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Nucleation is of great concern in many cases—for example, the production of artificial rainfall and the
synthesis of advanced amorphous alloys. Although exact solutions have been well known to both homogeneous
nucleation and heterogeneous nucleation occurring on a large flat container wall, yet in more general situations
the actual nucleation takes place around finite-sized heterogeneous particles. The understanding of nucleation
in such situations requires a more extended model which considers the size effect of nucleating agents.
Partially motivated by our research on bulk metallic glasses, we construct such a geometric model. Also we
derive an exact solution to the model and discuss briefly its physical implications. A previously presumed
relation between the critical energy barrier (E.) and the volumetric Gibbs free energy of the critical nucleus
(G.)—i.e., EczéGC—is found to be not true for general cases, although it is correct for the limiting cases.
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Nucleation is a common phenomenon which plays a very
important role in many research areas. The formation of rain
droplets from clouds, the solidification of crystalline materi-
als from their liquid states, and bone growth are all but a few
isolated examples of nucleation phenomena.! In some cases,
such as the production of artificial rainfall, nucleation is ben-
eficial and thus preferred, while in other cases—for example,
the synthesis of organic’ or metallic glass’>°—nucleation is
detrimental and has to be avoided. According to earlier stud-
ies by Volmer and Weber,® Becker and Doring,7 and Turnbull
and Fisher,® for a small nucleus to grow from a parental
phase, the size of the nucleus, r, and the energy associated
with the formation of the nucleus, £, have to exceed a critical
value r. and E., respectively. For homogeneous nucleation
where there are no extrinsic nucleating agents, the classical
solution to this critical problem is
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in which o is the interfacial energy per unit area (or the
interfacial tension) between the new phase (i.e., the nucleus)
and the parental phase, and G is the Gibbs free energy dif-
ference per unit volume between the two phases. For hetero-
geneous nucleation which takes place on a large flat surface
of an extrinsic object (such as a flat container wall or a flat
substrate), the classical solution is

hel= 2_0-
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Eilet — Tthet( 0) ,

1(0) =[2 - 3 cos O+ cos® 0]/4, (2)

where @ is the contact angle between the nucleus and the
extrinsic object (for a quick review of these classical solu-
tions, see Ref. 9). Nevertheless, in a large variety of cases,
such as the formation of rain droplets from clouds or the
nucleation of crystals from the interior of small-particle-
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bearing liquids,'? the assumptions adopted in the derivation
of the above two classical solutions (i.e., a superclean paren-
tal phase and/or a large flat extrinsic surface) are not well
satisfied, and consequently these solutions cannot provide
precise descriptions of such cases. The common feature of
such cases is that there exist extrinsic nucleating agents
whose sizes cannot be simply treated as either zero or
infinity.!!

In the field of metallic glass, for example, it has been
shown that the glass forming ability (GFA) of an alloy upon
cooling from its molten state is strongly influenced by the
nucleating effect of the finite-sized impurities buried in the
alloy melt. When the impurities are either fluxed'>!* or
deactivated,'* the undercooling and GFA of the alloy can be
improved dramatically. However, it is still not clear how ex-
actly the impurity particles affect the nucleation process and
how their effects can be carefully controlled by processing
methods such as fluxing and microalloying. To help answer
these questions, we present in this paper an extended geo-
metric model for the critical problem of nucleation based on
a finite-sized nucleating agent and then derive the exact so-
lution and discuss its physical implications.

Figure 1(a) illustrates the geometric construction for the
new model, where a nucleus (N) forms at the interface be-
tween the parental phase (P) and a finite-sized nucleating
agent (A). O, and O, are the spherical centers of N and A,
respectively. S is a joint where the three phases P, N, and A
meet each other. Figure 1(b) is an illustration of the mechani-
cal equilibrium at S, in which o, op,, and oy, denote the
interfacial tensions between P and N, P and A, and N and A,

(b)

FIG. 1. (a) The geometric construction for the extended nucle-
ation model, and (b) an illustration of the mechanical equilibrium at
point S in part (a).
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respectively. In both figures, € is the contact angle between N
and A. Besides 6, we introduce another important angle
¢—i.e., £850,0,—to relate the radius of A (R, i.e., SO,)
with that of N (r, i.e., SO)).

With the above construction and denotations, it is trivial
to obtain the following expressions.

The interfacial area (I.A.) between P and N [from Fig.

1(a)]: ,
LA.py=27r71-cos(¢+ 0)]. (3)

The interfacial area between N and A [from Fig. 1(a)]:
LAy, =27R*(1 - cos ¢). 4)
The volume of N [from Fig. 1(a)]:

V= 751-"3[2 3 cos(@+ ) +cos’(g+0)]
w
- §R3(2 3 cos g+ cos’ ). ®)

Interconnection among r, R, ¢, and 6 [from triangle
S0,0, in Fig. 1(a)]:
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Opy— Opnp = O COS 0. (7)

Therefore, the energy change associated with the formation
of nucleus N is (G as defined earlier)

E=0XLApy+(oya—0py) XLAp—-G XV
=0 XLApy—0ocos X LA -GXV
=E - E, (8)
where
E,=2mor 1 -cos(¢+ )] - 2moR? cos 6(1 — cos ¢)
)

and
T 3 +0)+cos* (o + 6
E,=—Gr'[2-3cos(¢+ 6) ( )]

—;—TGR3(2—3COS ©+cos’ ). (10)

For a given system, we have fixed R and 6. From Eq. (6)
we get

ro R (©)
sing  sin(p+6) dr __Rsinf (11)
=— .
Interconnection among o, gps, o4, and 6 [from Fig. de  sin(e+0)
1(b)]: From Egs. (9), (6), and (11), we get
|
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de d in”
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=2moR ; sin ¢ 5 —cos 6
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. 1 —cos*(¢+ 6) 2 cos ¢ sin ¢ sin(¢ + 6)
=2qor sin(¢ + 6) - 5 —cos 0
sin 6 1+cos(p+6) [1+cos(p+0)]
1- +0
= 2770;’%;){2 cos @ sin(@ + 6) +sin @[ 1 — cos(@ + 0)] —cos Osin(p+ O)[1 + cos(o + 0) ]}
sin
1 —cos(p+ 6
= 2war%{2[sm 0+ sin ¢ cos(@ + )] +sin @[ 1 —cos(¢+ 6)]—cos Osin(@ + O)[1 +cos(p+ O)]}
sin
I —cos(e+ 6
= 2770;'%{2 sin @+ sin @[ 1 + cos(@ + 6)] - cos Osin(@+ O)[1 +cos(e+ 0)]}
sin
1 —cos(p+ 6
= 2war${2 sin - sinf cos(@ + O)[1 +cos(e + 0) ]}
sin
=2mor[2 -3 cos(o+ 6) + cos* (¢ + 6)]. (12)

From Egs. (10) and (6) we get
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d
ar o opdr =7Gr’[2 -3 cos(@+ ) +cos* (¢ + 0)] + d—f{;—TGﬁ[?, sin(¢ + 6)

-3 cos’(¢+ O)sin(e + 0)] - 73—7GR3(3 sin ¢ — 3 cos’ ¢ sin cp)}

d
7Gri{2 -3 cos(@ + 6) + cos’(p+ )] + WGd—<P[r3 sin®(¢ + 6) — R? sin® ¢]
r

7Gr[2 -3 cos(@+ ) + cos’*(@+ 0)]. (13)
Therefore, from Egs. (8), (12), and (13), we have

dE dE, dE
—1_ 2 27or{2 -3 cos(p+ 0) +cos* (@ + )] — wGr2[2 — 3 cos(e + 6) + cos* (¢ + 6)]
dr dr dr
=7r(20 - Gr)[2 -3 cos(¢ + 6) + cos* (¢ + 6)]. (14)
The critical condition is dE/ dr|, =0; hence, we get 5
¢ oz
=—. 15
re="o (15)

It is clear that the critical diameter of the nucleus does not depend on either the contact angle 6 or the nucleating-agent size R
and, that it has the same value for the present extended case and for the two classical cases—i.e., r,=r""=r""
To find out the critical energy barrier E,, we substitute r, into Egs. (9), (10), and then (8). We get

o sin® (¢ + 6
E\|, =8m—;| 1 —cos(¢+ 0)—#cos 0(1 —cos ¢) |, (16)
¢ G sin” ¢
87 o’ ; sin*(¢ + 6) ;
Eo|, =——5|2-3cos(¢+ 6) +cos’(¢+ 0) - ———5——(2 -3 cos p+cos’ ¢) |, (17)
c 3G sin” ¢
|
and 1 3
g+, 0)= —(1 —cos® — = cos Osin’ 0)
167 d° 2 2
E.= El, = B, ==~ -8R 0), (18) 1
=—(2=3cos O+ cos’ 0)
where 4

1 sin’(¢ + 6
g(R,0) = —{l —cos* (¢ + 6) -3 cos GL
2 1+cos e
sin®(¢@ + 6
+%(2—3cos ©+cos’ @) (19)
sin” ¢
and o=¢(R, ) is determined by Eq. (6) or, explicitly,

R/r.—cos 0)

sin 6 '
Figures 2(a), 2(b), and 2(c) present the three-dimensional
(3D) image and some 2D projected curves of this bivariate
function g(R, #) with R scaled by r.=2¢/G. From these fig-
ures, as well as from Egs. (19) and (20), it can be seen that
for any fixed contact angle 0 (i.e., fixed type of nucleating
agent), as the agent size R goes to 0, g(R,6) goes to 1,
corresponding to E, going to E"™=(167/3)c>/G?, which
means nucleation occurs in a homogeneous manner in the
limiting case where R=0. Also, for any fixed 6, as R goes to
4+, g(R, 6) goes to a constant value g(+, 6). It is trivial to
find the expression for g(+, 6) through Egs. (19) and (20)
(Ref. 15):

@ =arc cot( (20)

=f"(0). 1)
Therefore, the classical heterogeneous solution—i.e., Eq.
(2)—actually describes only the limiting case of extended
model, where the agent size tends to infinity. Although this
limiting solution may be at the same time a good estimate for
g(R, 0) when R is significantly larger than the critical nucleus
diameter r, [by at least two or three orders of magnitude
according to Fig. 2(b)], it cannot be used to depict a large
category of nucleation processes occurring at low ‘“under-
coolings” of a parental phase.'® This is because at low un-
dercoolings, the Gibbs free-energy difference between the
parental phase and the new phase is very small and thus the
critical nucleus diameter is very large according to r,
=20/G, as a result of which a finite nucleating agent cannot
be readily considered significantly larger than r.. Therefore,
in such general cases, the present model should be
considered.

Besides the nucleating-agent size effect, this extended
model also releases new information about the dependence
of the critical energy barrier on the contact angle 6. The
classical heterogeneous solution—i.e., Eq. (2)—predicts that
the critical energy barrier drops from E™™ to 0 as 6 de-
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FIG. 2. (Color online) (a) 3D image of the bivariate function
g(R, 6), (b) 2D plots of g(R, #) vs R/r. at different values of 6, and
(c) 2D plots of g(R, 6) vs @ at different values of R/r...

creases from 7 to 0. However, in the present extended
model, the conclusion is somewhat different. For conve-
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nience sake, here we consider another form of Eq. (19):
1 s R\?
g(R,6) = 2 1 —cos’(@+6) =3[ —| cos 6(1-cos @)
rC

R\3
+ (—) (2 -3 cos ¢+ cos® <p)], (22)

re

since we fix the value of R in order to study the contribution
of varying 6. As can been seen from Fig. 2(c), as well as
from Egs. (20) and (22),!7 for any fixed R (0<SR <), as 6
tends to m, g(R,6) always tends to 1 and thus nucleation
always tends to occur in a homogeneous manner. Neverthe-
less, as 6 tends to 0, the value of g(R, 6) depends on whether
R=r,orR<r.If R=r, g(R,6) always tends to 0, meaning
the nucleation energy barrier disappears at 6=0; if R<r,,
g(R,6) tends to a finite value g(R,0)=1-3(R/r.)?
+2(R/r,)* as determined by Egs. (20) and (22). In the latter
case, the smaller the ratio R/r., the closer g(R,0) is to
1—i.e., the closer the nucleation process is to the homoge-
neous case, even though 6=0.

It is also noteworthy that the previously presumed relation
between the critical energy barrier (E.) and the volumetric
Gibbs free energy of the critical nucleus ( £, ): Ec=%E2|,.c
does not necessarily hold for a finite R in the present ex-
tended model [see Egs. (17)-(19)], although it is correct in
the two limiting cases—i.e., when R=0 or R=+%.

In sum, we have presented an extended geometric model
for the critical problem of nucleation by introducing the size
effect of an extrinsic nucleating agent. The classical solutions
to homogeneous and heterogeneous critical problems have
been proven to be limiting cases of this extended model.
Since in many cases the limiting conditions adopted in the
derivations of the two classical solutions are not satisfied,
this present model is expected to provide a more complete
and more reliable description for general nucleation
phenomena.
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