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We propose an alternative explanation to the oscillations of the flux-flow resistance found in several previ-
ously published experiments with Bi2Sr2CaCu2O8+y stacks. It has been argued by the previous authors that the
period of the oscillations corresponding to the field needed to add one vortex per two intrinsic Josephson
junctions is associated with a moving triangular lattice of vortices �out-of-phase mode�, while the period
corresponding to one vortex per one junction is due to the square lattice �in-phase mode�. In contrast, we show
that both type of oscillations may occur in a single-layer Josephson junction and thus the above interpretation
is inconsistent.
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Recently, a lot of attention has been focused on the pos-
sible use of single crystals of Bi2Sr2CaCu2O8+y as generators
of electromagnetic radiation in the THz range.1 A crucial
requirement for this purpose is realizing coherent in-phase
oscillations of intrinsic Josephson junctions which belong to
different atomic layers of such crystals. Promising experi-
ments in that direction were reported by Hirata et al.2 and
shortly thereafter by Kakeya et al.3 and Hatano et al.4 These
experiments all showed oscillations in the flux-flow voltage
and flux-flow resistance when a large magnetic field �of or-
der several Tesla� was applied parallel to the ab plane in the
presence of a small bias current in the c-direction �of order a
few percent of the critical current�. The observed flux-flow
voltage oscillations typically showed two different oscilla-
tion periods. At the lowest magnetic fields the period was
�HT=�0 / �2sL� corresponding to one extra flux quantum per
two layers in the stack. Here �0 is the magnetic flux quan-
tum, s and L are the thickness and the length of the junction,
respectively. At higher magnetic fields there was a transition
to a period �HS=�0 / �sL�, i.e., corresponding to an extra
flux quantum in every layer.

These exciting experiments were interpreted both
analytically5 and numerically6,7 by several authors. One of
the important questions to be answered was whether the flux
lattice correspond to a triangular lattice �antiphase ordering
with possible cancellation of the sum voltage at the junction
end� or a square lattice �in-phase ordering leading to a large
sum voltage at the junction end�. Figure 1 shows schemati-
cally a Bi2Sr2CaCu2O8+y stack with flux ordering in a trian-
gular lattice and square lattice. Obviously, the latter case is
highly preferable for applications to THz generation of elec-
tromagnetic waves; however simple intuition would suggest
triangular ordering since fluxons of same polarity naturally
repel each other. An intuitive interpretation of the experimen-
tally observed oscillations in the flux-flow voltage would
suggest that an oscillation period �HT corresponds to trian-
gular ordering while a period �HS corresponds to a square
lattice. Numerical simulations1,6,7 have shown that both tri-

angular and square lattices are possible, but their relation to
regions of �HT oscillations and regions of �HS oscillations
is not simple and details are still a matter of debate.

In this paper, we present fairly standard numerical simu-
lations corresponding to the simplest case of a single-layer
Josephson junction. Even for this case, where there is no
triangular nor square lattice ordering �as our stack consists of
only one junction�, we find that both the �HT and �HS pe-
riods appear much the same way as in experiments and nu-
merical simulations for Bi2Sr2CaCu2O8+y stacks with many
layers and flux lattice ordering. After presenting the numeri-
cal simulations we provide a qualitative explanation in terms
of the well-known Fiske modes.8

The system under investigation is described by coupled
sine-Gordon equations of the form9
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FIG. 1. Schematic drawing of the triangular lattice �a� corre-
sponding to the out-of-phase fluxon mode and the square lattice �b�
associated with the in-phase fluxon mode.
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Here �= �1/R��� / �2eI0C��1/2 is the dissipation parameter �R,
I0, and C are the normal resistance, the critical current and
the capacitance per unit length, respectively�, � is the current
normalized to the critical current I0 of the individual junc-
tions. The normalized coupling term among the junctions
in the stack reads S=−	L / �d� sinh�t /	L��, where d�
=d+2	L coth�t /	L�, t is the thickness of one superconduct-
ing layer, and 	L is the London penetration depth.9 Time t is
normalized to the inverse of the Josephson plasma frequency

p= �2eI0 / ��CJ��1/2 and spatial coordinate x is normalized
with respect to the Josephson length 	J= �� / �2e�0I0�d
+2	L���1/2. The magnetic field gives rise to boundary condi-
tions of the form9
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Index i=1, . . . ,N stands here for the junction number in the
stack and � is the normalized length of the system.

Figure 2 shows the result of a simulation of the current-
voltage characteristics for only one junction in the stack, i.e.,
N=1. It shows the flux-flow branch of the junction with nor-
malized length �=40 and damping constant �=0.1 placed in
magnetic field h=4. The characteristics is calculated by ris-
ing the bias current � from zero to 0.85 and then decreasing
it back to zero. The voltage V is given in normalized units
chosen such that the voltage spacing between neighboring
Fiske steps

�V =
�0c̄

2L
�4�

is equal to unity �here c̄ is the Swihart velocity and L=�	J is
the physical length of the junction�. The current-voltage
characteristics displays fine structure due to the Fiske steps,

which gather around the flux-flow voltage, also known as
Eck peak.10 The hysteresis in this voltage region is due to the
coexistence of several Fiske resonances at a given current �.
Some parts of these Fiske resonances are located inside the
hysteresis and are not displayed in the plot.

Using the above junction parameters, we calculated the
dependence of the flux-flow resistance on magnetic field.
Figure 3 presents the differential flux-flow resistance dV /d�
versus magnetic field h at the fixed bias current �=0.3. It
clearly shows flux-flow resistance oscillations. In order to
relate the period of oscillations with the number of vortices
in the junction we show a grid in magnetic field with a pe-
riod �h=2� /�, which approximately corresponds to adding
one vortex in the junction. This can be seen from the simple
fact that at the critical field h=2 the normalized spacing be-
tween vortices penetrated into the junction is equal to �, and
their number rises proportionally to h. In Fig. 3 we see that
most oscillations have a characteristic period in h corre-
sponding to adding a half flux quantum into the junction,
with a tendency of doubling the period at higher fields.

As another illustration, in Fig. 4 we show both static re-
sistance V /� and differential resistance dV /d� versus mag-
netic field h for the same junction but at a lower bias current
�=0.2. The oscillations of dV /d� �thin curve� have two char-
acteristic periods, which are found at different ranges of
magnetic field h. The oscillation period at low fields corre-
sponds to about or less than half flux quantum, while at
higher fields we find very clear oscillations which account
for one flux quantum into the junction. The crossover from
one regime to another occurs at magnetic field h	3. Below
this field the differential resistance at �=0.2 is lower as it is
determined by the Eck peak �see also Fig. 2� composed of
individual Fiske steps. At h3 the Eck peak shifts to higher
currents and the differential resistance levels at the resistive
slope determined by the loss parameter � of the junction.
The static junction resistance �upper curve in Fig. 4� also
changes in this range but its oscillations are much less pro-
nounced and can only be clearly seen on the magnified scale.

We suggest the following explanation for the two oscilla-

FIG. 2. Current-voltage characteristics of a long junction �N
=1� with parameters �=40, �=0.1, and h=4. Arrows indicate
switching between branches for rising and decreasing bias current
�.

FIG. 3. �Color online� Differential flux-flow resistance dV /d�
versus magnetic field h for the single junction �N=1� with �=40
and �=0.1 at constant bias current �=0.3.
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tion periods of the flux-flow resistance in a single-barrier
Josephson junction. At high enough magnetic field the resis-
tance at a low bias current follows oscillations of the critical
current of the junction and thus have a characteristic period
of one flux quantum. At the same time, the resistance mea-
sured at a higher current �or lower field but the same bias
current� follows the oscillations due to the Fiske steps, which
envelope is associated with the Eck peak �sometimes called
as flux-flow or velocity matching step�. The matter is that—
for a single junction—the Fiske steps induce a variation of
the resistance with characteristic period corresponding to
half flux quantum.

Fiske modes in a Josephson junction8 are linear cavity
type excitations with resonance angular frequencies given by


n = n
2�

�
, n = 1,2,3, . . . �5�

in normalized units. The corresponding to wave vectors are
kn=�n /�. In experiments these Fiske modes are visible as
current singularities in the current-voltage curve with a volt-
age spacing given by Eq. �4�. The amplitude of the Fiske
steps oscillate with the magnetic field in a typical Bessel
function like pattern such that the even numbered steps have
maxima together with maxima in the critical current, while
maxima in the odd numbered steps correspond to minima in
the critical current. References 11 and 12 give an approxi-
mate analytical form for the current-voltage curve for a
single Josephson junction with Fiske steps. The current-
voltage characteristics is approximately written as12
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This approximation neglects high-order nonlinearities in the
junction and is originally expected11 to describe well the case

of short junction, i.e., ��1. However, the comparison with
long junction data made by Cirillo et al.12 shows that Eq. �6�
can approximately account for the shape and for the maxi-
mum current modulation of the Fiske singularities in long
���1� junctions when the field penetration overcomes
Meissner shielding, i.e., at h2.

The first term in Eq. �6� represents the Ohmic part of the
current-voltage characteristics, while the second term gives
an infinite series of equidistant resonances. The height of the
resonances is modulated by a slowly varying amplitude fac-
tor and a fast Fraunhofer amplitude factor.12 The Fraunhofer
factor emphasizes the resonance closest to 
=h and drops
off fast: If h� is an even multiple of �, the odd numbered
Fiske steps are enhanced and if h� is an odd multiple of �,
the even numbered Fiske steps survive.

Equation �6� gives the current-voltage curve containing
Fiske steps with the magnetic field as a parameter. If we
instead assume a fixed bias current � and vary the magnetic
field, Eq. �6� expresses the voltage V�
 oscillations in an
implicit form. In order to compare this analytical form with
our simulations, we solved Eq. �6� for 
 at a given � numeri-
cally. The obtained the dependence of the flux-flow resis-
tance dV /d� at constant bias current �=0.2 versus magnetic
field h is presented in Fig. 5. The qualitative agreement be-
tween Figs. 3 and 4 obtained by full numerical simulation of
the perturbed sine-Gordon equation and Fig. 5 emerging
from the analytical formula �6� is strikingly good. Figure 5
clearly displays two characteristic periods of oscillations,
namely half flux quantum oscillations at low fields and one
flux quantum oscillations which become very explicit at high
fields. The intermediate field range shows a complicated
beating between two periods.

The low field oscillations period from our simulations
shown in Figs. 3 and 4 is only approximately equal to the
half flux quantum. We suppose that it is due to nonlinearity
of the plasma wave dispersion curve in long Josephson junc-
tion at low magnetic fields. We found that shorter junctions

FIG. 4. �Color online� Flux-flow static resistance V /� �thick
curve� and differential resistance dV /d� �thin curve� versus mag-
netic field h for the same junction as in Fig. 3 at a lower bias current
�=0.2.

FIG. 5. �Color online� Differential flux-flow resistance dV /d� at
constant bias current �=0.2 versus magnetic field h calculated di-
rectly from Eq. �6� with parameters �=40 and �=0.1. The voltage
is multiplied by a factor � /� to make its scale identical to the
voltage normalization used in the previous figures.
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display more regular low-field oscillations with period which
is very close to the half flux quantum, �h1/2=� /�, which
corresponds to �HT=�0 / �2sL� in physical units. The field
period is inversely proportional to the junction length �.

It is worth pointing out that the current range in which the
oscillations are observed entirely depends of the chosen dis-
sipation constant �. In experiments typical � is smaller than
the value 0.1 used in our simulations, so one actually needs
to apply smaller currents �relative to the critical current at
zero field� to reach the same voltages.

Thus, odd and even numbered Fiske resonances in the last
term in Eq. �6� produce the “magic” half-flux-quantum oscil-
lations corresponding to the magnetic field period �HT
=�0 / �2sL� even in a single Josephson junction. Although we
investigated here Fiske steps with N=1, we note that Fiske

steps are also present in stacks with N1.13 Thus we are
lead to suggest that also for N1 the flux-flow voltage os-
cillations have their origin in the Fiske mode excitations.

We conclude that for Bi2Sr2CaCu2O8+y stacks the flux-
flow voltage oscillations with two different periods in a mag-
netic field have their origin in the Fiske mode excitations.
Thus the flux lattice ordering in either triangular or square
lattice is not directly related to the two periods of the oscil-
lations. We speculate that Fiske modes also existing in stacks
indirectly play a role for the flux lattice formation.
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