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We study the problem of a quantized elastic string in the presence of an impenetrable wall. This is a
two-dimensional field theory of an N-component real scalar field � which becomes interacting through the
restriction �T���max

2 , for a spherical wall of radius �max. The N=1 case is a string vibrating in a plane
between two straight walls. We review a simple nonperturbative argument that there is a mass gap in the
spectrum, with asymptotically free behavior in the coupling g=�max

−1 , for N�1. This scaling behavior of the
mass gap has been disputed in some of the recent literature. We find, however, that perturbation theory and the
1/N expansion each confirm that these models are asymptotically free. The N→� limit coincides with that of
the O�N� nonlinear � model. A � parameter and instantons exist for the two-dimensional N=2 model, which
describes a string confined to the interior of a cylinder of radius �max.
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I. INTRODUCTION

We will make a few observations in this paper concerning
a nonrelativistic elastic string in N transverse dimensions in
the presence of barriers. This is a theory of an N-component
scalar field

� =�
�1

�2

·

·

·

�N

� ,

satisfying the condition �T���max
2 . The quantum string has

the Lagrangian L= 1
2�t�

T�t�− 1
2�x�

T�x�, where �t=� /�t , �x
=� /�x, and the superscript T denotes the transpose. This is
not a free two-dimensional field theory, however, due to the
constraint. Here �max is the radius of an infinitely deep
spherical well and we interpret its reciprocal g=�max

−1 as the
coupling constant. We shall refer to these as the BN models,
since target space is the N-dimensional ball BN.

Note the similarity of the BN model to the O�N� nonlinear
sigma model, for which the Lagrangian is the same, but the
constraint is �T�=1/g2. Indeed for large dimension of the
target space N, most points of an N-dimensional ball are
concentrated near the boundary. For this reason, one expects
the two models to coincide as N→�. In the large-N limit, it
makes little difference whether the constraint is �T�=g−2 or
�T��g−2.

The N=1 model is of particular interest. This is a quan-
tum string constrained to move in a planar channel of width
2/g. The model arises in the statistical mechanics of a two-
dimensional membrane between planar walls separated by a
distance 2/g,1,2 as well as striped phases of copper oxide
layers.3,4 Another motivation for studying fields restricted in
this way has been given in Ref. 5, where it has been argued

that it has practical utility in perturbation expansions.
A simple argument repeated below shows that the spec-

trum has a mass gap M, with the behavior

M � exp − Ag−2, g → 0, �1.1�

where A is a constant. This result was known to but disputed
by Zaanen et al.,6 who use an argument similar to that of
Helfrich and Servuss7 to conclude that

M � exp − Ag−	, g → 0, �1.2�

where 	�2/3. Nishiyama studied the model with the
density-matrix renormalization group and has also argued for
�1.2�.8

We show in this paper that �1.1� is correct according to
standard analytic methods. We consider two such methods.
The first of these is a simple one-loop renormalization group
analysis for N=1. The other is the 1/N expansion. In any
case, if one accepts �1.2�, the inevitable conclusion is that the
analytic part of the 
 function is zero—which we show is not
the case.

We also consider the interesting case of N=2. This field
theory describes a string allowed to vibrate inside a cylinder.
We find that there is a topological term that can be included
in the action and that there are instantons. We determine the
instanton solutions; they are similar to those of the circular
brane model.9

Before concluding this Introduction, we repeat the argu-
ment given in Refs. 1, 2, 6, and 8 that a mass gap appears
and depends on the coupling as �1.1�. Though referred to as
a mean-field argument in Ref. 8, it is closer in spirit to the
theorems of Peierls and of Mermin and Wagner forbidding
continuous symmetry breaking in two dimensions. If we ig-
nore the constraint and use our massless Lagrangian, the
two-point equal-time correlation function behaves as

PHYSICAL REVIEW B 72, 052503 �2005�

1098-0121/2005/72�5�/052503�3�/$23.00 ©2005 The American Physical Society052503-1

http://dx.doi.org/10.1103/PhysRevB.72.052503


��T�x���0�� =
N

2�
ln

	x	
a

, �1.3�

where a is a short-distance cutoff. But we also have the strict
inequality

��T�x���0�� � g−2.

Thus, Eq. �1.3� should be valid for 	x	 approximately in the
range a� 	x	�ae2�/g2N, but not for 	x	
ae2�/g2N. This limit-
ing value of 	x	 should be the correlation length of the theory,
which is the inverse of the mass gap. Thus we obtain

M � a−1exp −
2�

g2N
, g → 0, �1.4�

which is just �1.1� with A=2� /N. We shall verify �1.4� in the
next section. This argument is very suggestive—perhaps it
will point the way to a rigorous proof of the mass gap, which
is lacking for many interesting field theories. The reader
should take the argument with a grain of salt, however. It
does not really establish that the two-point function falls off
exponentially, but only shows that it cannot behave logarith-
mically. For example, power-law decay of the two-point
function cannot easily be ruled out.

The 
 function to lowest order follows simply from �1.4�.
It is negative and vanishes at g=0:


�g� = 
 �g2

� ln a−1

M fixed

= −
g4N

2�
.

II. EXPANSION METHODS

The Lagrangian of the N=1 model, Wick rotated to Eu-
clidean space, is

L =
1

2
������ ,

where ��=� /�x� with x0= t , x1=x. Since �2�g−2, we pa-
rametrize � by a new field �, through ��x�=g−1sin ��x�.
This choice of parametrization is not unique �other choices
of parametrization, such as �=g−1tanh �, would give the
same result�. This mapping from � to � is many to one,
instead of one to one, but this fact will not make any differ-
ence as far as perturbation theory is concerned.

The Lagrangian becomes

L =
1

2g2cos2������� =
1

2g2�1 − �2 +
1

3
�4������� .

The functional integral is

W
J� =� 
d��exp −
1

�
� d2x
L − J� − �a−2ln�cos ��� ,

where a is a short-distance cutoff with dimensions of centi-
meters. The third term in the exponent, which comes from
the Jacobian in the functional measure, is of one higher order
of � than the Lagrangian; though this term must be consid-
ered at two loops, we may ignore it in our one-loop calcula-
tion.

The leading term of the effective action is

1

2g2�1 −
g2

4�
ln��2a2����� ��� ,

where � is an infrared cutoff, with dimensions of inverse
centimeters, and where a quadratically divergent contribution
is canceled by a counterterm. From this expression we find
that the mass gap scales as

M � a−1exp −
2�

g2 .

This agrees with the result �1.4� discussed in the Introduc-
tion.

The 1/N expansion for the BN model is extremely simple.
At leading order, all expressions coincide with those of the
nonlinear O�N� sigma model. There is some difference to
first order in 1/N, but we will not discuss this issue in detail.

Using a standard integral formula for the Heaviside func-
tion, the functional integral is

Z =� 
d��
d��exp −� d2x�1

2
���T��� + i���T� − G−2N�

+ a−dln�� − i��� ,

where G2=g2 /N. Integration over � yields

Z =� 
d��exp − N�1

2
Tr ln�− �2/2 − i�� − iG−2� d2x �

+
1

N
a−dln�� − i��� . �2.1�

This integral is dominated by a saddle point on the imaginary
axis for large N, which we write as �0=−im2 /2. The pres-
ence of � in Eq. �2.1� assures that the logarithm is defined on
the correct sheet in the vicinity of the saddle point. Except
for the last term in Eq. �2.1� this is the same expression
obtained for the � model. The equation for the saddle point
is

1 = G2� ddp

�2��d

1

p2 + m2 . �2.2�

If the momentum integral �2.2� is cut off by 	p	�a−1, we find
the standard result

m = a−1e−2�/G2
�1 − e−4�/G2

�−1/2,

confirming that the model is asymptotically free.
The BN model is different from the O�N�� model to order

1 /N. That is because the last term in Eq. �2.1� will contribute
to this order.

III. THE TOPOLOGICAL TERM AND INSTANTONS FOR
N=2

For the case of N=2 in two dimensions, a new term can
be added to the action. We consider the B2 model in Euclid-
ean space-time. We take this space-time to be a two-
dimensional ball, i.e., a disk, with radius R. The target space
is also a disk with radius g−1. A smooth field configuration is
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a map from the first disk to the second. This map has a
degree which is the number of images of the space-time disk
in the target space disk. This degree is

� =
g2

2�
�

	x	�R

d2x��1�1�2�2 − �1�2�2�1� .

The action with such a term is

S = S0 + i�� =
1

2
�

	x	�R

d2x��1�T�1� + �2�T�2�� + i�� ,

where the �time-reversal-violating� parameter � is defined
modulo 2�.

A similar term can be defined for the circular-brane
model.9 In this model, the field � is unconstrained except at
the boundary, where it is required that �T�=g−2. The instan-
ton solutions are of the same form as those found below.

To show explicitly all the instantons and anti-instantons,
we use complex coordinates. Let us define z=x1+ ix2, z̄=x1

− ix2, �= 1
2�1− �i /2��2=� /�z, �̄−= 1

2�1+ �i /2��2=� /�z̄, and �

=�1+ i�2 , �̄=�1− i�2. For instantons, � is analytic and �̄ is
antianalytic,

��̄ = 0, �̄� = 0,

and for anti-instantons, � is antianalytic and �̄ is analytic,

�� = 0, �̄�̄ = 0.

The general instanton solution must be an analytic map
from the disk of radius R to the disk of radius g−1 of degree
�. This can only be of the form

� = g−1�
j=1

�
ajz + bjR

b̄jz + ājR
, �3.1�

with �̄ given by complex conjugation. The complex moduli
a1 ,… ,a� and b1 ,… ,b� satisfy 	aj	2− 	bj	2=1. There are no
poles in z in the disk. To see this, note that the poles of Eq.
�3.1� lie at z=−Raj /bj , j=1,… ,�. Since 	aj /bj	2=1+1/ 	bj	2
�1, the function � is completely analytic in the interior of
the disk. Furthermore, there is no singularity at the boundary
at which 	�	=g−1. By the maximum-modulus theorem, our
constraint is satisfied; 	�	 cannot exceed g−1 anywhere in the
disk of radius R.

The anti-instanton solutions are very similar to Eq. �3.1�.
They are

� = g−1�
j=1

�
ajz̄ + bjR

b̄jz̄ + ājR
, �3.2�

with �̄ again given by complex conjugation. As before, the
complex moduli a1 ,… ,a� and b1 ,… ,b� satisfy 	aj	2− 	bj	2
=1.

The semiclassical expansion about instantons is insuffi-
cient to understand the exponential decay of correlation
functions. The fluctuation determinant is completely insensi-
tive to both � and the moduli. An interesting question is
whether fractional-topological charges can account for the
correct exponentially decaying behavior of correlation func-
tions.

IV. CONCLUSION

We have shown by several elementary methods that the
energy gap in a quantum elastic string with barriers decays
exponentially with the square of the barrier width. For the
special case of a string in the interior of a cylindrical barrier,
there are instantons, which are holomorphic maps from the
two-dimensional disk to itself.

The large-N limit coincides with the spherical model in
any dimension. The latter model has an ultraviolet-stable
fixed point in three Euclidean dimensions �or two space and
one time dimensions�. We expect that such a fixed point ex-
ists for the three-dimensional BN model for finite N, separat-
ing a spontaneously broken phase from a massive, strong-
coupling phase. In this case, the model describes a quantum
two-dimensional membrane, moving transversely, in the
presence of a barrier.

An additional feature of the two-dimensional BN model is
that the 
 function is proportional to N; in the case of the �
model, the 
 function is proportional to N−2.10
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