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Temperature effect on the quasiparticle spectrum of an impurity-doped superconductor

with two separate electron groups
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The two-gap BCS theory with incoherent single-particle scattering is applied to study the temperature
dependence of the quasiparticle density of states in a superconductor with two separate electron groups. It is
shown that in such a material nonmagnetic impurities can affect superconductivity in a nontrivial way. For
considerable intergroup scattering rates comparable with clean-limit gap magnitudes we find a crossover from
two-feature densities of states at low temperatures to standard BCS-type curves with a single maximum, as 7'
increases. We point out that some unexpected temperature-dependent features observed for magnesium di-

boride, a two-band superconductor, may not represent its intrinsic characteristics.
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The well-known Anderson theorem' relating elastic scat-
tering centers in a bulk superconductor that do not affect its
pair potential is applied only to initially isotropic and homo-
geneous systems. A specific case of a system without trans-
lational symmetry is a normal-metal (N)-superconductor (S)
sandwich where, as it was shown by Arnold,? the Anderson
theorem is not satisfied. Its inapplicability results, first of all,
in the homogenization of pair potentials over the N and S
layers. In fact, this conclusion is valid not only for
proximity-effect bilayers but also for a variety of inhomoge-
neous superconducting structures. It is remarkable that the
results of Ref. 2 for very thin N and S layers bear a striking
resemblance to the McMillan tunneling model® of the prox-
imity effect proposed for two N and S layers separated by a
tunnel barrier. The correspondence arises from a similar
treatment of lifetime effects. It is also not surprising that
analogous expressions are appropriate for multiband super-
conductors with nonmagnetic impurity scattering treated
within the Born approximation.*> As in the general case of
an anisotropic superconductor,’® interband scattering reduces
the critical temperature 7. and finally leads to a single order
parameter.>’

A specific but representative case of a multiband super-
conductor is a two-band—two-gap model originally proposed
in 1959,%° where the order parameter has two different mag-
nitudes in two distinct bands. Recently, it became evident
that the model may be directly applied to magnesium di-
boride, a superconducting material with an unexpectedly
high critical temperature 7.=39 K. Whereas the main
physics behind superconductivity in clean samples of the
compound is now well understood,'? the role of incoherent
single-particle scattering effects between the two bands in
MgB, remains to a great extent unclear in doped!! and clean
samples. For example, the interband impurity scattering rates
I'=1/(27) (7 being the electron lifetime) deduced earlier
from experiments on the 7. suppression using a weak-
coupling BCS-type approach to the two-band case are
underestimated.'? I'’s for compact samples and thin films of
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MgB, found from point-contact and tunneling experiments
ranged from 1 to 4 meV,'>!4 and were comparable with the
lower gap magnitude of 2-3 meV. Even more surprising are
recent results by Kohen et al.'> who showed that also for
single crystals of magnesium diboride an impact of elastic
scattering between the bands should be taken into account in
order to interpret in detail all tunneling spectroscopic fea-
tures. The I" values were found as great as 1-2 meV. It means
that interband normal mixing is an important factor even in
clean samples of magnesium diboride.

The best way to study experimentally disorder-induced
changes in a superconductor with two separate electron
groups is to measure its quasiparticle density of states N(E),
which contains information about gap functions in both
groups and can be probed by various experimental tech-
niques. The two densities of states N, ,(E) were calculated
for very low temperatures in various papers (see, for ex-
ample, Refs. 3-5, 16, and 17. The general feature of the
weak-coupling limit is the presence of a single excitation gap
E, instead of two gaps A, , in the clean limit and prominent
structures above the gap in partial self-energies, reflecting
the real decay processes into another electron group. The
strong-coupling formalism provides additional self-energy
effects arising due to the electron-phonon interaction and a
small filling of the gap due to thermal phonons.!” The overall
shapes of N ,(E) radically depend on the ratio of the inter-
band scattering rates I' to the gap magnitude (see Fig. 4 in
Ref. 17 varying from two BCS-like curves to a Cooper-like
limit with almost the same densities of states for both groups
(see Fig. 8 in Ref. 3). In this paper we want to attract atten-
tion to the fact that such gradual changes can be observed
also for fixed I"’s as temperature is increased from zero to 7.
Below we study how the two very different densities of
states N 5(E) at T=0 become integrated with increasing tem-
perature if the I"’s are comparable with the initial gap mag-
nitudes. In other words, it means that the existence of two
different gaps in a superconductor and incoherent scattering
between the electron groups can produce a restoration of the
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Anderson theorem with temperature and, as a result, a cross-
over from two-feature densities of states to conventional
BCS characteristics with a single maximum. At the end of
the paper we relate the nontrivial behavior of the N;,(E) to
an unexpected energy-gap temperature dependence for mag-
nesium diboride observed by some experimental groups. In
this work we remain within a weak-coupling approximation.
Because magnesium diboride belongs to an intermediate-
coupling regime,'® our predictions concerning this com-
pound should be regarded as qualitative ones. What we want
to do is not to describe experimental curves for MgB, but
rather to make some principal conclusions about sensitivity
of temperature-dependent spectroscopic data for a supercon-
ductor with two electron groups to impurity scattering ef-
fects.
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The normalized electronic densities of states N,(E)
(i=1, 2) as functions of energy E are given by the expression

N{(E) =N,(0)Re £ (1)
with N;(0), the partial normal-state densities of states at the
Fermi levels, and A;(E) the related temperature-dependent
complex gap functions. The total tunneling characteristic
N(E) for a certain direction includes both terms with weights
that are determined by the topology of the Fermi surfaces
and corresponding Fermi velocities. The order parameters
A(E) should be found self-consistently from two equations
including the two-band extension of the standard BCS
theory®? and finite lifetime effects’

de tanh(e/2kgT)Re[A (e)/\e? — A¥(e)] + [ ;A (E)NE® - Aj(E)]

A(B) === — : (2)
1+ 2 [Fij/\Ez— Af(E)]
j=1,2
|
here A;;=N;(0)V;; are dimensionless coupling constants, V;; E?—A(E)A,(E
=) j j D(E)=1+2¢ (E)Ay(E) 3)

are the partial pairing potentials, w, is the cutoff energy, and
I';; describe the scattering rates inside and between the
groups. It directly follows from Eq. (2) that intragroup scat-
tering terms with I';; compensate each other and the only
remaining contribution is that from off-diagonal scattering
effects. Within the Born approximation I';=1/(27;)
= impN(0)(|W,j|?) /2 =const, where nyy,, is the nonmagnetic
impurity concentration, {|W; j|2> are the averaged-over-angles
matrix elements determined by incoherent scattering be-
tween states in the two electron groups, the ratios I';/T';;
=A;;/ A;=N;(0)/N0).

To imitate the properties of magnesium diboride, a two-
band-two-gap superconductor, we chose the following pa-
rameters: A;;=0.3, A,=0.15, Ay,;=A»=0.1, @y=50 meV.
Then in the clean limit (I';,=1",;=0) we get two gap values
A;=7.2 meV, A,=2.8 meV (here and below we assume that
the energy-gap magnitude in the clean limit is lower for the
second electron group) and the critical temperature slightly
above 40 K which qualitatively corresponds to related pa-
rameters for MgB,.!? Our aim is to perform calculations for
a dirty system of two coupled electron groups. It should be
noticed that in this case the Born approximation is not valid
near the energy gap that has now a single value E, defined by
an equality E,=Re A,(E,). Because of it, in this region we
have to treat the impurity-induced term in the Hamiltonian to
all orders of self-consistent perturbation theory as was done
before by Mohabir and Nagi'® for the McMillan tunneling
model of the proximity effect. Then the lifetime broadening
characteristics in Eq. (2) become energy-dependent complex

quantities I';;=1/[2D(E) ;] with

VE - AXE)WE? - AXE)

and the parameter ¢ controlling the renormalization effect,'®

c=(471,75,/{|{W,/*)7!. For the I'’s used in our calculations
we have estimated the value of ¢ to be less than or nearly
0.01. Its renormalization effect [the cancellation of the sin-
gularities in Eq. (2) at E=E,] is important only in the vicin-
ity of the gap value.

As follows from Eq. (2), imaginary parts of the order
parameters are vanishing for very high energies and A;(E)
are going asymptotically to temperature-dependent constants
A? which for small T are nearly the clean-limit gap magni-
tudes at 7=0 but strongly differ from them for greater tem-
peratures. For energies lower than I', the functions A;(E) are
close to each other. In the gap region the densities of states
N, »(E) defined by Eq. (1) exhibit two main features at ener-
gies that are nearly solutions of the equation

E=Re Al,Z(E)' (4)

In the clean limit the relations (4) set positions of distinct
peaks in the densities of states N, ,(E) (crossings of dashed
lines with a dotted one in Fig. 1). For I"’s comparable with
w, the densities of states and gap values for both electron
groups are almost the same.” Less trivial is the intermediate
case when the intergroup scattering rates are comparable
with clean-limit gap magnitudes. For I"’s not too great we
again obtain two different solutions of Eq. (4) (intersections
of curves 1 and 1’ with a dotted line in Fig. 1). But if the
scattering rates essentially exceed A? the distance between
them becomes very short and we can observe a crossover to
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FIG. 1. Real parts of energy gap functions Re A(E)=E for zero
temperature (curves 1 and 1’) and 7=0.97, (curves 2 and 2') of a
superconductor with two electron groups. Here and below the pa-
rameters are chosen as follows: A;;=0.3; A,=0.15; A=Ay
=0.1; I',=6.0 meV; I',;=4.0 meV; ¢=0.01; wy=50 meV. The
critical temperature 7. is estimated to be nearly 33 K. Curves 1, 2
and 1, 2’ are the data for larger-gap and smaller-gap groups, re-
spectively; the dotted straight line is Re A(E)=E. The dashed lines
are the predictions for the clean limit when I"j,=1",;=0.

a situation similar to an ordinary single-band superconductor
(see also Figs. 3 and 4 in Ref. 5).

In a real experiment it is impossible to control gradual
modifications of the I'’s. But the crossover discussed can be
realized with temperature as a parameter that changes the
relation between initial A? and the scattering rates. If the I"’s
are not too high, for low 7’s we get curves N ,(E) with two
distinct features. Increasing the temperature, we suppress the
gap values but do not change essentially the I'’s, which for
conventional superconductors have little temperature depen-
dence below T. In this way, we realize a situation when both
solutions of Eq. (4) (intersections of curves 2 and 2’ with a
dotted line in Fig. 1) almost coincide. The disappearance of
the gap anisotropy means a restoration of the Anderson theo-
rem with two nearly identical densities of states exhibiting
strong singularities at the gap value E,. Dramatic modifica-
tions of the normalized densities of states N;(E)/N,(0) can be
seen in Fig. 2. It is evident that the effect discussed should
take place in all dirty superconducting samples with two
separate electron groups. The temperature range where it
could be observed depends on the ratio of I';; to A}. For
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FIG. 2. The temperature effect on the normalized densities of

states N;(E)/N;(0). Curves 1-4 and 1’4’ are the data for larger-gap

and smaller-gap groups, respectively. Arrows below and above the

figure show the main peak positions in the N;(E) and N,(E) char-

acteristics. The calculations have been done for the parameters in-
dicated in the caption to Fig. 1.
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comparatively small I"’s it is limited by the nearest vicinity
of T. as in Ref. 17 where the evolution of the superconduct-
ing densities of states for MgB, was calculated within the
framework of the two-band Eliashberg theory. As follows
from Fig. 2, the density of states N,(E) of the larger-gap
group can survive drastic changes in the intermediate range
of temperatures: the increase of 7 strongly suppresses a
maximum recalling the gap in the first electron group and
gives rise to a peak at ~FE,. Note that the authors of Ref. 17
have also mentioned the fact that the temperature-induced
non-BCS changes in the densities of states of doped MgB,
are more pronounced for a sample with a larger gap.

Let us now turn to an unexpected energy-gap temperature
dependence for magnesium diboride derived by some experi-
mental groups from tunneling and point-contact experiments.
For sufficiently clean samples, where two clear gaps were
revealed, their behavior with increasing 7' is qualitatively
similar to that predicted by the classic BCS theory, except of
the lower-gap data suppression near T..'*!° According to
Nicol and Carbotte?® such behavior could be explained
within the two-band scenario in the limit of nearly separate
bands with small interband scattering rates. Much more dra-
matic suppression in the intermediate temperature range was
found for MgB, samples that could be supposed as dirty
ones. Comparison of early experimental data with strong-
coupling calculations of the energy-gap temperature depen-
dence reveals this tendency for a larger gap (see Fig. 3 in
Ref. 21). Even more striking results were observed in
samples exhibiting a single energy gap that considerably de-
viated from the corresponding rescaled BCS curve in a wide
region between T=0 and T=T7,.>>?3 It contradicts an intuitive
feeling that an isotropic, dirty-limit gap should follow the
BCS behavior.>* We attribute the observations to dramatic
changes in the N,(E) seen in our Fig. 2 that can occur for I"’s
comparable with clean-limit gap magnitudes. In experiments
gap values are usually found from the positions of the two
maxima in the total density of states [or other features that
appear in the experimental characteristics, in fact, due to the
presence of the peaks in N;(E)]. It is clear from Figs. 1 and 2
that for a dirty superconductor the position of the higher-
energy maximum at 7=0 has no clear physical meaning.
Moreover, the feature gradually shifts to lower energies with
increasing temperature, merging with a lower-energy peak
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FIG. 3. The temperature behavior of the main peak positions in
the two densities of states, shown with arrows above and below Fig.
2 (the left axis), compared with experimental data (Ref. 22) for
normalized energy-gap values shown by circles. The dotted curve
represents the BCS behavior. The calculations have been done for
the parameters indicated in the caption in Fig. 1.
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near T=T,. Figure 3 exhibits the nonmonotonic temperature-
induced behavior of the main peak positions in the two den-
sities of states shown with arrows above and below Fig. 2. It
is compared with the anomalous temperature dependence of
the normalized energy-gap value revealed in experiments
with dirty samples of magnesium diboride.?? Such findings
can lead to an erroneous conclusion about the unconven-
tional physical mechanism behind the effect whereas the un-
expected temperature-dependent features in the density of
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states of a dirty two-group superconductor do not really rep-
resent intrinsic characteristics of the material. This conclu-
sion is especially important for the electron transport mea-
surements in magnesium diboride within the ab plane where
the larger-gap band contribution is essential.”
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