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The ideal torsional strengths of a class of carbon nanotubes, and the torsional stiffnesses of all carbon
nanotubes are computed using a novel combination of an ab initio electronic structure total energy technique
and a physically motivated scaling form. The specific torsional strengths of multi-walled tubes are predicted to
exceed those of steel by approximately a factor of 20. Closed-form expressions that bound the torsional
stiffnesses are also presented. The predictions of the theory give excellent agreement with available experi-
mental data.
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I. INTRODUCTION

Carbon nanotubes �CNs� are particularly promising nano-
structures for technological applications. Recently, a variety
of CN electronic and mechanical devices have been devel-
oped, including junctions,1 emitters,2 nanomechanical
resonators,3 and even the world’s tiniest electric motor.4 The
two latter applications employ the torsional properties of
multi- and single-walled carbon nanotubes �MWNTs and
SWNTs�. For the resonators, the tubes act as torsional
springs while for the electric motor, the tube acts as a rota-
tional bearing.5 Presumably, CNs will also serve as the drive
shaft for the electric motor, and be used to drive other nano-
mechanical systems. These applications motivate the ques-
tions “How much torque can be exerted by a carbon nano-
tube?” and “How much can one twist a carbon nanotube
before it becomes unstable?” To answer these questions, we
have computed the ideal torsional strength �ITS� of a class of
CNs using an electronic structure-based total energy method
and a physically motivated scaling form. While the ITSs are
computed for multi- and single-walled zig-zag carbon nano-
tubes �nanotubes with chirality indices �n ,0��, we have de-
termined from our analysis expressions for the limits of the
linear torsional stiffness of all multi- and single-walled car-
bon nanotubes. The theoretical predictions correspond well
to the available experimental data.

The ITS of a CN is defined here as the maximum torque
that a CN can withstand given that one suppresses both the
production of defects �e.g., Stone-Wales defects6� and any
type of buckling instability.7 The ideal strength is the inher-
ent strength of a material; it represents the degree to which
the material, free of any defects, can withstand mechanical
loading before an elastic instability is induced. Ideal strength
calculations provide absolute engineering bounds for mate-
rial properties, and thus serve as guideposts in the develop-
ment of new nanoscale mechanical structures. The computa-
tion of similar quantities, such as the ideal tensile and shear
strengths of crystalline materials, has provided insight into
the results of nanoindentation experiments,8 as well as of-
fered an explanation for the inherent brittleness of FeAl.9 In
the bulk, the computed stresses are not observed �since no
material is perfect�, but a notable result of these prior studies

is that at the nanoscale, materials may resist plastic deforma-
tion until stresses approach these computed values.8,10,11

In the next section, the approach used to compute the
ideal torsional strengths and the linear torsional stiffnesses of
carbon nanotubes is described. The calculated stiffnesses are
compared favorably with experiment, and the ideal torsional
strengths compared with those of typical structural materials
and with the torques exerted on biological rotors.

II. METHODOLOGY AND RESULTS

A. Ideal torsional strength

1. Single-walled carbon nanotubes

In principle, the computation of the ITS of a SWNT with
total energy electronic structure methods is straightforward.
One simply computes the torque Ts required to twist uni-
formly the tube as a function of the twist rate � /d �while
constraining the tube against buckling, etc.�. The maximum
torque is the ITS. In practice, however, the computation is a
bit more involved. Figure 1 illustrates how the lattice of a
typical zig-zag CN is deformed in response to an applied
twist. The axis of rotation �that coincides with the nanotube
axis� is along the z direction of a cylindrical coordinate sys-
tem. The twist angle coincides with the coordinate �, while
the length of the tube is given by d. In the untwisted form
�Fig. 1�a��, the structure of the tube is periodic in the z di-
rection with a small period. This periodicity can be exploited
to reduce the number of atoms involved in the calculation.
As the tube twists �Fig. 1�b��, the periodicity in the z direc-
tion is altered. For many values of the twist rate � /d �Fig.
1�c��, the structure of the tube is no longer periodic in z, and
the calculation of the total energy becomes intractable. How-
ever, for special values of the twist angle, the twisted tube
retains its periodicity and the calculation of the total energy
becomes tractable, provided the number of atoms is not too
large �for the resources available to us, fewer than 450 car-
bon atoms�. Through judicious choices of twist angles, one
can compute the functional dependence of total energy den-
sity E /d on the twist rate � /d for a given �n ,0� nanotube.
From this, the torque is easily obtained from the expression
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Ts =
d�E/d�
d��/d�

. �1�

The total energy electronic structure calculations pre-
sented here employ the formalism embodied in the Vienna
Ab-Initio Simulation Package �VASP�,12,13 relying on the local
density approximation to density functional theory, and ul-
trasoft pseudopotentials with a cutoff energy of 211 eV. A
tetragonal supercell consisting of one repeating period and
typically containing 300–450 carbon atoms �e.g., Fig. 1� was
used for all of the twisted and untwisted states sampled. The
spacing between carbon nanotubes was greater than 10 Å to
avoid image interactions between the tubes. For structural
relaxation, a single k point located at �= �1/2 ,1 /2 ,1 /2� in
the Brillouin zone was found to be sufficient. For the twisted
tubes, one of the two atoms of the graphene unit cell was
fixed by the applied twist, while the other atom was permit-
ted to fully relax. With these parameters, the total energy is
converged to within 1 mRy/atom.

The computed torque Ts versus twist rate � /d curves for
zig-zag nanotubes, with n=10, 14, and 18, are displayed in
Fig. 2�a�. The maximum torque in each of the curves corre-
sponds to the onset of the instability, and hence represents
the ITS of the CN. These curves reveal important trends. The
most obvious trend is that the torsional stiffnesses and ITSs
of the tubes increase with radius; the second most obvious
trend is that the curves all have similar shapes.

Both of these trends are consistent with a simple physical
picture that allows one to extrapolate the present results to
predict the ITS of any zig-zag SWNT. Within the geometry
of the nanotube, the torsional force is largely due to the
bending of the bonds under twist �Figs. 1�b� and 1�c��. As the
nanotube is twisted, the graphitically bonded hexagons in the
nanotube are sheared. The degree of shear increases with
twist rate � /d. Based on the geometry, the shear is a function
of r� /d with r the radius of the tube. The amount of material
sheared is simply proportional to the circumference of the
tube. If one assumes that the restoring force �under ideal
torsion� depends only on this shear, one concludes that the
torque Ts exerted by a twisted zig-zag tube will depend on
the radius of the tube according to

Ts = r2f�r
�

d
� , �2�

where f�r� /d� is proportional to the shear force. Equation �2�
suggests that a plot of Ts /r2 versus r� /d for various values of
r will yield one curve, independent of r. The ITS then is
given by r2fmax, where fmax is the maximum of f�r� /d�.

Figure 2�b� displays the data of Fig. 2�a� plotted as sug-
gested by Eq. �2�, thus effectively plotting f�r� /d�. The data
collapse is quite good, suggesting that the form of Eq. �2� is
robust. We have computed as well the energy to shear �in a
corresponding manner as shown in Fig. 1�c�� a rectangular

FIG. 1. The studied SWNTs.
�a� Untwisted �10,0� CN viewed
both along its axis and perpen-
dicularly. �b� The same nanotube,
but twisted uniformly. �c� The
twisting distorts the carbon hexa-
gons as shown.

FIG. 2. �a� Torque Ts as a function of twist rate � /d computed
using the total energy technique described in the text for different
zig-zag nanotubes. �b� Ts /r2 vs r� /d plotted, as suggested by Eq.
�2�. The collapse of the curves suggests that Eq. �2� is a good
description of the torsional strength of zig-zag nanotubes. The solid
line is a sixth-order polynomial fit to the scaled data used to repre-
sent f�x�.
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graphene layer of dimensions �2�r�� �d�=A oriented so that
d represents the same direction in the nanotubes and the
graphene. For graphene, we plot in Fig. 2�b� the correspond-
ing quantity 2�d�E /A� /d�r� /d� vs r� /d, which collapses
onto the same scaled curve. This illustrates that the torque
exerted by a twisted carbon nanotube is described well by
considering the energy required to shear a graphene layer in
a corresponding manner.

2. Multi-walled carbon nanotubes

The ITSs of MWNTs are not simply obtained by direct
computation using ab initio electronic structure total energy
methods. The number of atoms increases substantially and
the calculation quickly becomes too expensive. The method
used here relies instead on the fact that interwall interactions
for �undeformed� CNs are known to be weak5,14 and that the
ITS of a SWNT is governed by the scaling form represented
in Eq. �2�. Given these observations, the torque exerted by a
MWNT may be written as the sum of the torques exerted by
each of the individual tubes comprising the MWNT. For sim-
plicity, we assume that the twist angle � is fixed, and equal,
for each tube. The total torque Tm exerted by the MWNT for
a given twist rate � /d is

Tm = �
r=rinner

router

r2f�r�/d� , �3�

where router is the outer radius of the MWNT and rinner is the
corresponding inner radius. To compute the ITS of a MWNT,
Eq. �3� should be evaluated at the twist rate � /d for which
the most exterior tube just reaches the maximum in the func-
tion f�router� /d�, approximately at router� /d=0.366. A further
increase in twist will drive the outermost nanotube to failure,
and the transfer of load to the interior tubes will be enough to
drive the remaining tubes to their point of instability, leading
to failure of the entire MWNT. The ITS thus computed is the
ideal torsional strength of the MWNT.

It is interesting to compare the ITS of a MWNT to that of
a solid nanorod of a traditional structural material. The ITSs
must be compared for the two systems at the same size scale.
Therefore, the individual nanotubes comprising the MWNT
are chosen so that it is maximally nested with CNs with
intertube spacing of �3.5 Å, roughly the interplanar spacing
in graphite. Figure 3 displays the ultimate torsional strength
of a carbon nanotube as a function of radius. For the zig-zag
MWNTs considered here, the chiral vectors �n ,0� of the
nested tubes have n=9,18,27, . . . ,9N with N the total num-
ber of tubes in the MWNT. Figure 3 also displays the same
quantity computed for an iron rod of the same radius. �This
curve was constructed using the ideal stress versus strain
curve for Fe, using the ideal shear stress of 7.2 GPa along
�112� 	112
.15� The ITS of the MWNT exceeds that of the
equivalent Fe rod for all finite radii rods by �approximately�
a factor of 20. Since the ideal strength of Fe and steel should
not be too different—the primary component of steel is Fe—
this plot indicates that the carbon nanocrankshaft has the
potential to be substantially stronger than its steel equivalent.

Nevertheless, the ITS values are quite small. It is interest-
ing, however, to compare the values computed here to those

exerted by one of nature’s similar components: a bacterial
flagella motor. The torque produced by a typical bacterial
flagella motor is around 25 eV, and acts on a tube with a
radius of approximately 20 nm.16 The ITS of a carbon nano-
tube is, in contrast, approximately 400 000 times larger. Even
if one includes a factor of 10 000 reduction in strength for
the introduction of defects, the nanotube can withstand
roughly 40 times the torque exerted by a typical bacterial
motor. Thus MWNTs display remarkable torsional strength.

B. Linear torsional stiffnesses

Equations �2� and �3� can be used to compute the linear
torsional stiffnesses Ks of SWNTs and Km of MWNTs, re-
spectively. Defining the torsional stiffnesses by the relation-
ships Ts=Ks� and Tm=Km�, expanding Eq. �3� to first order
in � and then performing the summation, yields

Km =
1

4
�9�3

2�
�3a3

d
N2�1 + N�2f��0� �4�

and

Ks =
r3

d
f��0� , �5�

where the first relationship is valid for the maximally nested
MWNTs, as before. Here, a is 1.42 Å �the carbon-carbon
spacing in graphite�, f��0� is the slope of the scaling function
plotted in Fig. 2�b� at r� /d=0, evaluated numerically to be
58±6 eV/Å2, and d is the length of the tube. �An error mar-
gin of roughly 10% accounts both for numerical errors as
well as the LDA’s overestimate of the elastic constants.� We
have used the geometric relationship na�3=2�r, which
holds for zig-zag nanotubes with large r. Note that for large
N the stiffness Km scales with N4, a result expected from
classical elasticity theory.

These predicted stiffnesses, though derived from calcula-
tions based on zig-zag nanotubes, are more broadly appli-
cable. The underlying assumption of the above expressions is
that the shear properties of the graphitic sheets of carbon
determine the torsional stiffness. These graphitic sheets are
elastically isotropic, and consequently the torsional stiffness

FIG. 3. The ITS of a MWNT compared with a Fe rod of the
same dimensions. The MWNTs are roughly 20 times stronger than
an iron rod of the same size.
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of any �n ,m� CN should be described well by Eq. �5�. Simi-
larly, Eq. �4� should describe the linear stiffnesses of all
MWNTs, to the extent that the nesting of the nanotubes is
reflected properly.

Equations �4� and �5� place bounds on the stiffness of
MWNTs that can be compared with experimental measure-
ments. Experimental estimates of the torsional stiffness of
MWNTs have been obtained by various authors.3,4,17 Typical
tube diameters range from 12 to 36 nm. In the experiments,
the nesting structure of the MWNTs and the degree to which
all tubes are twisted during the measurement is unknown.
However, the extremes are well defined: at least the largest
radius nanotube must be twisted to the measured angle, and
at most all tubes in a maximally nested MWNT are twisted
to the measured angle. Thus the torsional stiffness of the tube
must fall roughly between that for the outermost single-
walled nanotube �Eq. �5� with r=router� and the case of all
nanotubes perfectly coupled �Eq. �4��.

In Fig. 4 we compare the torsional spring constants ob-
tained by Refs. 3 and 17 to those obtained with Eqs. �4� and
�5� using f��0�=58 eV/Å2. Note that we consider the intrin-
sic torsional stiffness of the nanotubes �, where Tm=�m� /d
and Ts=�s� /d. We have also placed error bars on the experi-
mental measurements, which arise from the 20% uncertainty
in the measurement of the radii reported by Williams et al.17

and Papadakis et al.3 With the exception of only two data
points from Ref. 17, when these error bars are included, all
of the experimental measurements fall within the bounds of
our theory. It should be noted that the theory has no adjust-
able parameters and, therefore, the agreement with experi-
ment is quite remarkable. Additionally, authors Williams et
al.17 note that for a given CN, the measured stiffness in-
creases with subsequent experiments and suggest that this
can be explained by considering that with each measurement,
more of the nested tubes becomes coupled to the paddle and
are twisted. It is also possible that the interlayer coupling
may be increasing as a result of defect formation, resulting in
some form of strain hardening—a possibility that has not
been incorporated in our theory.

III. CONCLUSIONS

In conclusion, it is demonstrated the stiffnesses and ITS
of many CNs can be described quite well by extrapolating

from the properties of a single graphene sheet. The bounds
on torsional stiffnesses so predicted agree very well with
available experimental data, considering that the theory em-
ploys no adjustable parameters. Predicted values for the ITS
exceed those of Fe by approximately a factor of 20, and the
torque exerted by a typical bacterial motor by a factor of
400 000.
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