;

−
1

2
��s�

min�e−2�s�
min� − s�

maxe−2s�
max

− �e−2�s�
min� − e−2s�

max
�ln��F�� , e�s�

max−s�
max�/2 � �F � es�

max
/2;

− �1/2��s�
max − �s�

min��/��F�2 � F−2, es�
max

/2 � �F .
�

Here Eq. �13� has been applied in order to reduce the number
of different possible regimes. According to the derived for-
mulas the dispersion of quadratic nonlinearity is very weak
except for very high frequencies. The sign of the stress pro-
viding rectification always depends on the relative magnitude

of s�
max and �s�

min� as it has been already noticed for the qua-
siequilibrium regime in Sec. III.

For the evaluation of the cubic nonlinearity, influencing
the propagation of the wave at fundamental frequency, the
solution �35� is substituted in Eq. �10� and integrated over �

�3 
 sA
3 1

8
�

1,1

exp�s�
max�/2,exp��s�

min��/2 dx

x2�x2 − 1
��	 1

x2 − 2
ln�1 + 	 �

2�

2� + 4	1 −

1

x2
ln�1 + 	 �

4�

2� −

2��/2��2

1 + ��/2��2�sin�2���

− �	 4

x2 − 5
arctan	 �

2�

 + 8	1 −

1

x2
arctan	 �

4�

 +

2��/2��
1 + ��/2��2�cos�2����

x/��F�

x exp�−s�
max�/��F�

. �40�

The behavior in the different frequency ranges of the cosine component �3
c in Eq. �40�, responsible for the hysteretic

absorption, is described by

�3
c/sA

3 
 �− �3/2���e−3�s�
min� + e−3s�

max
��Fes�

max
+ 32���Fes�

max
�3� , �F � e−s�

max
;

��/24��1 − 3/��Fes�
max

�� � F0, e−s�
max

� �F � 1;

��/8�/��F� � F−1, 1 � �F .
� �41�

The predicted variation of the amplitude-dependent dec-
rement D�3� with frequency is qualitatively presented in Fig.
6�a�. At low frequencies ��F�exp�−s�

max�� the increase
in wave amplitude induces transparency of the material. This
prediction on the base of Eq. �41� correlates with one previ-
ously derived from quasiequilibrium asymptotic �Sec. III�.
However Eq. �41� provides additional new information
on the low-frequency regime. It appears that the coefficient
of the first term ��−F� due to the integration over the ele-
ment distribution contains additional parameter of small-
ness ��exp�−3s�

max��1� in comparison to the subse-
quent term. It can be concluded that �3

c �−F only if �F
� �exp�−3s�

max/2� /4���exp�−s�
max��exp�−s�

max�, while in
the wide frequency region �exp�−3s�

max/2� /4���exp�−s�
max�

��F�exp�−s�
max� the induced transparency varies �−F3.

The prediction in Eq. �41� of the induced absorption in the
high-frequency limit ��F�1� correlates with the obtained

earlier asymptotic for the quasifrozen regime in Sec. IV. The
theory predicts frequency-independence of the nonlinear dec-
rement in the same frequency interval exp�−s�

max���F�1
as for the linear decrement �see Eq. �37��. The transition
from the induced transparency to the induced absorption
takes place around �F�exp�−s�

max�.
It should be mentioned here that the low frequency ��F

�exp�−s�
max�� asymptote in Eq. �41� provides an example

when the descending character of the terms in the series Q
=�n=0

� Qn does not necessarily lead �after the integration over
the PM plane� to the descending character of the terms in the
series �=�n=0

� �n. The validity of the obtained leading
asymptotic expansions for the stress should be always care-
fully examined from this point of view.

The dependence of the induced variations in the elastic
modulus �and consequently in the wave velocity� is con-
trolled by the sine component of Eq. �40�
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�3
s /sA

3 = �s�
max�e−2s�

max
+ e−2�s�

min� + �2 exp�2s&#10917;
max �/3s�

max���F�2� , �F � exp�− s�
max�;

�1 + 2 ln 2�/3, ln ��s�
max�exp�s�

max� � �F � 1;

�5/4� ln��F�/��F�2, 1 � �F � exp�s�
max�/2, exp��s�

min��/2;

�3/8��s�
max + �s�

min��/��F�2 � F−2 exp�s�
max�/2, exp��s�

min��/2 � �F
� �42�

The predicted variation of the amplitude-dependent modulus
E�3� with frequency is qualitatively presented in Fig. 6�b�.
The predictions in Eq. �42� correlate with the low and high
frequency asymptotes from Secs. III and IV. Similar to the
linear modulus, the nonlinear contribution to modulus
weakly depends on frequency in the same intermediate fre-
quency range as the acoustic decrement. However in com-
parison with the linear asymptotic in Eq. �38� the logarithmic
behavior of the nonlinear modulus in this frequency interval
cannot be guaranteed, because the logarithmic term appears
to contain an additional small parameter ��exp�−3s�

max�
�1�.

VI. DEFECT OF MODULUS FOR HIGH-AMPLITUDE
ACOUSTIC LOADING

It should be clearly stated that none of the asymptotic
regimes analyzed in the Secs. III–V has indicated the pres-
ence of the regime corresponding to Preisach-Mayergoyz
model as a limiting case of the considered Preisach-
Arrhenius model. The Preisach-Mayergoyz model predicts
the decrement and modulus variation both proportional to
acoustic wave amplitude sA.4,14,15 Importantly, these
amplitude-dependent contributions are the leading contribu-
tions, that is they exceed amplitude-independent contribu-
tions �which are completely absent in the Preisach-
Mayergoyz model�. An important condition for D�sA and
E�−sA in the Preisach-Mayergoyz model is the assumption
of the infinite extension of the homogeneous distribution of
the elements in the PM plane �in other words s�

max→�,
s�

max→�, s�
min→−��. For example, in Ref. 31 the deviation

from the linear dependences D�sA and E�−sA was pre-
dicted for the case when the element distribution cannot be
considered homogeneous at the scale sA of acoustic strain
variation.

It follows, from what has been mentioned just above, that
PM regime is definitely separated from the quasiequilibrium
one, because for s�

max→� the conditions for the validity of
the quasiequilibrium regime ��F�exp�−s�

max�� cannot be
satisfied. PM regime is also separated from the quasifrozen
regime, because for s�

max� �s�
min�→� the condition �29� ��F

�s�
max exp��s��� for the validity of the latter regime cannot be

satisfied. We conclude that PM regime should be located
between the quasiequilibrium and the quasifrozen, as ex-
pected from physical considerations. At too low frequencies
PM regime is absent because there is nearly no hysteresis �an
element has enough time both in loading and unloading to
take statistically the same equilibrium position�. At too high
frequencies the hysteresis is nearly absent because the ele-

ments have no time to switch from one level to another.
In Sec. V it was found that in the case of low amplitude

acoustic loading, identified by the inequality sA�1, the lead-
ing contribution to the decrement and modulus are
amplitude-independent. Consequently, the Preisach-
Mayergoyz regime might be realized only if sA�1. Corre-
spondingly, in this section the behavior of the Preisach-
Arrhenius model under high amplitude loading �sA�1�,
which however is always in the region of the homogeneity of
the elements distribution �formally s�

max→�, s�
max→�, s�

min

→−��, is analyzed. Even the asymptotic analysis is rather
complicated in this regime. Below, a possible approach for
the evaluation of the modulus defect is presented. The ob-
tained results provide an opportunity to localize the PM re-
gime inside the Preisach-Arrhenius model, that is to predict
the conditions for its realization.

The modulus defect is defined here as an average over a
wave period of the modulus variation induced by the bistable
mechanical elements

�E� =
1

2�
� 	 ��

�s

d� , �43�

where �=
t is the nondimensional time variable. Sinusoidal
strain variation in the acoustic wave will be approximated by
a sawtooth profile of the form

s =
2

�
sA�� , − �/2 	 � 	 �/2;

� − � , �/2 	 � 	 3�/2.
� �44�

Note, that in the wave �44� the fundamental frequency domi-
nates �the third harmonic is at the level of 10% of the fun-
damental one�. So this is a very resonable approximation
even for the quantitative estimates and not only for the quali-
tative evaluation. Importantly, in the wave �44� there is a
very simple relation between the differentials ds and d�

d� =
�

2sA
�ds , − �/2 	 � 	 �/2;

− ds , �/2 	 � 	 3�/2.
� �45�

With the help of Eq. �45� the integration in Eq. �43� is
straightforward

�E� =
1

2sA
���s = smax = sA� − ��s = smin = − sA�� . �46�

From Eq. �46� it follows that for the estimate of modulus
defect �E� the knowledge of the details of the hysteretic loop
is not necessary �it is sufficient to evaluate the stress values
at maximum and minimum of strain�. As it has been men-
tioned at the end of Sec. II for the elements distribution,
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which is symmetric relative to the �2s� axis, the stress has
odd symmetry �in particular, ��s=sA�=−��s=−sA�� and Eq.
�46� takes the form

�E� =
1

sA
��s = sA� . �47�

The derived expression �47� for the modulus defect is known
in literature as secant modulus.42 More precisely, the secant
modulus is sometimes defined,42 as the ratio of modulus
modification �E� in Eq. �47� and the linear modulus E0. In

accordance with Eq. �47� for the estimation of the secant
modulus it is sufficient to estimate the stress at maximum of
strain loading. Consequently, we need to evaluate Q in Eq.
�14� at �=�max corresponding to maximum of loading �s��
=�max�=smax=sA�. Surely, the latter is not necessarily equal
to the maximum of the stress.

Due to the relations in Eq. �45� all the integrations over
time can be replaced by the integrations over strain. Then the
integrals in the powers of the exponentials are done pre-
cisely. The solution �14� for Q�s=sA� simplifies to the form

Q�sA,s�� = − �� e−��sinh�sA−s��+2 sinh�sA+s���J�− �, s�� + e−� sinh�sA−s��J��, s��
1 − exp�− 4� sinh sA cosh s��

� , �48�

where

� �
1

4FsA
e−s�,

and

J��,s�� � �
−sA

sA

ds sinh�s − s��e� sinh�s−s��.

The result in Eq. �48� should be substituted in Eq. �9� �or
equivalently in Eq. �10�� for the integration over the PM
plane. In the following, for the reasons discussed above, we
will neglect inhomogeneity of the PM distribution of the
elements in order to reveal the conditions where the so-called
quadratic hysteretic nonlinearity �leading to ��s=sA��−sA

2

and, consequently, to �E��−sA� might be realized. Due to the
assumed symmetry of the distribution only the even in s� part
of Q�sA ,s�� contributes to stress. Using the symmetry prop-
erty J�� ,−s��=−J�−� ,s�� of the function J�� ,s�� the part of
Eq. �48�, which is even in s�, is presented in the form

Q�sA,s�� + Q�sA,− s��
2

=
�

2
� e−� sinh�sA−s��J��, s�� + e−� sinh�sA+s��J��, − s��

1 + exp�− 2� sinh sA cosh s��
� .

�49�

Note an important point that in comparison with Eq. �48� the
pole in the denominator of Eq. �49� has disappeared. The
denominator in Eq. �49� is a function varying in a narrow
limited interval �taking the values from 1 to 2�. This varia-
tion has no influence on the asymptotic behavior of the stress
and it will be omitted in what follows

Q�sA,s�� + Q�sA,− s��
2


 −
�

2
�e−� sinh�sA−s��J��,s��

+ e−� sinh�sA+s��J��,− s��� . �50�

In this approximation, when Eq. �50� is substituted in Eq.
�10� �with s�

max→�, s�
max→�, s�

min→−��, the integration
over s� is done precisely. This results in

��s = sA�
s0

2����f�0

 − �

0

�

ds��
−sA

sA

ds sinh�s − s��

�� e�1/2FsA��sinh�s−s��+sinh�s�−sA�� − 1

sinh�s − s�� + sinh�s� − sA�

−
e�1/2FsA��sinh�s�−s�−sinh�s�+sA�� − 1

sinh�s� − s� − sinh�s� + sA� � . �51�

Introducing the new variable z �z=sinh�s� −s�−sinh�s� −sA�
and z=sinh�s−s��+sinh�s� +sA� in the first and in the second
parts of the integral �51�, respectively�, we present Eq. �51�
in the compact form

�̄ �
��s = sA�
s0

2����f�0

 − �

0

�

ds��
0

a+b

dz�1 − exp�− z/�2FsA��
z

�
�� z − a

�1 + �z − a�2
+

z − b
�1 + �z − b�2� , �52�

where a�s���sinh�sA+s��, b�s���sinh�sA−s��.
For the approximate integration of Eq. �52� we have used

the following strategy �Fig. 7�. First, the total integration
region in the �s� ,z� plane has been divided into two parts by
the horizontal line z=2FsA. In the upper part, where z

2FsA, the first function under the integral �52� is approxi-
mated by 1/z. In the lower part z	2FsA it is approximated
by
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1

2FsA
	1 −

1

4FsA
z
 .

Then the integration over z is straightforward. To integrate
finally over s� the integration region is divided into separate
areas by s� =sA and the vertical lines s� =sa+b, s� =sa, s� =sb,
s� =s−b, which are passing through the intersection points of
the line z=2FsA with the curves z=a�s��+b�s��, z=a�s��, z
=b�s�� and z=−b�s��, respectively. Inside the individual inter-
vals along the s� axis the functions under the integral are
approximated by the leading terms of their Taylor’s expan-
sion �assuming the validity of the strong inequalities of the
type a� �b��1, a�FsA or a�FsA, b�FsA or b�FsA�.
Note, in particular, that strong inequality a� �b��1 holds �in
the high amplitude regime sA�1 of interest� practically in
the whole integration region. Because of this it is possible to
approximate practically everywhere a
exp�sA+s�� /2 and b

sign�sA−s��exp��sA−s��� /2.

The analysis has demonstrated, that three different fre-
quency regimes can be identified. The high-frequency regime
is determined by the inequality

F � FH � exp�2sA�/�4sA� . �53�

In Fig. 7�a� the curves and the intersections points at the
plane �s� ,z�, which are important for this regime, are pre-
sented schematically. It has been found that the dominant
contribution to stress �̄ is provided in this regime by the
region 0	s� 	sa+b, 0	z	a+b presented in gray color in
Fig. 7�a�. However, even this dominant contribution is very
small

��̄� 

1

4FsA

ln�4FsA/exp�2sA��
�4FsA/exp�2sA��

=
1

4FsA

ln�F/FH�
�F/FH�

� 1.

�54�

The significant values of �̄ has been found only in the
regimes where sa+b	sA. For the first of the intermediate fre-
quency regimes

exp�sA�/�4sA� � FI � F � FH � exp�2sA�/�4sA� , �55�

the integration plane is presented in Fig. 7�b�. It has been
found that the dominant contribution to stress �̄ is provided
in this regime by the region sa	s� 	sA, 2FsA	z	a+b pre-
sented in gray color in Fig. 7�b�. This contribution contains
the dominant component, which is quadratic in strain

�̄ 
 − 4sA
2 + �ln�4FsA��2. �56�

Note that, although for F�FH the inequality 4FsA
�exp�2sA� holds, it does not ensure that in Eq. �56� the
second corrective term is completely negligible. In particular,
by retaining the second term, it is possible to predict cor-
rectly the tendency in stress diminishing when the frequency

FIG. 6. Schematic illustration of the variation with frequency of
the amplitude-dependent decrement D�3� �a� and of the amplitude-
dependent modulus defect E�3� �b� in the case of the low-amplitude
acoustic loading.

FIG. 7. Schematic presentation of the division of the integration
domain �0	s� 	� ,0	z	a+b� in subdomains for different re-
gimes of acoustic loading. �a� High-frequency regime �F�FH�. �b�
First intermediate frequency regime �FI�F�FH�. �c� Second inter-
mediate frequency regime �F�FI�.
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F approaches the critical high frequency FH. However, the
dominant dependence of stress on the strain amplitude �when
the amplitude varies in the limited range, ensuring that the
frequency satisfies the inequality �55�� is clearly quadratic
��̄�−sA

2�.
The second of the intermediate frequency regimes has

been found in the limit

F � FI � exp�sA�/�4sA� . �57�

The integration plane is presented in Fig. 7�c�. It has been
found that the dominant contribution to stress �̄ is provided
in this regime by the region 0	s� 	sb, 2FsA	z	a+b pre-
sented in gray color in Fig. 7�c�,

�̄ 
 − sA
2 + 2sA ln�4FsA� . �58�

In Eq. �58� the contribution to stress, which is quadratic in
strain, dominates in the range

exp�− sA/2�/�4sA� � FL � F � FI � exp�sA�/�4sA� ,

�59�

i.e., below the critical intermediate frequency FI, but not too
below. Quadratic dependence of stress on strain amplitude
disappears in the low frequency regime defined by the in-
equality

F � FL � exp�− sA/2�/�4sA� . �60�

In the low frequency regime �60� the dependence of stress on
the strain amplitude is basically quasilinear

�̄ 
 − 2sA ln�1/�4FsA�� . �61�

The results presented in Eqs. �53�–�61� correlate with the
expectations. First, the Preisach-Mayergoyz regime �with
��s=sA��−sA

2 , and, consequently, �E��−sA� has been found.
It is predicted that PM regime can be obtained for sA�1 in a
wide frequency interval

exp�− sA/2�/�4sA� � FL � F � FH � exp�2sA�/�4sA� .

�62�

Please note that for sA�1 we have FL�1, while FH�1, so
the frequency interval in Eq. �62� is very large. In accordance
with a schematic presentation in Fig. 8 the secant modulus in
the considered case of high-amplitude acoustic loading di-
minishes with increasing frequency �compare to the case of

low-amplitude loading in Fig. 5�b��. Please note that the con-
tribution to �E� at low frequencies F�FL weakly �logarith-
mically� depends on the wave amplitude. In other words the
basic contribution is amplitude-independent, while the
amplitude-dependent contribution �presented by dashed
curve in Fig. 8� grows in magnitude. Consequently the
theory predicts that acoustic nonlinearity grows in magnitude
with increasing frequency of high-amplitude excitation �sA
�1� in the low frequency domain F�FL, that it does not
depend on frequency in the intermediate frequency domain
FL�F�FH of quadratic hysteretic nonlinearity, and that it
falls in the high frequency domain F�FH. In other words
the acoustic nonlinearity falls outside the domain �62� of the
approximate validity of the Presisach-Mayergoyz model of
rate-independent zero-temperature hysteresis.

Second, in accordance with the derived formulas �61� and
�58� in transition from the low frequency regime F�FL to
the intermediate frequency regime FL�F�FH the dominant
contribution to maximum stress changes from linear in strain
to quadratic in strain. So the critical frequency FL can be
identified as a transition frequency �for the material loaded
by high amplitude acoustic waves� from the regime, where
its elements behave �in average over their distribution� as
quasiequilibrium ones �Fig. 3�, to the regime, where they
behave as bistable units �Fig. 1�.

Third, in accordance with the derived formulas �56� and
�54� in the transition from the intermediate frequency regime
FL�F�FH to the high frequency regime F�FH there is a
significant fall in stress accompanied by the disappearance of
the contribution, which is quadratic in strain amplitude �typi-
cal of PM model�. Consequently, the critical frequency FH
can be identified as a transition frequency �for the material
loaded by high amplitude acoustic waves� from the regime,
where its elements behave �in average over their distribution�
as bistable units, to the regime, where they behave as quasi-
frozen ones. All three observations mentioned just above cor-
relate with the expectations formulated in the beginning of
this section.

In accordance with the obtained results, if the dominant
contribution to the modulus defect in experiment is linear in
wave amplitude, this necessitates the strong inequality sA
�1. In other words the dimensional acoustic strain ampli-
tude should significantly exceed the characteristic strain s0
=kBT /d of the material. Then the theory predicts that the
dispersion of the nonlinearity �accompanied by the deviation

FIG. 8. Schematic illustration of the variation
with frequency of the amplitude-dependent
modulus defect �E� in the case of the high-
amplitude acoustic loading.
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from the �E��−sA law� might be expected in the frequency
ranges F	FL and F
FH.

It should be also noted that the obtained results correlate
as well with the expected dependence of the modulus defect
on the wave amplitude. For the analysis it should be taken
into account, that in comparison with the low amplitude re-
gime, where the dependence of the critical transition fre-
quencies FL and FH on the wave amplitude is negligible �see
Figs. 5 and 6�, in the high amplitude regime the dependence
of the critical frequencies on the wave amplitude is exponen-
tially strong �see Fig. 8�. For example, if for the initial am-
plitude of the acoustic excitation with sA�1 the system is in
the low frequency regime F�FL, then with increasing sA the
characteristic frequency FL�exp�−sA /2� / �4sA� diminishes
and sooner or later the opposite condition FL�F will be
fulfilled. This corresponds to the transition of the system
with increasing wave amplitude from the low-frequency qua-
silinear regime �61� to the intermediate frequency regime
characterized by �̄�−sA

2 �58� typical of PM model.
If for the initial amplitude of the acoustic excitation with

sA�1 the system is in the high frequency regime F�FH,
then with increasing sA the characteristic frequency FH
�exp�2sA� / �4sA� increases and sooner or later the opposite
condition F�FH will be fulfilled. This corresponds to the
transition of the system with increasing wave amplitude from
the high-frequency quasifrozen regime �54� to the intermedi-
ate frequency regime characterized by �̄�−sA

2 �56� typical of
PM model.

VII. DISCUSSION

The general conclusion from the analysis undertaken in
Secs. III–V is the following. In the Preisach-Arrhenius sys-
tem of hysteretic mechanical elements, subjected to low am-
plitude acoustic loading with sA�1, significant frequency
dispersion of both elastic and inelastic �of both linear and
nonlinear� properties is expected only outside a broad fre-
quency interval exp�−s�

max���F�1. The prediction of the
wide frequency range, where the decrement is frequency in-
dependent and linear wave velocity scales as logarithm of
frequency, is in accordance with multiple experimental
observations.33,36 It should be mentioned here that almost
constant acoustic decrement is known to be associated with
the logarithmic creep,43,44 which is also frequently observed
in rocks. Because of this the derived above prediction of
constant decrement could have been expected in view of the
fact that the logarithmic in time dynamics of the flux creep
had been recently predicted for magnetics on the basis of the
Preisach-Arrhenius model.24,25 The question is how the the-
oretical prediction of frequency-independent decrement de-
pends on the simplifying assumptions accepted for the evalu-
ation of the PA model? Additional analysis has demonstrated
that the essential point is the assumption of the flat distribu-
tion of ���f near the diagonal of the PM space, i.e., near the
�2s� axis �see Fig. 2�. It is straightforward to verify that, if
any distribution �descending with increasing s�� is added in
the region s�
s�

max to the assumed above “rectangular” dis-
tribution of ���f in Fig. 2, then the asymptotic behavior of
acoustic properties in the interval exp�−s�

max���F�1 will

not be modified. From a physics point of view this is due to
the fact that the relaxation frequency of the elements depends
exponentially on s� �see Eq. �11��. For the frequencies in the
range exp�−s�

max���F�1 the elements of the PM space,
which are located at the distances s�
s�

max, even if they
exist there, are quasifrozen and, as a consequence, they pro-
vide very small contribution to the acoustic properties. The
distribution of the mechanical elements in the region s�


s�
max, however, influences the frequency dependence of the

acoustic properties in the domain �F	exp�−s�
max�.

Another interesting theoretical result for low amplitude
acoustic loading with sA�1 is the prediction of the transition
from the nonlinear induced transparency at low frequencies
to nonlinear induced absorption at high frequencies. It is ten-
tative to attribute this effect in full to the nonlinear shift of
the relaxation frequencies of the elements with increasing
wave amplitude. In fact from Eq. �30� it follows that the
resonance frequency of the elements increases in average
over the wave period with increasing wave amplitude. The
corresponding shift of the resonance curve in Fig. 5�a� �ob-
tained for the case of the linear absorption� to higher fre-
quencies naturally explains the nonlinear transparency below
the resonance peak and nonlinear absorption above the reso-
nance peak �see Fig. 6�a��. However the nonlinear effects in
the considered system are not only due to the dependence of
the relaxation frequencies on acoustic excitation �the coeffi-
cient 1 /�12+1/�21 in Eq. �6��. The driving term �1/�21

−1/�12� in Eq. �6�, which is due to the asymmetry of the
transitions between the states, also depends on the amplitude
of the acoustic excitation. Consequently the explanation
based on the shift of the resonance, proposed just above, is
only a qualitative guideline for the intuitive understanding of
the predicted phenomenon.

In accordance with Sec. VI in the case of the high ampli-
tude acoustic loading �sA�1� the dispersion of the mater-
ial properties is expected �similar to the low-amplitude
case sA�1� only outside of a broad frequency interval
exp�−sA /2� / �4sA��FL�F�FH�exp�2sA� / �4sA�. However
in the considered high amplitude regime �in contrast to the
low-amplitude regime sA�1� the characteristic boundary
frequencies of this interval FL and FH importantly depend on
the wave amplitude. Inside the above mentioned interval the
regime of hysteretic quadratic nonlinearity �PM regime� with
��s=sA��−sA

2 and �E��−sA is realized. In the low amplitude
regime �sA�1� the theory developed in Sec. V predicts that
the lowest amplitude-dependent contribution to the modulus
defect �E�3�� will be quadratic in wave amplitude ��E�3��
�sA

2 due to Eq. �42�� at all possible frequencies. Conse-
quently the developed theory predicts the possibility of the
transition from the law �E�3���sA

2 �typical of cubic nonlinear-
ity� to the law �E��−sA �typical of hysteretic quadratic non-
linearity� with acoustic amplitude increasing from sA�1 to
sA�1. This transition is expected to proceed differently at
different frequencies. When the characteristic frequencies FL
and FH are estimated for sA
1 as FL�sA
1�
0.4 and
FH�sA
1�
1.9, respectively, then it becomes clear that
FL�sA
1��FH�sA
1� and three different scenarios are pos-
sible. At frequencies F	FL�sA
1� the transition takes place
through the intermediate low frequency high amplitude re-
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gime �60� and �61�. The dominance of the quadratic nonlin-
earity is expected for the acoustic amplitudes satisfying the
inequality FL�sA��exp�−sA /2� / �4sA�	F, when the system
shifts with increasing wave amplitude from the low fre-
quency regime �60� and �61� to the intermediate frequency
regime �58� and �59�. For FL�sA
1�	F	FH�sA
1� the
transition is direct and takes place at sA�1. For FH�sA
1�
	F the transition takes place through the intermediate high
frequency regime �53� and �54�. The dominance of the qua-
dratic nonlinearity is expected for the acoustic amplitudes
satisfying the inequality F	exp�2sA� / �4sA��FH�sA�, when
the system shifts with increasing wave amplitude from the
high frequency regime �53� and �54� to the intermediate fre-
quency regime �55� and �56�.

From the previous paragraph it follows that the PA model
of acoustic nonlinearity does explain the experimentally
observed18–20 low-amplitude threshold for the transition to
hysteretic quadratic nonlinearity with increasing wave ampli-
tude. Importantly the theory predicts the conditions for the
transition �FL=F or FH=F�. Consequently when the thresh-
old strain amplitude, at which the transition to �E��−sA

takes place, is found experimentally then the condition FL
=F �or FH=F� provides the relation between the attempt
time �0 and the deformation potential d in the material. This
relation might be used in the future to check the microscopic
theories developed for the evaluation of �0 and d, when they
are available. Currently, in view of the existing consensus on
the values of the attempt frequency �O�108–1012 Hz�� it is
possible from the experimental data18–20 to estimate the de-
formation potentials. For example, the nondimensional fre-
quency in the experiment19 conducted at 39 kHz can be es-
timated as F��0 /T�4�10−4–10−8��1. Consequently, in the
frame of the theory developed above, the transition is taking
place through the intermediate high amplitude low frequency
regime �60� and �61� and it finishes when sA
 �8.6–25�s0. In
experiment19 the transition has been found around sA
2
�10−7. Comparison of the theory and the experiment pro-
vides an estimate of the characteristic strain s0� �2–1�
�10−8 and of the deformation potential d=kBT /s0
� �1.3–2.6� MeV. Important conclusion from these estimates
is the following. Due to low �kHz� frequencies of the exci-
tation the transition is observed not at the acoustic strains of
the order of the characteristic one, but at an order of magni-
tude larger strains. This made the observations possible. The
characteristic strain s0 itself is very small. In the
experiments20 conducted at even lower frequencies in com-
parison with Ref. 19 the experimentally determined thresh-
old strain for the transition was higher. This trend is in ac-
cordance with the theoretical predictions that at lower
frequencies higher acoustic amplitudes are necessary to over-
come the influence of thermal fluctuations, which are de-
stroying hysteresis. However the possible difference in the
deformation potentials of the single crystal19 and polycrys-
talline metals20 should be taken into account in quantitative
comparison. In rocks the observation of the transition from
�E�3���−sA

2 to �E��−sA has been reported at strain around
10−6 at frequencies as low as 0.5–3 kHz.18 The estimates
using these data indicate that for the mesoscopic mechanical
elements in rocks the characteristic strain s0 is about 3 times

larger and the deformation potential is about 3 times smaller
than for the dislocations in single crystal metals. Note that in
both experiments18,19 the transition to �E��−sA was detected
for the acoustic strain amplitudes which are close to ultimate
sensitivity of the detection system. So the data from these
experiments cannot be used to compare with the predictions
from the developed theory in a wide enough interval starting
from sA→0 and finishing with sA→�. Unfortunately below
the transition the experimental data are available only in a
rather narrow amplitude band. However, as it has been dem-
onstrated above, just the observation of the transition can be
used to estimate some parameters of the micromechanical
elements. Note that the recent experiments45 has confirmed
once again that the contribution of the rate-independent hys-
teresis to the nonlinearity of geomaterials can be negligible
at sufficiently low acoustic strain amplitudes.

Finally, it should be clearly stated that the thermal relax-
ation Preisach-Arrhenius model does not include all the ef-
fects producing rate-dependence of the hysteresis. See, for
comparison, the description of rate-dependent hysteretic phe-
nomena in magnetism.13 For example the rate-dependence
should also appear due to the fact that acoustic field cannot,
in principle, transform mechanical elements from one con-
figuration �state� to another infinitely fast.13,15 In other words
an individual mechanical element cannot change its configu-
ration instantaneously either due to direct effect of the acous-
tic field or due to thermal fluctuations. In Preisach-Arrhenius
model the finite transition time appears only statistically in
averaging over all the elements, while each of the elements
still exhibits instantaneous transitions as in the zero-
temperature �PM� model. To introduce finite transition times
for the individual elements a micromechanical model of the
transition between the different states �configurations� should
be formulated �see, for example, Refs. 13 and 46� or the
finite transition times can be introduced phenomenologically
as a temperature-independent relaxation process.15 Surely the
generalized theoretical model of hysteresis should include
correct description of the temporal dynamics of both the
transitions caused by thermal fluctuations and directly by the
acoustic forces. The development of a generalized model
would be highly desirable for the explanation of the recent
experiments,20,47,48 where the dependence of the acoustic
nonlinearity of the mesoscopic materials on frequency has
been documented.

VIII. CONCLUSIONS

The analytical evaluation of the Preisach-Arrhenius model
for the acoustic hysteresis given here demonstrates that ther-
mal effects are capable of inducing dispersion in both the
linear and nonlinear acoustic properties of microinhomoge-
neous materials. Thermal effects can also induce important
deviations in the amplitude-dependent behavior of the mate-
rial from one predicted by the Preisach-Mayergoyz �zero-
temperature� model. The theory predicts the boundaries for
an intermediate interval of frequencies where hysteretic qua-
dratic nonlinearity dominates in a mesoscopic material at
sufficiently high amplitudes of acoustic excitation. Outside
of this interval �at sufficiently low or sufficiently high fre-
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quencies� the nonlinearity deviates from one predicted by the
Preisach-Mayergoyz model and diminishes. However the
width of the frequency interval for the hysteretic quadratic
nonlinearity depends on the wave amplitude and broadens
with the increasing wave amplitude. The low-frequency cut-
off of the interval diminishes with increasing wave amplitude
while the high-frequency cutoff increases. As a result, if at
sufficiently low acoustic amplitudes the system manifests
a quasinonhysteretic nonlinearity it will, with increasing

wave amplitude, sooner or later manifest a hysteretic qua-
dratic nonlinearity. Thus the Preisach-Arrhenius model of
acoustic hysteresis explains the transition in acoustic behav-
ior of microinhomogeneous materials from one character-
ized by dominance of the quasinonhysteretic nonlinearity to
another characterized by dominance of the hysteretic qua-
dratic nonlinearity. This transition has been observed with
increasing wave amplitude in a number of microinhomoge-
neous materials.
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