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In this work we calculate the spectrum of surface plasmon polaritons propagating on a medium with a
surface described by a generalized quasiperiodic function. The profile function is defined in terms of unit cells
containing binary elements, corresponding to elevations of different shapes, arranged according to an inflation
rule that generates a quasiperiodic sequence. Our theoretical model, based upon a well-known formalism that
has been applied to periodic surfaces, generalizes a previous calculation performed for the nonretarded limit.
Numerical results show the effect of the quasiperiodicity on the dispersion relations and on the density of
surface polaritons modes propagating on a semi-infinite free-electron metal.
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I. INTRODUCTION

Recently there has been a revival in the development of
new techniques for the patterning of surfaces waves from
both the theoretical and experimental point of view. Investi-
gations in the search for photonic band gap materials1 as well
as quasiperiodic photonic crystal point defect laser2 have led
to a growing interest in the properties of electromagnetic
surface modes on corrugated interfaces, not only due to the
fundamental physical concepts employed to describe their
intrinsic properties, but also for their potential device
applications.3 Among these modes, surface plasmon-
polaritons �SPPs� play an important role in effects such as
the extraordinary light transmission of surfaces with sub-
wavelength holes4 and the beaming effect of a single sub-
wavelength slit surrounded by grooves.5 Recently, a model
of radiating light-surface plasmon coupling was developed
allowing the extension of steady-state calculations, involving
time independent incident and reflected intensities, to non-
steady-state situations, involving no incident light but expo-
nentially time-dependent decaying emission intensity.6

Surface plasmon polaritons are collective Bloch modes
that can be described as surface localized electromagnetic
waves that propagate along a metal-dielectric interface �for a
recent review, see Ref. 7�. Due to their surface nature, the
excitation of SPP modes by incoming electromagnetic waves
is strongly influenced by the shape of the medium along
which they propagate. Studies of SPP modes on randomly
rough surfaces have shown the existence of localization
effects8 and the presence of absolute band gaps in their fre-
quency spectrum.9 Recent experimental results have also in-
dicated the existence of SPP band gaps in media with peri-
odic surface features.10 The presence of defects, such as
grooves or ridges, on an otherwise flat surface, can also lead
to a large enhancement of the transmission of the electro-
magnetic fields at their vicinities, confirming the role of reso-
nant tunneling processes involving states of the surface po-
lariton Bloch modes. Furthermore, they are related to effects
such as the surface enhanced Raman scattering11 and surface
enhanced second harmonic generation.12

Inspired by these theoretical and experimental results,
Pereira et al. have recently developed a formalism for the

calculation of the spectra of non-retarded surface-plasmons
in quasiperiodic surfaces.13 Quasiperiodic systems, which
can be idealized as the experimental realization of a one-
dimensional quasicrystal, have recently attracted a great deal
of attention, especially due to the fact that they display prop-
erties observed neither in periodic nor in random systems.
Also, they exhibit collective properties not shared by their
constituent parts. The long-range correlations induced by the
construction of these systems are expected to be reflected to
some degree in their various spectra �as in light propagation,
electronic transmission, density of states, polaritons, etc.�,
which are Cantor-like with critical eigenfunctions, defining a
novel description of disorder. Indeed, theoretical transfer ma-
trix treatments show that these spectra are fractals, which can
be considered as their basic signature �for a review see Ref.
14�.

Artificial quasiperiodic structures have been fabricated as
MBE-grown multilayers.15 It involves defining two distinct
building blocks, each of them carrying out the necessary
physical information, and having them ordered in a desired
manner �for instance, they can be described in terms of a
series of generations that obey a particular recursion rela-
tion�. Furthermore, they have well-defined long-range posi-
tional order, such that their Fourier spectra contain � peaks.
Unlike in periodic crystals, these peaks should lie at all pos-
sible integer combinations of at least two intervals whose
ratio is irrational.

In contrast with previous models, the quasiperiodic struc-
ture proposed in Ref. 13 is a pattern on the interface of a
dielectric and the vacuum, with the elements of the unit cells
being associated with well defined surface textures. There-
fore, the quasiperiodic aspect of that system reflects a purely
geometric property of the medium, which can in fact be de-
scribed as being an intermediate state between a periodic
grating and a randomly rough surface. In analogy to the
multilayer structures, the surface profile is constructed in
terms of deterministic quasiperiodic binary strings. The spec-
trum of nonretarded surface plasmons supported by the ac-
tive medium was then shown to exhibit the characteristic
fractal aspect, with the appearance of several frequency gaps
as well as surface plasmon bands as the surface profile ap-
proached an actual quasiperiodic shape.
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In this paper we extend the formalism presented in Ref.
13 to obtain the spectra of surface plasmon polaritons in the
retarded as well as in the nonretarded regimes, taking into
account quasiperiodic surfaces. As in the previous calcula-
tion, the surface profiles are obtained in terms of unit cells, in
which a set of parallel ridges are laid, and the shape of the
unit cell is repeated on the surface along a direction perpen-
dicular to the ridges. The unit cells considered here corre-
spond to terms of quasiperiodic sequences that generalize the
Fibonacci rule. Multilayer systems created according to these
generalized Fibonacci sequences have been the subject of
recent studies and were shown to display properties that are
quite distinct from those created following the ordinary
“golden-mean” Fibonacci sequence.16 In order to calculate
the SPP dispersion relation, we utilize an integral formalism
based upon an approach that has been extensively applied
previously to the study of the propagation of SPP in periodic
dielectric surfaces.

The paper is structured as follows. In Sec. II a description
is made about the surface model and the generalized quasi-
periodic sequences are discussed. Section III gives a brief
account of the theoretical method for calculating the disper-
sion relations of the SPP modes. In Sec. IV the results for the
dispersion relations of the SPP modes are presented, along
with results for the integrated density of modes. Finally, in
Sec. V the results are summarized and conclusions are pre-
sented.

II. MODEL

The system consists of a semi-infinite dielectric medium
with real permittivity, in which the dielectric-vacuum inter-
face has a shape determined by a profile function ��x1�. The
system profile is such that the region x3���x1� is filled by
the dielectric medium, whereas for x3���x1� there is
vacuum. Figure 1 depicts the schematic representation of the
surface profile used in this work. The quasiperiodic surface is
obtained by defining the ��x1� function so that it has a qua-
siperiodic behavior. The surface actually has a periodic char-
acter in the sense that the quasiperiodic aspect is encoded in
the definition of the unit cell itself. Specifically, in the
present model the unit cell is defined to contain a set of
ridges on an otherwise flat surface. The ridges can assume
two different shapes and are aligned parallel to the x1 direc-

tion. The positions of the different ridges correspond to the
positions of the binary elements of a string from a quasiperi-
odic sequence. For each successive term of the sequences the
period length a of the cell increases, and an actual quasiperi-
odic surface is obtained as the length of the unit cell grows to
infinity.

The quasiperiodic sequences considered here are obtained
by the recursive rule �n�1�

Sn+1 = Sn
pSn−1

q , �1�

where S0=B, S1=A and p and q are positive integers denot-
ing the number of adjacent repetitions of a given string, i.e.,
Sn

p represents p adjacent repetitions of the stack Sn. This type
of inheritance is normal in iterative processes and frequently
produces self-similar structures that are the basis of fractal
configurations. When p=q=1 we have the well-known ordi-
nary “golden-mean” Fibonacci sequence.

The strings can be generated in an equivalent way using
the inflation rule

B → A, A → ApBq. �2�

The total number of elements A and B in each sequence is
equal to the generalized Fibonacci number Fn, which is given
by the recurrence formula

Fn+1 = pFn + qFn−1, �3�

with F0=F1=1. In the limit n→� the ratio Fn /Fn−1 ap-
proaches a characteristic number ��p ,q� given by

� =
p ± �p2 + 4q

2
. �4�

For p=q=1, the first four terms in the sequence are S0=B,
S1=A, S2=AB, and S3=ABA. In this case we find ��1,1�
= �1+�5� /2, which is the well known golden mean. For p
=2, q=1 we have S2=AAB, S3=AABAABA, and ��2,1�=1
+�2 defines the so-called silver mean. For p=3, q=1 we
have the the bronze mean ��3,1�= �9+�13� /2 with S2

=AAAB, S3=AAABAAABAAABA. For p=1, q=3 we have
the nickel mean ��1,3�= �1+�13� /2, with S2=ABBB and
S3=ABBBA. Observe that � is completely equivalent to the
determination of the eigenvalues of the substitution matrix
R� considered by Grimm and Baake.17 Therefore, following
the criteria defined in that reference, we can classify the sub-
stitution sequence considered in this paper based on the irra-
tionality of �−�p ,q� �where the minus signal means the nega-
tive root of Eq. �4��, i.e., if ��−�p ,q���1, it is a Pisot-
Vijayraghavan �PV� irrational number, and the fluctuation of
the physical properties of the substitution sequence is more
accentuated. On the other hand, if ��−�p ,q���1, it is not a
PV-type number, and the fluctuation of its physical properties
is minor.

As it was done in Ref. 13, the quasiperiodic sequence
elements correspond to two types of ridges, labeled A and B,
with heights Aa and Ab and widths La and Lb �see Fig. 1�. The
ridges are also chosen to be described by the sinusoidal func-
tions

FIG. 1. Schematic representation of the surface profile, showing
the two different types of ridges considered in this work. Here a is
the size of the quasiperiodic unit cell.
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�a�x1� = 2Aa cos2�	x1/La� , �5�

in intervals saLa+sbLb−La /2�x�saLa+sbLb+La /2, for
type A ridges, and

�b�x1� = 2Ab cos2�	x1/Lb� , �6�

in intervals saLa+sbLb−Lb /2�x�saLa+sbLb+Lb /2, for
ridges of the B type, with sa,b=0,1,2,… These functions were
chosen since they allow us to obtain a continuous surface
that approaches the well known sinusoidal grating profile
with amplitude equal to Aa /2 as Ab→Aa and Lb→La. The
unit cell can be modeled by making a correspondence be-
tween the intervals assigned to each type of ridge and the
elements of a binary string �see Fig. 1�. The total length of
the unit cell is then given by the sum of the widths of the
ridges that it contains, and grows as the length of the strings
that define it. An actual quasiperiodic surface is obtained as
the length grows to infinity. For simplicity, throughout this
paper we consider profiles with ridges of different heights,
but with the same width �L�.

III. THEORY

In order to calculate the SPP spectrum, we apply the in-
tegral formalism developed by Laks et al.,18 based on the
Rayleigh hypothesis, which has been widely used to investi-
gate the propagation of SPP modes on weakly corrugated
surfaces �i.e., height to width ratios �0.1� defined by ana-
lytic functions.19–22 In this method, the magnetic field in the

vacuum H� ��x1 ,x3 ,
�, for x3��max and in the active medium

region, H� ��x1 ,x3 ,
�, for x3��min are written down, with
�min and �max being the minimum and maximum values of
��x1�, respectively, with the assumption that they shall vanish
as the distance �x3� from the interface increases. Then, by
using Rayleigh’s hypothesis, i.e., by extending the expres-
sions for the fields to the region �min�x3��max, it is possible
to express the boundary conditions for the tangent compo-
nents of the fields at the interface x3=��x1� as

H2
��x1,x3,
� = H2

��x1,x3,
� , �7�

1

��
�
�

�n+
H2

��x1,x3,
� =
�

�n+
H2

��x1,x3,
� , �8�

where � /�n+, a derivative along the direction normal to the
surface at each point, directed from the dielectric into the
vacuum, is given by

�

�n+
= �1 + �d��x1�

dx1
	2
−1/2�−

d�

dx1

�

�x1
+

�

�x3
	 . �9�

Next, by applying Green’s theorem one can, after some
algebra, obtain a set of integral equations involving the Fou-
rier amplitudes of the fields at the vacuum-metal interface.
Thus, the dispersion relations of the SPP modes can be found
by solving the equations

�
n=−�

�

Im−n
�m� �k
�� �
/c�2 − kmkn

�m�k
�
Hn�k
� + Ln�k
�
 = 0,

�10�

�
n=−�

�

Jm−n
�m� �k
�� ��
��
/c�2 − kmkn

��
�m�k
�
Hn�k
� − Ln�k
�
 = 0,

�11�

with

km = k + 2	m/a , �12�

�m�k
� = ��km
2 − �
/c�2�1/2, km

2 � �
/c�2,

− i��
/c�2 − km
2 �1/2, km

2 � �
/c�2,
 �13�

and

m�k
� = �km
2 − ��
��
/c�2�1/2, �14�

where m is an integer.
In Eqs. �10� and �11� H�x1 ,
� and L�x1 ,
� are given by

H�x1,
� = �
n=−�

�

exp�iknx1�Hn�k,
� , �15�

L�x1,
� = �
n=−�

�

exp�iknx1�Ln�k,
� . �16�

These are related to the tangent field components at the
vacuum-dielectric interface by

H�x1,
� = H2
��x1,x3,
� , �17�

L�x1,
� = − �1 + �d��x1�
dx1

	2
1/2 �

�n+
H2

��x1,x3,
� , �18�

at the position x3=��x1� The kernel functions Il
�m��k
� and

Jl
�m��k
� are given by

Il
�m��k
� = �1/a��

−a/2

a/2

dx1exp�− i2	x1l/a�exp�− �m�k
���x1�� ,

�19�

Jl
�m��k
� = �1/a��

−a/2

a/2

dx1exp�− i2	x1l/a�exp�m�k
���x1�� .

�20�

These functions contain all the information pertinent to
the specific shape of the surface and the integrals are calcu-
lated in the unit cell interval. The quasiperiodic aspect of the
unit cell can be explicitly written into these functions. Simi-
lar kernel functions are found in the formalism used in the
unretarded regime.

Now we write down the kernel functions in two steps:
first by calculating the integrals in Eqs. �19� and �20� for a
single ridge, centered at the origin. Next, by introducing suit-
able changes of variables to the resulting expression we can
find the terms associated with the remaining ridges in the
unit cell. These changes of variables cause the appearance of
exponential factors, which are found to depend on the dis-
tance to the origin of the different ridges. Finally, by group-
ing the exponential factors, the kernel functions can be writ-
ten as
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Il
�m��k
� = f l

aMl
a�k
� + f l

bMl
b�k
� , �21�

Jl
�m��k
� = f l

aNl
a�k
� + f l

bNl
b�k
� , �22�

where Ml
c�k
� and Nl

c�k
� are identical to Eqs. �19� and �20�,
respectively, provided we replace a in the integration’s limits
by Lc, with c=a, b. The functions f l

a and f l
b arise due to the

changes of variables and thus contain the information con-
cerning the positions of each A or B type ridge in the unit
cell. Consequently, both functions depend on the particular
type of sequence considered, as well as on the sequence term
used. The information concerning the shape of the individual
ridges is encoded in the functions given by Ml

c�k
� and
Nl

c�k
�. The dispersion relations of the SPP modes can be
numerically calculated by truncating the summations in Eqs.
�10� and �11�, writing the resulting expressions in matrix
form, and equating the determinant of the coefficients to
zero. The convergence of the results will depend on the num-
ber of terms retained in the summations, which in turn cor-
responds to the dimension of the determinant to be calcu-
lated. The density of modes is obtained by using the
expression23

��
� = �
n

�
k

��
 − 
k� , �23�

where the first summation on the right-hand side runs over
all frequency branches, while the second summation runs
through the wave vectors of the first Brillouin zone.

IV. NUMERICAL RESULTS

By using the formalism presented in the previous sec-
tions, we now intend to obtain numerical results for the spec-
tra of SPP propagating on the surface of a medium with a
dielectric function of the free-electron type, i.e.,

��
� = 1 − 
p
2/
2, �24�

where 
p is the plasma frequency of the conduction electrons
in the metal. From now on, for simplicity, we will consider
La=Lb=L.

Figure 2 shows the dispersion relations of SPP modes on
surfaces created using p=q=1 �i.e., the ordinary Fibonacci
sequence�. We have plotted the reduced frequency �
=
 /
p �in units of the plasma frequency 
p of the active
medium� as a function of the dimensionless wave vector �
=ka /	. Here the light line is defined considering 
pa /c=1
and results were calculated using Aa /L=0.07 and Ab /L
=0.03.

We consider a propagation regime where the SPP are not
damped by radiative processes. Specifically, the surface pro-
files considered here were all periodic and extended from −�
to +�, with the Fibonacci sequences being expressed in the
unit cell. For a periodic surface, the condition for coupling
between the SPP modes and the electromagnetic waves is

given by kSPP= �
 /c�sin �±n�G� �, where � is the angle of in-
cidence and n is an integer �see, e.g., Ref. 24�. This condi-
tion, which corresponds to k= �
 /c�sin �±n�2	 /a� in the
notation of Sec. III, cannot be satisfied by the wave vectors

and profiles considered in this work. Therefore, only real
values of �m will appear in Eq. �13�, and the frequencies
obtained are always real, in contrast with the results for the
radiative region, which would give complex frequencies,
with their imaginary part giving the inverse lifetime of the
SPP mode. A detailed discussion of this behavior can be
found in Refs. 18 and 23.

Therefore, since we are interested in non-radiating modes,
the numerical calculation was restricted to the region on the
right side of the light line, as seen in the figure. The conver-
gence of the numerically calculated eigenvalues of Eqs. �10�
and �11� is dependent on the length of the unit cells, as well
as on the magnitude of the frequencies, with the modes
closer to the flat surface plasmon frequency 
p /�2 having a
slower convergence than the remaining modes. For example,
three-figure convergent results were obtained for matrices
with dimension N=70 for L=8a, whereas for L=34a, matri-
ces with dimension N=190 were used. In the present case,
for small wave vectors ���0.2� and low frequencies ��
�0.55� the SPP dispersion is not noticeably affected by the
changes on the surface, for the physical parameters used
here. That behavior was expected, since the long-wavelength
SPP modes are less sensitive to the shape of the surface. For
higher frequencies, the results display a rich behavior, with
the appearance of extra frequency branches and several gaps
as the system approaches a quasiperiodic surface. Figure
2�a�, corresponding to the first Fibonacci sequence, shows
the well-known results for a sinusoidal periodic grating.18

The SPP profiles in Figs. 2�b�–2�d� depict the results for
surfaces with unit cells corresponding to increasing terms in
the Fibonacci sequence. As the sequence generation in-
creases, one can see the formation of SPP quasibands, with
SPP branches separated by narrow frequency gaps. The new
SPP branches show little or no dispersion and are roughly

FIG. 2. Dispersion relations for surface plasmon-polariton
modes propagating along quasiperiodic surfaces. We have plotted
the reduced frequency �=
 /
p versus the dimensionless wave
vector �=ka /	. The results were obtained using the golden mean
ratio p=q=1, corresponding to the ordinary Fibonacci sequence, for
�a� S1�F1=1�; �b� S3�F3=3�; �c� S5�F5=8�; �d� S7�F7=21�. The
other physical parameters are given in the main text.
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symmetrically distributed around 
p /�2. For the region
0.55���0.7, the graphs show the appearance of mode re-
pulsion and mode crossing effects, arising due to the mixing
between propagating and quasilocalized modes. As one ap-
proaches the Brillouin zone edge, the results tend to match
the spectra calculated in the nonretarded limit.13

The results in Fig. 3 show the density of SPP modes for a
surface with p=q=1 and Aa /L=0.07 and Ab /L=0.03 plotted
against the reduced frequency �=
 /
p. The graph was ob-
tained using Eq. �23� for the S4 term in the Fibonacci se-
quence. The results in this figure can be grouped into three
different regions: a low-frequency region �0.56���0.65�,
with bands containing peaks separated by narrow gaps; a
central region �0.68���0.77�, containing a broad band
with several central peaks, and a high-frequency region
�0.79���0.83�, with well defined peaks separated by
wider gaps. The low-frequency region arises due to the mix-
ing between propagating and quasilocalized modes, as can be
seen in the dispersion relations. The peaks in the central
region lie around the frequency value of SPP modes of a flat
surface �
p /�2� and are also found in the periodic case. The
results show that the frequency band in the central region
persists as the sequence generation is increased, apart from
the appearance of several narrow gaps, which indicates that
this behavior can be interpreted as a consequence of the pres-
ence of propagating SPP modes in that frequency range. In
contrast, the narrow peaks in the high-frequency region arise
due to the absence of mixing with propagating modes. The
number of these peaks is dependent on the specific sequence
generation and their distribution in the spectrum is strongly
dependent on the sequence used.

The fractal aspect of the dispersion can be seen as one
plots the normalized integrated density of modes, as a func-
tion of the reduced frequency �=
 /
p, as shown in Fig. 4.
In this case, the two graphs present results obtained in the
high-frequency region for p=q=1, Aa /L=0.07, and Ab /L
=0.03, with unit cells corresponding to �a� fourth Fibonacci
generation S4, �b� fifth Fibonacci generation S5, �c� sixth Fi-

bonacci generation S6, and �d� seventh Fibonacci generation
S7. The graphs clearly show an emerging self-similar pattern
as the sequence generation increases, with the number of
modes approaching a devil’s staircase function. This behav-
ior is consistent with results calculated for other quasiperi-
odic multilayer structures.

Figure 5 shows the dispersion relations �=
 /
p versus
�=ka /	 of SPP modes on surfaces created using the silver
mean �p=2, q=1�, with Aa /L=0.07 and Ab /L=0.03 for �a�
the S3�a=7L� and �b� the S4�a=17L� Fibonacci generation.
As in the previous case, the calculations were performed in
the region on the right of the light line. The qualitative aspect
of the results is similar to the golden mean case, with the

FIG. 3. Density of modes, as a function of the reduced fre-
quency �=
 /
p, for surface polaritons propagating along a quasi-
periodic surface created with the fourth generation of the golden
mean sequence, considering the size of the quasiperiodic unit cell a
equal to 5L.

FIG. 4. Normalized integrated density of modes as a function of
the reduced frequency �=
 /
p for retarded surface plasmon-
polariton modes propagating along quasiperiodic surfaces with p
=q=1, Aa /L=0.07, Ab /L=0.03 and unit cells corresponding to fol-
lowing Fibonacci generations: �a� S4, �b� S5, �c� S6, and �d� S7.

FIG. 5. Dispersion relation of surface plasmon polaritons of
quasiperiodic surfaces generated by the silver mean sequence, with
Aa /L=0.07, Ab /L=0.03 and unit cells corresponding to �a� S3 and
�b� S4. We have plotted the reduced frequency �=
 /
p versus the
dimensionless wave vector �=ka /	.
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SPP modes occurring in the frequency interval as in the pre-
vious case. This is a consequence of the fact that in both
cases we have used the same ratio for the A and B ridges.
Moreover, the propagating mode dispersion is found to be
similar to the previous case. On the other hand, the number
of dispersionless branches, as well as their distribution in the
spectrum, is quite distinct from the golden mean case.

Figure 6 shows the density of modes of the silver mean
grating, for the S3 generation, plotted versus the reduced fre-
quency �=
 /
p. As in the previous results, the spectrum
can be separated into three frequency intervals, with a wide
band in the central region. The central band is also found to
persist as the sequence generation is increased. Moreover, by
comparing this figure with the results of the previous case,
we find that the central frequency band is only weakly sen-
sitive to the particular sequence used, which indicates that
the propagating SPP modes of these structures are less
strongly affected by the quasiperiodic aspect of the system.
The figure also shows that, for the silver mean, the mode
mixing effect at low frequencies is weaker than in the golden
mean case, causing the appearance of narrow peaks at low
frequencies.

For completeness, we have shown in Fig. 7 the dispersion
relation of SPP modes in the nickel mean case �p=1, q=3�,
for the S4 generation �a=19L�. As in the other cases, the
graph shows several dispersionless modes distributed along
the 0.55���0.84 interval. On the other hand, in contrast
with the results for the golden and silver mean, the figure
shows several wider bands both in the low-frequency and in
the high-frequency regions. �See Fig. 8.�

V. CONCLUSIONS

We investigated the spectra of surface plasmon-polaritons
propagating on interfaces that display deterministic disorder
along one direction. The shape of the surfaces was defined

according to substitutional rules that gave the system a qua-
siperiodic profile, in analogy with previous studies of quasi-
periodic multilayer systems. This model allows the use of an
integral method previously developed for the study of sur-
face electromagnetic modes on periodically corrugated inter-

FIG. 6. Density of surface plasmon-polaritons modes plotted
versus the reduced frequency �=
 /
p of a quasiperiodic surface
generated given by the silver mean sequence, with Aa /L=0.07,
Ab /L=0.03, and unit cells corresponding to the S3 sequence genera-
tion, considering the size of the quasiperiodic unit cell a equal to
7L.

FIG. 7. Dispersion relation of surface plasmon-polariton modes
of a quasiperiodic surface generated by the nickel mean, with
Aa /L=0.07, Ab /L=0.03, and unit cell corresponding to the S4 se-
quence generation, considering the size of the quasiperiodic unit
cell a equal to 19L.

FIG. 8. Normalized integrated density of modes of surface po-
laritons in quasiperiodic surfaces given by the nickel mean se-
quence, with Aa /L=0.07, Ab /L=0.03, and unit cell corresponding
to S5, considering the size of the quasiperiodic unit cell a equal to
40L.
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faces. The results were obtained for interfaces defined by
substitutional rules corresponding to the golden mean rule, as
well as the silver and nickel means �generalized Fibonacci
sequences�. The results show the influence of a quasiperiodic
interface on the propagation of surface electromagnetic
modes. We have found that, for increasing sequence genera-
tions, the SPP dispersions show a large number of gaps and
dispersionless frequency branches, as well as dispersive
branches that depend on the aspect ratio of the surface, but
are only weakly influenced by the particular quasiperiodic
sequences that describe the surface. Moreover, all the spectra
have a fractal characteristic, which is a signature of the ex-
citations propagating in quasiperiodic structures. This fractal
aspect of the spectra has been previously predicted for
multilayer structures and for nonretarded surface plasmons in
quasiperiodic gratings.

Nowadays there is a great interest in the study of SPP
modes in patterned surfaces, especially due to recent experi-
mental results that show an extraordinary transmission of
light through a metallic slab containing subwavelength holes.
There is also interest in possible applications of SPP in data
storage, light generation, microscopy, and biophotonics.
These applications involve the tailoring of the SPP spectra in
order to modify the field intensity at the surfaces. In fact, this
modification has been recently applied to enhance the light-
emission efficiency of light-emitting diodes.25

The results presented here correspond to gratings where
the unit cells have lengths a up to 40L. As one approaches a
true quasiperiodic surface, the lengths of the cells grow, and
that in turn decreases the wave vector range of the undamped
region. Therefore, for cells corresponding to higher-order se-
quences, the radiative damping will become an important

factor in the calculations. On the other hand, modern pattern-
ing techniques have been used to create surface structures
with dimensions of the order of 10 nm.26 For silver as the
active medium ��
p=3.78 eV�, the dispersion results ob-
tained correspond to gratings with periods of 330 nm, which
indicates that existing technologies may be capable of creat-
ing surfaces that display some of the behaviors described
here.

Despite the fact that only the nonradiative region of the
spectrum was considered in this work, it seems clear that the
quasiperiodic aspect of the surface should also have a strong
influence on the light-SPP interaction. The properties of
these surfaces can allow the observation of phenomena pre-
viously associated with quasiperiodic layered structures,
which by themselves have been attracting a great deal of
interest in recent years.14 Furthermore, the existence of flat
SPP branches for the surfaces studied means that SPP modes
in the radiative regime could be excited by light that is inci-
dent over a wide range of angles, making them good candi-
dates for frequency-selective surfaces.7 An experimental in-
vestigation of these surfaces could be carried out by means
of prism couplers in an ATR measurement, as used before to
probe SPP in a periodic surface.10 Future studies should ex-
tend the investigation to the radiative regime, including a
study of the light scattering properties of quasiperiodic sur-
faces.
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