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We analyze the line shape of x-ray diffraction profiles of GaN epitaxial layers with large densities of
randomly distributed threading dislocations. The peaks are Gaussian only in the central, most intense part of
the peak, while the tails obey a power law. The q−3 decay typical for random dislocations is observed in the
rocking curves with open detector. The entire profile is well fitted by a restricted random dislocation distribu-
tion. The densities of both edge and screw threading dislocations and the ranges of dislocation correlations are
obtained.
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I. INTRODUCTION

GaN epitaxial layers grown on different substrates �e.g.,
Al2O3, SiC, or Si� possess very large densities of threading
dislocations which cross the layer along its normal, from the
layer-substrate interface to the surface.1 The threading dislo-
cation density depends only marginally on the substrate ma-
terial �and hence on the misfit between the substrate and the
layer� but rather on the growth technique and conditions. For
�0001� oriented layers of wurtzite GaN, the overwhelming
majority of dislocations are of edge type with Burgers vec-

tors b= 1
3 �112̄0�. Their density2–5 is typically 108–1010 cm−2.

The density of screw dislocations with Burgers vector b
= �0001� is one to two orders of magnitude lower than the
density of edge dislocations.

In the present paper, we study the profiles of x-ray dif-
fraction peaks from GaN epitaxial films which contain edge
and screw threading dislocations uniformly distributed over
the film. Our aim is to develop a reliable method for analyz-
ing dislocation correlations in such a system and to deter-
mine the dislocation densities. Our analysis is not restricted
to GaN films and can be applied to any layer with threading
dislocations. Note that GaN epitaxial films may possess, in
contrast to the samples studied here, a mosaic �granular or
columnar� structure. We do not include mosaicity in our
analysis, since our samples are not mosaic, but briefly dis-
cuss ways to extend our approach and take mosaicity into
account.

The dislocation density can be measured directly by plan-
view transmission electron microscopy �TEM�. The actual
virtue of TEM is not the accurate determination of the dislo-
cation density, but rather the possibility to determine the type
of the dislocation distribution �e.g., random vs granular/
columnar structure�. It is of limited statistical significance
considering the small area covered by TEM micrographs.
Alternatively, x-ray diffraction can be used to detect the lat-
tice distortions due to the presence of dislocations averaged
over a large sample area. In principle, both the dislocation
distribution and the actual dislocation density may be ob-
tained from x-ray diffraction profiles.

The impact of screw and edge threading dislocations on
the width of the x-ray reflections in the limiting cases of
lattice planes parallel and perpendicular to the surface is

commonly referred to as tilt and twist, respectively.2–6 This
designation stems from the model of misoriented blocks5

which is not appropriate for distortions caused by randomly
distributed dislocations. In this case, the description in terms
of mean-squared distortions7 is actually more adequate.

The symmetric Bragg reflections from GaN layers are
comparatively narrow, since they are not influenced by the
presence of edge dislocations. Edge dislocations produce dis-
tortions within lattice planes parallel to the surface but do not
disturb positions of these planes along the layer normal. The
highest sensitivity to edge dislocations is obtained by diffrac-
tion from lattice planes perpendicular to the surface. This
diffraction geometry requires grazing incidence illumination
and is thus commonly performed at a synchrotron.8,9 An al-
ternative geometry that can easily be realized in the labora-
tory is the skew geometry,4,6 which is a quasisymmetric �the
incident and the diffracted waves have the same angles to the
surface� noncoplanar �the surface normal does not lie in the
plane defined by the incident and the diffracted waves� ge-
ometry, as shown in Fig. 1. By measuring different reflec-
tions with increasing lattice plane inclination, one can ex-
trapolate to lattice planes perpendicular to the surface.4,6 A
single reflection with a large inclination can be regarded as a
figure of merit.3 A four-circle diffractometer10 is required for
skew geometry measurements, since the sample has to be
tilted with respect to its surface normal. Coplanar asymmet-
ric reflections on a three-circle diffractometer are much less
sensitive to edge dislocations since they only partially touch
the lattice distortions parallel to the surface plane.4

FIG. 1. Sketch of skew geometry x-ray diffraction. The lattice
planes of the actual reflection are depicted in the left bottom part of
the figure. The incident wave Kin and the diffracted wave Kout make
the same angle � to the sample surface. The scattering vector Q
makes an angle � to the sample surface.
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The full width at half maximum �FWHM� of the diffrac-
tion peak depends not only on the dislocation density, but
also on the correlations between dislocations. Furthermore, it
depends on the mutual orientations of the scattering vector,
dislocation line direction, and the Burgers vector direction,
which have not been taken into consideration in previous
diffraction studies of GaN layers. In the present paper, we
analyze the entire line shape of the diffraction profiles, and
particularly their tails. These tails are due to scattering in the
close vicinity of the dislocation lines and are not influenced
by the correlations between dislocations. They follow univer-
sal power laws and can be used to determine the dislocation
density. We fit the entire diffraction peak profile to the nu-
merical Fourier transform of the pair correlation function and
simultaneously obtain dislocation densities and the range of
dislocation correlations.

II. BACKGROUND

X-ray diffraction is a well-established technique to ana-
lyze crystal lattice imperfections.11,12 The conventional and
widely used methods �also in GaN studies5� are based on a
comparison of the diffraction peak widths of different
reflections.13–15 They aim to separate two contributions to the
peak broadening, the finite size of the crystalline domains
�grains� in the sample and the nonuniform strain within each
domain owing to lattice defects. The strain broadening of a
diffraction peak is proportional to the length of the scattering
vector, while the size effect does not depend on it. Thus,
comparing the peak widths of reflections of successive orders
in the so-called Williamson-Hall plot, one can separate both
contributions. The separation method assumes that all peaks
are Gaussian,14,15 or all Lorentzian.13 This is certainly not
true, and the methods based on the peak width give only
rough, albeit instructive, estimates of the crystal perfection.
A recent development16–18 includes corrections for given ori-
entations of the dislocation lines and Burgers vectors with
respect to the scattering vector.

The next milestone was the Fourier analysis of the diffrac-
tion peak profile proposed by Warren and Averbach.19,20 The
starting point of their analysis is the average over grain ori-
entations in powder diffraction. The corresponding integra-
tion of the scattered intensity in reciprocal space is equiva-
lent to a one-dimensional cut of the correlation function in
real space. We note that the powder diffraction literature does
not use the term correlation function but refers to the Fourier
coefficients of the intensity. We use the solid-state physics
terminology where this quantity is commonly called the pair
correlation function. In crystallography, the same function is
referred to as Patterson function.

The ansatz of the Warren-Averbach analysis is the as-
sumption that the correlation function is a product of two
independent terms describing the size and the strain effects,
respectively. Furthermore, it is assumed that the finite sizes
of the grains give rise to a Lorentzian peak �exponential cor-
relation function� while nonuniform strain is described by a
Gaussian function. With these assumptions, the size and
strain effects are separated by differentiation of the Fourier-
transformed peak profile. In many cases, the latter step is not

sufficiently accurate, since it has to rely on a few Fourier
coefficients obtained from noisy experimental data.
Balzar21,22 suggested avoiding this difficulty by directly fit-
ting the peak profile to a convolution of a Lorentzian and a
Gaussian, which is the Voigt function. The experimental
peak profiles are not always described by the Voigt function
and various other analytical functions were suggested on a
purely phenomenological basis.23,24

The assumption that nonuniform strain gives rise to a
Gaussian correlation function looks plausible, taking into ac-
count the stochastic nature of this strain originating from
randomly distributed lattice defects. However, Krivoglaz and
Ryboshapka12,25 have shown that this is not true for random
dislocations, which are the most common and most impor-
tant source of strain. Rather, they found that the slow
��r−1� decay of the strain with the distance r from the dislo-
cation line gives rise to a correlation function

G�x� = exp�− C�x2 ln
L

�x
� . �1�

Here C	1 is a dimensionless factor depending on the orien-
tations of the dislocation line and Burgers vector with respect
to the x direction �an arbitrary direction along which the
correlations are measured�. Its dependence on the scattering
vector Q and the Burgers vector b is given by C� �Q ·b�2.
The dislocation density � is defined as a total length of the
dislocation lines per unit volume. For straight dislocations, �
is equal to the number of dislocations crossing the unit area
of a plane perpendicular to the dislocation lines. �	1 is
another dimensionless factor, for uncorrelated dislocations
�= 
Q ·b
 /2�.

For completely random and uncorrelated dislocations, L is
the crystal size, so that formally the diffraction peak width of
an infinite crystal with random uncorrelated dislocations
tends to infinity.12 Wilkens26–28 pointed out that this diver-
gence has the same origin as the divergence of elastic energy
of a crystal with dislocations: the elastic energy is propor-
tional to �b2 ln L /a, where � is the shear modulus, b is the
length of the Burgers vector, and a is the lattice spacing. He
suggested that the system can drastically reduce elastic en-
ergy by a very minor rearrangement in the dislocation en-
semble: the positions of the dislocations remain random but
their Burgers vectors are correlated, so that the total Burgers
vector in a region exceeding some characteristic scale is
zero. Then, the dislocations screen each other and the elastic
energy, as well as the diffraction peak width, remain finite.
Wilkens introduced a “restricted random distribution” of dis-
locations by subdividing the crystal into cells, such that the
total Burgers vector in each cell is zero. He found26–28 that
the functional form of Eq. �1� does not change but L should
be understood as a finite size of the cells. Krivoglaz et al.12,29

showed that the same result is valid for a broad class of
correlated dislocation distributions with screening.

We note also the two-dimensional crystal as a limiting
case of dislocation screening. Here the elastic energy of dis-
locations is to be compared with the entropic term −TS,
where T is temperature and the entropy S=ln�L /a�2 is the
number of lattice sites where the dislocation can be placed.
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Both elastic energy and entropy terms are proportional to
ln L. As a result, above some temperature Tm, dislocations
are generated by unbinding of thermally excited dislocation
pairs, giving rise to the dislocation mediated melting.30,31

The calculation of the correlation function in this highly cor-
related dislocation system32 shows that the logarithmic term
in Eq. �1� vanishes.

Fourier transformation of the correlation function �1�
yields a Gaussian shape only in the central part of the peak.
The range of the Gaussian peak shape is given by a dimen-
sionless factor

M = L�� �2�

and increases when M is increased. The intensity distribution
notably deviates from the Gaussian shape at the tails of the
diffraction peak.

The tails of the diffraction peak due to dislocations follow
a universal law I�q��q−3, which can be obtained from Fou-
rier transformation of Eq. �1�.33 The q−3 law is due to the fact
that at large q, the scattering takes place in the strained re-
gions close to dislocation lines, where the lattice is so
strongly misoriented that the Bragg law is locally satisfied
for the wave vector q. Calculation of the volume of these
regions give the q−3 dependence.12,33,34 The q−3 asymptote is
very general property of the scattering from dislocation
strain field, and is realized for any dislocation distribution at
large enough q. In particular, it is valid for dislocation walls
�small angle domain boundaries� at wave vectors q exceed-
ing the inverse mean distance between dislocations in the
wall.12

Groma and co-workers33,35,36 developed methods for the
peak profile analysis based on a calculation of the restricted
moments of I�q�. In particular, the second-order restricted
moment v�q�=�−q

q q2I�q�dq is proportional to ln q, which
they used to determine the mean dislocation density. Higher-
order moments describe fluctuations of the dislocation den-
sity.

GaN epitaxial films comprise a well-defined system
where threading dislocations are aligned perpendicular to the
surface plane. The film is oriented, contrary to a powder.
However, the advantage of powder diffraction, that allows
one to treat the problem in terms of a one-dimensional cor-
relation function, can be preserved by making the measure-
ments with an open detector. These give rise to an average
very similar to the powder average, Fig. 2. The intensity is
integrated over directions of the outgoing beam, instead of
the integration over directions of the diffraction vector. The
integrations in reciprocal space give rise to cuts in real space,
which are different for the two cases under consideration.
The coordinate x in Eq. �1� runs along the direction of the
outgoing wave in case of the oriented sample with open de-
tector and in the direction of the diffraction vector for the
case of powder diffraction. This fact introduces a geometrical
correction in the orientational factor C. The skew diffraction
geometry used for the measurements gives rise to further
corrections, which are calculated below.

Our approach consists of a direct fit of the measured in-
tensities by the numerical Fourier transformation of the cor-
relation function �1�, thus avoiding any transformation of the

experimental data. We expect that such a calculation is less
influenced by the noise in the experimental data and is more
reliable. As shown below, we find good agreement between
measured and calculated peak profiles. From the fits, we re-
liably obtain both the dislocation densities and the correla-
tion range in the restricted random dislocation distribution.

III. THEORY

The intensity of x-ray scattering from a crystal disturbed
by distortion fields of lattice defects12 can be represented as a
Fourier transform

I�q� =
 G�r�exp�iq · r�dr �3�

of the pair correlation function

G�r� = �exp�iQ · �U�r� − U�0���� . �4�

Here Q=Kout−Kin is the scattering vector �Kin and Kout are
the wave vectors of the incident and scattered waves, respec-
tively� and q=Q−Q0 is a small deviation of Q from the
nearest reciprocal lattice vector Q0, so that q	Q. U�r� is the
sum of displacements produced by all defects of the crystal
at a given point r. If all defects are of the same type, one can
represent the total displacement as a sum U�r�=�Ru�r−R�,
where u�r� is the displacement produced at point r by a
defect placed at origin and R are the positions of defects.
Extension to the case of several defect types is straightfor-
ward. The angular brackets �¯� denote the average over the
statistics of the defect distribution. Equation �4� implies an
infinite and statistically uniform sample, so that the choice of
origin is arbitrary. When finite size effects are essential, as
for example for misfit dislocations in epitaxial layers,37 the
correlation function G�r1 ,r2� depends on the difference of

FIG. 2. Scattering geometries of powder diffraction �a� and dif-
fraction from an oriented sample with wide open detector �b�. In the
case of powder diffraction, both incoming and outgoing beams are
collimated and the scattering angle is fixed. Different grains give
rise to different orientations of the reciprocal lattice vector Q0.
Equivalently, one can fix the direction of Q0 but rotate the incident
and outgoing beams while keeping the angle between them fixed.
This latter representation is shown in �a�. Summation of intensities
from differently oriented grains is the integration over a sphere
shown by the broken line that can be replaced by a plane perpen-
dicular to Q0. The position of the plane is given by the wave vector
q parallel to Q0. In the case of an oriented sample and wide open
detector, the directions of the incoming beam and of the reciprocal
lattice vector Q0 are fixed. The integration over directions of the
outgoing beam is performed over a sphere that can be replaced by
the plane perpendicular to kout. The position of the plane is given by
the wave vector q that is now parallel to kout.
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displacements U�r1�−U�r2� and Eq. �3� contains the expo-
nent exp�iq · �r1−r2��.

In the case of large dislocation densities considered in the
present paper, the diffraction peaks are broad, and the corre-
lation function �4� has to be calculated for small distances
r= 
r
. On the other hand, the dislocation distortions decay
very slowly �as R−1� and the main contribution to the corre-
lation function is due to remote dislocations, R
r. Then, the
difference of displacements can be expanded as Taylor series
Q · �u�R+r�−u�R����r · � ��Q ·u�R��=riQj�uj /�Ri. Con-
sidering dislocation positions R as Gaussian random vari-
ables, one can perform the statistical average as

G�r� = exp�−
�

2

 �riQj�uj/�Ri�2dR� , �5�

where � is the dislocation density. We note that the use of
Gaussian statistics is justified only in the present case of
large dislocation densities. One cannot generalize Eq. �5� as
G�r�=exp�− 1

2 �Q · �U�r�−U�0���2�. This latter formula fails
to treat the discontinuity of the dislocation displacement by
the Burgers vector b that arises when the medium is cut
along a half-plane to introduce the dislocation. In contrast,
Eq. �4� does not have a discontinuity since the product Q0 ·b
is a multiple of 2� as a product of a lattice vector and a
reciprocal lattice vector. The treatment of small dislocation
densities37 requires a more general approach12,25,38 based on
the Poisson statistics for randomly distributed defects. How-
ever, Eq. �5� is sufficient for the present paper.

The distortion field of a dislocation has a universal
R-dependence, �uj /�Ri=b�ij /2�R, where b is the length of
the Burgers vector and �ij is a dimensionless factor of the
order of unity which depends only on the azimuth �. Then,
one obtains25

G�r� = exp�− C�r2
 dR

R
� , �6�

where

C = 
�Qb�2/4�, 
 =
1

2�



0

2�

�r̂i�ijQ̂j�2d� . �7�

C and 
 are dimensionless factors of the order of unity. Here

r̂ and Q̂ are unit vectors in the directions of r and Q, respec-
tively. The integral in Eq. �6� is taken from �r �where �	1 is
a dimensionless factor� to a limiting size L, which, for com-
pletely uncorrelated dislocations, is equal to the crystal size.
Then, the integral is equal to ln�L /�r�, and we arrive at Eq.
�1�. When the dislocations are correlated, so that the total
Burgers vector averaged over a certain characteristic scale is
zero, the functional form of the correlation function does not
change but L has the meaning of that scale.12,26–29

We restrict ourselves to parallel straight dislocations and
take the direction of the dislocation lines as z axis. Then, Eq.
�3� can be written as

I�q� = ��qz� 
 G�x,y�exp�iqxx + iqyy�dxdy , �8�

where the delta function ��qz� is due to the translational in-
variance in the direction of the dislocation lines. The orien-
tational dependence of the correlation function and hence of
the intensity distribution in the x ,y plane is described by the
factor 
, Eq. �7�. Its angular dependence, after the average
over crystallographically equivalent orientations of the Bur-
gers vectors, is very weak, see Eqs. �18� and �19� below.
Then, the study of the correlation function in one selected
direction is sufficient for investigation of the dislocation den-
sity. That can be naturally done by performing measurements
with a wide open detector. The intensity �3� is then to be
integrated over all directions of the scattered wave Kout. The
result of this integration is very similar to the powder aver-
age. The actual part of the sphere 
Kout
=k �where k is the
wave vector� can be replaced by the plane perpendicular to
the direction of Kout. Integration of the intensity �8� over this
plane gives rise to a one-dimensional integral

I�q� =
 G�x�exp�iqx/cos ��dx , �9�

where � is the angle between the �x ,y� plane and Kout �see
Fig. 1�. It is given by sin �=sin � sin �B, where � is the
angle between the �x ,y� plane and the scattering vector Q
and �B is the Bragg angle. The x axis is chosen along the
projection of Kout on the plane perpendicular to the disloca-
tion lines. The corresponding expression for the case of pow-
der diffraction differs only by the direction of x: it runs along
Kout for oriented films and along Q for powder diffraction.
The wave vector q in Eq. �9� is the projection of q on the
direction of Kout, so that q=Q� cos �B, where � is the angu-
lar deviation from the peak center.

For the problem under consideration, the direction of r̂ in
Eq. �7� is that of the diffracted wave, so that the parameter 

involves a complicated combination of all components of the
dislocation distortions. It contains both strain and rotation
components. In particular, the tilt and twist contributions dis-
cussed in the diffraction studies of GaN films, are included.
In contrast, the powder diffraction case requires calculation
of the correlation function for r̂ in the direction of Q̂. Denot-
ing by � the coordinate in that direction, one can say that the
exponent of the correlation function �6� is obtained in the
case of powder diffraction by averaging of the squared strain
component u��

2 around the dislocation.
The integration range in Eq. �9� is limited by distances

smaller than L. A finite integration limit introduced in Eq. �9�
leads, in a numerical evaluation of the integral, to unphysical
oscillations in I�q� commonly appearing in Fourier integrals
taken over a rigidly limited interval. We found that an appro-
priate smoothing is obtained by substituting ln�L /�x� in Eq.
�1� with ln��L+�x� /�x� and extending the integration range
to infinity. The expressions for �=��Q� are bulky and depend
on the type of correlations in dislocation positions.12,27–29 We
restrict ourselves to the first approximation that does not de-
pend on the type of correlations, �= 
Q ·b
 /2�.
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Finally, combining the equations above, the diffracted in-
tensity can be represented as

I��� =
Ii

�



0

�

exp�− Ax2 ln
B + x

x
�cos��x�dx + Ibackgr,

�10�

where Ii is the integrated intensity of the peak. We proceed
here to the angular deviation from the peak maximum � and
add the background intensity Ibackgr to provide the exact for-
mula that is used for the fits of the experimental peaks pre-
sented below. Parameters A �describing the dislocation den-
sity� and B �describing the dislocation correlation range� are
given by

A = f�b2, B = gL/b . �11�

Here f and g are dimensionless quantities given by the dif-
fraction geometry

f =



4�

cos2 �

cos2 �B
, g =

2� cos �B

cos � cos �
. �12�

In Eq. �12�, the expression for g is written for edge disloca-
tions, taking into account the approximation �= 
Q ·b
 /2�.
For screw dislocations, cos � in this expression should be
replaced by sin �. The length of the Burgers vector b in Eq.
�11� is that of the relevant Burgers vector for either edge or
screw dislocations. The dimensionless product �b2	1 is the
mean number of dislocations crossing each b�b cell in the
plane perpendicular to the dislocation lines. Equation �10�
with four parameters A ,B ,Ii , Ibackgr is used in Sec. V blow to
fit the peak profiles and obtain the dislocation density � and
the length L.

The behavior of the integral �10� is illustrated in Fig. 3
where the function

I�q� = 

0

�

exp�− x2 ln��R + x�/x��cos�qx�dx �13�

is numerically calculated for different values of the param-
eter R. The curves merge at a common q−3 asymptote that
does not depend on R.12,28,33,35 Then, Eq. �10� has an asym-
potic behavior �for � large in comparison with the peak
width�

I��� = A
Ii

�3 + Ibackgr. �14�

Figure 3 also shows that the asymptote �14� is reached
quite close to the peak center for R	1, while for R
1 the
central part of the peak is Gaussian and the angular range
where the Gaussian approximation is valid increases with
increasing R. The FWHM of the calculated peaks increases
with increasing R and can be approximated by

�q � 2.4 + ln R . �15�

Groma33 suggested to use the second restricted moment of
the intensity distribution

v2��� = 

−�

�

�2�I��� − Ibackgr�d� �16�

to obtain the dislocation density from the asymptotic behav-
ior �14�. Note that the integral �16� diverges, when taken in
infinite limits. One finds, by substituting Eq. �14� into Eq.
�16�, that

v2��� = 2IiA ln � + const. �17�

It remains to calculate the orientational factor C �Eq. �7��.
In the case of powder diffraction,26–28 the vector r is directed
along the projection Q� of the scattering vector Q on the
�x ,y� plane. In our case, the vector r is directed along the
projection of Kout on the �x ,y� plane and makes an angle �
with the vector Q�, see Fig. 1. This angle is given by
cos �=sin �B cos � / cos �. When evaluating the integral �7�
for edge dislocations, we average 
 over possible orienta-
tions of the Burgers vector in a hexagonal lattice �the dislo-
cation lines are taken along the sixfold axis� and obtain


e =
9 − 8� + 8�2 − 2�3 − 4��cos2�

16�1 − ��2 cos2 � , �18�

where � is the Poisson ratio. 
e depends only weakly on �.
Taking �=0.2 for hexagonal GaN, one can approximate 
e
�0.7 cos2 � in the whole range of reasonable angles �. The
calculation for screw dislocations gives


s =
1

2
sin2 � . �19�

Two limiting cases are of interest: a symmetric Bragg
reflection to study screw dislocations and a grazing
incidence/grazing exit reflection as an extreme case of a
highly asymmetric skew geometry. For a symmetric Bragg
reflection, �=� /2 and �=�B. Then, we obtain f =1/8� and,
for screw dislocations, g=2�. The grazing incidence/grazing
exit geometry is the limit �=�=0, so that f
=
 / �4� cos2 �B� and, for edge dislocations, g=2� cos �B.

The finite thickness T of the epitaxial layer �with thread-
ing dislocations perpendicular to the layer plane� can be
taken into account by making the Warren-Averbach ansatz19

G�x� = Gd�x�Gs�x� , �20�

where Gd�x� is the correlation function considered above.
The correlation function describing finite size effects can be

FIG. 3. Behavior of the integral �13� for different values of the
parameter R. All curves merge at a common q−3 asymptote. A
Gaussian peak profile is shown by the thin line for comparison.
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written as Gs�x�=exp�−x /T�. Its Fourier transformation is a
Lorentzian that is expected from the finite slit function
�sin�qT /2� / �qT /2��2 after averaging over thickness varia-
tions. We note that, in asymmetric reflections, Eq. �9� gives
rise to the effective thickness T / cos � along the direction of
the diffracted wave. The finite size correction �20� does not
complicate the calculation of the intensity by numerical in-
tegration of Eq. �9�. If the resolution of the experiment can-
not be neglected in comparison with the peak width, the
correlation function �20� is to be multiplied with the real-
space resolution function R�x�, which also does not lead to
additional complications of the numerical integration.

IV. EXPERIMENT

The GaN layers investigated here were grown on 6H
-SiC�0001� by plasma-assisted molecular beam epitaxy
�PAMBE�. The two PAMBE systems employed are equipped
with a solid-source effusion cell for Ga and a radio-
frequency nitrogen plasma source for producing active N.
Both systems have a base pressure of 5�10−11 Torr. We use
6N N2 gas as a precursor which is further purified to 5 ppb
by a getter filter. H2-etched 6HuSiC�0001� wafers pro-
duced by Cree™ were used as substrates.39 An in situ Ga
flash-off procedure was performed in order to remove re-
sidual suboxides from the SiC substrate surface prior to
growth.39 The temperatures were calibrated by visual obser-
vation of the melting point of Al �660 °C� attached to the
substrate.

Sample 1 was grown under Ga-stable conditions with a
substrate temperature of 740 °C. The growth rate employed
was 140 nm/h, and the film was grown to a final thickness of
340 nm. Under these growth conditions, we observed an en-
tirely streaky, �1�1� RHEED pattern throughout growth ex-
cept for the initial nucleation stage. The surface morphology
of the film as observed by atomic force microscopy �AFM�
exhibits clearly resolved monatomic steps. The root-mean-
square roughness amounts to 0.3 nm over an area of 1
�1 �m. Samples grown under these conditions typically ex-
hibit a narrow symmetric reflection, suggesting a low density
of screw dislocations. In contrast, sample 2 was grown under
near-stoichiometric conditions with a substrate temperature
of 780 °C. The growth rate employed was 445 nm/h and the
total thickness of the film amounts to 1660 nm. After the
initial 100 nm of GaN growth, a 10-nm-thick AlN film was
deposited prior to overgrowth by GaN. The RHEED pattern
exhibited a superposition of streaks and V-shaped chevrons
indicative of facetting. Indeed, the AFM micrographs of this
sample showed the characteristic plateau-valley morphology
of GaN films grown with insufficient Ga flux. Compared to
films grown under the same conditions as sample 1, films
grown under these conditions exhibit narrower asymmetric
reflections, indicating a reduction of the edge dislocation
density.

X-ray measurements were performed with a Philips
X’Pert PRO™ four-circle triple-axis diffractometer equipped
with a CuK�1 source in the focus of a multilayer x-ray mirror
and a Ge�022� hybrid monochromator. The detector was kept
wide open and at fixed position 2�B, leading to an angular

acceptance of 1°. Additional measurements �� and �−2�
scans� were performed with a three-bounce Ge�022� ana-
lyzer. All asymmetric rocking curves were recorded in skew
geometry.4,6 Symmetric and asymmetric rocking curves of
substrate reflections were found to have a width close to the
instrumental resolution, which shows that substrate mosaic-
ity as well as strain-induced bending �which is significant for
very thick films� can be neglected in the present work. We
denote the GaN reflections in the form hk . l which is equiva-
lent to the four-index notation hkil for hexagonal crystals
with h+k+ i=0.

V. RESULTS

A. X-ray diffraction

Figure 4 compares a rocking curve measured with open
detector �acceptance 1°� and a rocking curve �� scan� mea-
sured with an analyzer across the 10.5 reflection for the same
GaN film �sample 1�. The comparison with the 044 rocking
curve from a perfect Si crystal shows that the GaN peak
broadening due to instrumental resolution can be neglected.
The log-log plots �right column� show that the tails of the
intensity distributions follow the asymptotic power laws ex-
pected for scattering from dislocations. The I�q−3 law is
observed for measurements with the open detector. In the
case of a collimated diffracted beam, there is one integration
less in q space which gives rise to the I�q−4 law. The com-
parison of the profiles obtained with an open detector and
with a collimator shows that they contain the same informa-
tion about lattice distortions in the film. The rocking curve
measurements with open detector have, however, both ex-
perimental and theoretical advantages. The experimental ad-
vantage is a two orders of magnitude higher intensity �the
intensities are plotted in Fig. 4 in counts per second�. The
analysis of the rocking curve is also more simple since the

FIG. 4. The rocking curve with open detector �black line� and
rocking curve with the analyzer crystal �gray line� recorded in skew
geometry across the 10.5 reflection of sample 1. An asymmetric 044
reflection from a perfect Si crystal �broken line� is shown as a
measure of the resolution. The intensities from the GaN layer are
presented in counts per second, the Si�044� signal is scaled appro-
priately. The right panel shows the same peaks in log-log scale.
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intensity distribution is described by the one-dimensional in-
tegral �9�, while the analysis of the scans with the analyzer
requires the two-dimensional integration �8� of the correla-
tion function. Therefore, we restrict ourselves to the analysis
of the rocking curves with open detector.

Figure 5 presents skew-geometry rocking curves for vari-
ous reflections from sample 1. Several conclusions can be
drawn just from a direct inspection of the peak profiles. First,
the line shapes are far from being Gaussian at the tails of the
intensity distribution: see the comparison of the 10.1 profile
with a Gaussian fit �dotted lines in Figs. 5�a� and 5�b��.
When the dynamic range is larger than two orders of magni-
tude, it is evident that the tails of the asymmetric profiles
rather follow the q−3 law. For relatively weak reflections
�e.g., 10.4 or 20.4�, the −3 exponent is not reached. Thus, the
profiles obey the behavior typical for a random dislocation
distribution. In the following, we analyze them quantitatively
to obtain the characteristics of the dislocation ensemble.

The solid lines in Figs. 5�a� and 5�b� are the fits of the
measured profiles by Eq. �10�. One can see that the peak
profiles are adequately described. In Fig. 6, we plot the fit
parameters A and B as functions of f and g, respectively,
since according to Eq. �11� both dependencies are expected

to be linear. Figure 6�a� can be considered as a refined ver-
sion of the Williamson-Hall plot. The linear fit of the data in
Fig. 6 crosses the axis of the ordinates at a small but nonzero
value of A, which indicates that, in addition to threading
dislocations, there is an additional source of peak broaden-
ing, namely, size broadening. This effect is smaller for
sample 2. From the slopes of the straight lines in Fig. 6�a�,
we obtain �ebe

2=A / f =6.3�10−5 and 4.5�10−5 for samples
1 and 2, respectively, where be=0.32 nm is the length of the
Burgers vector of edge dislocations. This result yields a den-
sity of edge threading dislocations �e=6.1�1010 cm−2 for
sample 1 and 4.4�1010 cm−2 for sample 2. The mean dis-
tances between edge dislocations are rd=1/��e=40 nm
�sample 1� and 47 nm �sample 2�. From the slopes of the
lines in Fig. 6�b�, we obtain L /be=B /g=230 and 260, which
give the characteristic lengths of the dislocation correlations
L=74 and 83 nm, respectively. The dimensionless parameter
characterizing the dislocation correlations28 possesses the
values M =L /rd=1.85 for sample 1 and 1.75 for sample 2.

The fits presented in Figs. 5 and 6 are obtained by a
nonlinear least squares fit minimizing the difference Iobs
− Icalc between measured and calculated intensities. We also
performed fits that minimize the difference log Iobs− log Icalc,
thus providing more weight on the peak tails. These fits give
a better agreement between measured and fitted curves in the
low-intensity part of the curve and a worse agreement near
the peak maximum. They result in somewhat smaller values
of A and larger values of B. We take the difference between

FIG. 5. Rocking curves with open detector from sample 1 ob-
tained in skew geometry for different reflections as indicated in the
figure. The profiles are shown in logarithmic �a� and log-log �b�
scales. The experimental data are shown by gray lines. The full
black lines are fits of the intensity by Eq. �10�. The dotted lines for
the 10.1 profile show a Gaussian profile.

FIG. 6. Parameters A and B obtained from the fits of the experi-
mental profiles by Eq. �10�. Samples 1 and 2 are denoted by full and
open symbols, respectively.
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these two types of fits as a measure of an error in the dislo-
cation density determination from the x-ray diffraction peak
profile. The mean values and estimated errors are presented
in Table I.

We also fitted the profiles with Eqs. �14� and �17�, which
require less computational efforts. These fits give slightly
larger values for parameter A �dislocation density� and are
not able to give parameter B for dislocation correlations.

The symmetric x-ray diffraction profiles shown in Fig. 7
are narrow compared to the asymmetric reflections. Further-
more, the profiles of samples 1 and 2 are qualitatively differ-
ent. In sample 1, the intensity distributions obey a q−2 law in
the intermediate range of angular deviations �and intensities�
that is followed by an even lower exponent for large devia-
tions �and very low intensities�. In sample 2, the intensity
distributions are close to the q−3 law.

Edge threading dislocations with dislocation lines normal
to the surface and Burgers vectors in the surface plane,
which are the main source of the peak broadening in asym-
metric reflections, do not distort the planes parallel to the
surface. They do thus not contribute to diffraction in the

symmetric reflections. The q−2 law for the 00.2 and 00.4
peaks of sample 1 points to the finite thickness of the epitax-
ial layer as the main source of the broadening. The slow
intensity decay at the far tails of the peaks has another origin.
A plausible source of this slow decay is thermal diffuse scat-
tering. Albeit weak, it exhibits a slow decay and becomes
visible at large q, since scattering from defects decays
faster.40,41 We did not investigate this part of the symmetric
reflections further since we suppose that it is not related to
threading dislocations which are the topic of the present
study. The profiles of sample 2, which is three times thicker
than sample 1, obey the q−3 law indicating that the broaden-
ing is primarily by dislocations.

The solid lines in Fig. 7 are the fits of the experimental
curves to Eq. �20�, where the different thicknesses of the
layers are explicitly taken into account. We indeed obtain the
q−2 intensity decay on the tails of the peak for sample 1 and
the q−3 decay for sample 2. From the fit parameters, we
obtain �sbs

2=A / f =2.4�10−6 and 4.5�10−6 for samples 1
and 2, respectively, where bs=0.52 nm is the length of the
Burgers vector of screw dislocations. This result yields the
screw threading dislocations densities of �s=9�108 cm−2

for sample 1 and 1.7�109 cm−2 for sample 2. From the val-
ues of the parameter B we obtain L /bs=B /g=650 and 440,
which result in characteristic lengths of the dislocation cor-
relations L=340 nm and 230 nm for sample 1 and 2, respec-
tively. The parameter M is close to 1 for both samples. Note,
however, that screw dislocations are not the only source of
the peak broadening in symmetric reflections �see discussion
below in Sec. VI�.

The samples under investigation certainly contain misfit
dislocations at the film-substrate interface, that release the
misfit of 3.4% between GaN and SiC. To estimate the effect
of misfit dislocations on the diffraction peaks, we have per-
formed �−2� scans across the symmetric reflection 00.2, see
Fig. 8. Such a scan is along the direction of threading dislo-
cation lines and hence is insensitive to threading dislocations
�see Eq. �8��. The broadening of the �−2� diffraction curve
over the ideal curve �given by the dynamical diffraction
width and the film thickness� can be attributed to misfit dis-
locations. Misfit dislocations give rise to comparable broad-
enings in both �−2� and � scans.37 In particular, in the case
of pure edge misfit dislocations, as those found at the
GaN/SiC interface, the ratio of the widths in these two scans
is approximately 0.6:1. Hence, from the effect of misfit dis-
locations on the �−2� curve we can estimate their effect to
all other curves considered above.

Figure 8 shows that the �−2� curves are much more nar-
row than the rocking curves obtained either with an open
detector or with an analyzer. Moreover, comparison with the

TABLE I. Edge and screw dislocation densities and correlation parameters determined by x-ray diffrac-
tion and TEM.

Thickness
�nm�

�e �1010 cm−2� �s �1010 cm−2� M =L��

X ray TEM X ray TEM Edge Screw

Sample 1 340 5.0±1.0 3.0±0.5 0.9±0.3 2.4±0.5 1.0±0.3

Sample 2 1660 3.7±0.5 2.0±0.5 1.7±0.2 1.2±0.2 2.7±1.0 1.0±0.3

FIG. 7. Symmetric 00.2 and 00.4 x-ray diffraction profiles from
samples 1 and 2. The profiles are shown in logarithmic �a� and
log-log �b� scales.

KAGANER et al. PHYSICAL REVIEW B 72, 045423 �2005�

045423-8



curves simulated for ideal layers show that the widths of the
�−2� curves in both samples are mainly due to the finite
thickness of the layer. Sample 1 is thinner and gives rise to a
FWHM of 54�, while the ideal width is 50�. The thickness
intensity oscillations are seen in both measured and simu-
lated curves. The peak width for the thicker sample 2 is 40�,
as compared with the ideal width of 31�. The oscillations on
both measured and simulated curves are due to the interme-
diate 10 nm thick AlN layer. Such a small effect of misfit
dislocations on peak widths is an indication of strong order-
ing of the dislocations.37 We estimate the effect of misfit
dislocations on the rocking curve widths as at most 30�, to be
compared with their typical width of 0.2°. Therefore, the
effect of misfit dislocations on the peaks investigated above
can be neglected.

B. TEM

TEM is the method of choice to directly determine the
character of dislocations and their distribution in thin films.
The g ·b criterion in TEM is generally applied for the two-
beam condition to evaluate the alignment of the strain field
of the dislocation with Burgers vector b with respect to the
diffraction vector g producing the image contrast. This crite-
rion is strictly correct for screw dislocations and for edge
dislocations only if their line direction l and Burgers vector
are in the imaging plane, i.e., if g · �b� l� is considered. In

the present case of GaN�0001� films it is well established
that three types of threading dislocations exist, having Bur-
gers vectors 1

3 �112̄0�, �0001�, and 1
3 �112̄3� representing edge,

screw and mixed dislocations, respectively, under the as-
sumption that the dislocations lines lie parallel to the c axis.
Mixed dislocations are not observed in our samples.

In order to identify the Burgers vector, two images have
to be recorded with g parallel and perpendicular to the c axis.
The screw dislocations are thus imaged if g= �0002�, an ex-
ample of which is shown in Fig. 9�a� for sample 2. From this
image, we can directly measure the dislocation density if we
know the TEM specimen thickness that is determined by
tilting the interface from the end-on to a well-defined in-
clined position. Edge dislocations appear in the cross-
sectional images if g is perpendicular to the c axis, e.g., if

g= �112̄0�, and we are then able to measure their density in
the same way. Furthermore, plan-view TEM imaging is ap-
plied to complement the measurement of the dislocation den-
sity. Figure 9�b� shows a plan-view TEM image of sample 2,
where the specimen is tilted a few degrees off the �0001�
zone axis to obtain two-beam conditions with g= �112̄0� in

FIG. 8. Diffraction curves of samples 1 and 2 in the symmetric
reflection 00.2. The rocking curves �obtained with open detector
and with analyzer� are compared with �−2� scans. The bottom
curves are simulations of the �−2� scans for ideal �dislocation free�
films.

FIG. 9. Cross-sectional �a� and plan-view �b� TEM images of
sample 2. The outcrops of screw dislocations are marked in �b� by
arrows.
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order to bring the edge dislocations in contrast. The edge
threading dislocations are extended along the film normal
and homogeneously distributed. It is remarkable that screw
dislocations can be identified as well �marked by arrows�,
although the contrast should vanish because of g ·b=0. How-
ever, this specific contrast is produced due to strain relax-
ation of the screw dislocation at the free surfaces varying
locally the lattice plane distortions created by the strain field.
Table I compares the densities of edge and screw disloca-
tions obtained from the x-ray diffraction and TEM measure-
ments, revealing that the density of edge dislocations is in
fact slightly higher in sample 1 compared to sample 2. The
screw dislocation density in sample 1 is too low for reliable
TEM determination. Some of the screw dislocations are seen
as hexagonal pits in AFM micrographs. A lower limit of 5
�107 cm−2 is thus obtained for the screw dislocation density
in sample 1.

VI. DISCUSSION

We have analyzed the profiles of x-ray diffraction peaks
in the intensity range down to four orders of magnitude be-
low the peak maximum. We have found that the correlation
function �1� with only two fit parameters well describes the
whole peak profile. To our knowledge, our work is the first
attempt to describe the entire peak profile from randomly
distributed dislocations, although Eq. �1� was derived a long
time ago.12,25–28 Recent works on the peak profile analysis in
powder diffraction33,35,36 used the q−3 asymptote in an indi-
rect way, by calculating the restricted moments of the inten-
sity distribution. However, the screening range in a restricted
random dislocation distribution cannot be obtained from the
asymptotic part of the peak. Our fit of the whole peak profile
provides both parameters of the dislocation distribution, the
dislocation density and the screening range. The numerical
calculation of the peak profile involves just a one-
dimensional Fourier integral �10� which can be computed
quickly.

Use of the q−3 asymptote is a most reliable way for the
determination of the dislocation density, since it is due to
scattering from the regions close to each dislocation line and
thus is not influenced by the correlations between disloca-
tions. As alternatives to the use of the correlation function
�1�, one can use the second-order restricted moment of the
intensity distribution33,35,36 or the asymptotic law �14�. We
tried both and found dislocation densities in good agreement
with the values obtained by the peak profile fit.

We have shown that the measurements with open detector
and with an analyzer crystal provide essentially the same
information on the dislocation density and correlations. The
advantage of the measurements with an open detector con-
sists in the reduction of the calculations to a one-dimensional
integral �10�. These measurements also provide higher inten-
sities �albeit with the same dynamic range of intensities�. In
more complicated situations, if the threading dislocations are
just one of several sources of the peak broadening, measure-
ments with analyzer may be more useful.

The asymptotic part of the intensity distribution was not
involved up to now in x-ray diffraction studies of GaN films.

The dislocation density determination was based on the
FWHMs of the peaks. When both size and distortion effects
were involved, the peak was fitted to a sum of a Gaussian
and a Lorentzian function �pseudo-Voigt function� and the
FWHM of the Gaussian part was used for the dislocation
density determination.2 It is instructive therefore to derive
expressions for the peak widths from the present model and
compare them with the expressions used in the GaN
studies.2,5

Two quantities can be obtained from the FWHMs of a
series of the reflections.4 One is the FWHM of the symmetric
reflection ��s which is influenced by screw dislocations but
insensitive to edge dislocations. The other quantity is ob-
tained by extrapolation of the FWHM of skew reflections to
the limiting case of grazing incidence/grazing exit diffrac-
tion, with both incident and diffracted beams lying in the
surface plane. This quantity ���e� is sensitive to edge but
insensitive to screw dislocations. The quantities ��s and
��e are referred to as tilt and twist, respectively.

Figure 10 presents the widths of the diffraction profiles of
samples 1 and 2 as a function of the inclination angle �. The
lines are fits by the model described in Ref. 4 to obtain ��s
and ��e. While these quantities are determined reliably and
accurately, the question arises how they are related to the
actual dislocation densities. The formulas most commonly
used to determine the dislocation density are2,5

�e =
��e

2

4.35be
2 , �s =

��s
2

4.35bs
2 , �21�

with the coefficient 2� ln 2�4.35. The only justification of
Eqs. �21� was given by Dunn and Koch42 in one line: “If a
random distribution of dislocations represents the subgrains
reasonably well… .” In fact, this equation properly takes into
account the very general result, that the dislocation density is
proportional to the square of the peak width and inversely
proportional to the square of the relevant Burgers vector, but
the coefficients were derived for a mosaic crystal with dislo-
cations forming grain boundaries. These coefficients thus
need to be reconsidered.

The relation between the dislocation density and the
FWHM �� of the intensity distribution �10� can be written,

FIG. 10. FWHM of the rocking curves as a function of inclina-
tion angle � for the two GaN films. The symbols are experimental
data and the lines are fits to them.
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by making use of Eqs. �11� and �15�, in a form similar to Eq.
�21�:

� �
��2

�2.4 + ln�g�fM��2fb2
. �22�

The dimensionless parameter M =L�� that characterizes dis-
location correlations is slightly larger than 1 for the GaN
films studied here, which is an indication of a strong screen-
ing of the long-range distortion fields of dislocations by the
neighboring dislocations. One has M 
1 for uncorrelated
dislocations. In this latter case, the logarithmic term in Eq.
�22� is the one obtained by Krivoglaz.12,25

We can now simplify Eq. �22� for the limiting cases of the
large-inclination skew diffraction and for symmetric Bragg
diffraction by using the expressions for the parameters f and
g obtained in Sec. III for these cases:

�e �
18��e

2 cos2 �B

�2.8 + ln M�2be
2 , �s �

36��s
2

�2.4 + ln M�2bs
2 . �23�

The term ln M describing the range of dislocation correla-
tions cannot be neglected even when M varies between 1 and
2, as it happens to be the case for the samples studied in the
present work. Compared to Eqs. �21�, Eqs. �23� result in a
four times higher edge dislocation density and an order of
magnitude higher screw dislocation density.

The linear density of misfit dislocations at the interface
between the SiC substrate and a fully relaxed GaN layer can
be easily calculated from the misfit of 3.4% and amounts to
�L=1.1�106 cm−1. If misfit dislocations are distributed at
the interface in a random and uncorrelated way, they cause
roughly the same broadening of the x-ray diffraction peaks
as an areal dislocation density �A=�L / t of the dislocations
distributed in the film �here t is the film thickness�.37 For the
samples under consideration, we find that �A is of the order
of 1010 cm−2, i.e., is comparable with the density of edge
threading dislocations. We have investigated the effect of
misfit dislocations by measuring the �−2� scans in the sym-
metric Bragg reflection 00.2 �Fig. 8�. These scans are in the
direction along the lines of threading dislocations and hence
are not influenced by them. We found that the peaks in these
scans are narrow compared to the rocking curves and even
these small widths are mainly due to intrinsic width of the
peak and the finite thickness of the layer. This is an indica-
tion of a high correlation in the distribution of misfit dislo-
cations. Such correlations are commonly observed in differ-
ent epitaxial systems37 and can be especially large in the
GaN films, since the misfit dislocations are edge dislocations
with the glide plane coinciding with the interface. Then, the
misfit dislocations can easily glide along the interface to
form almost periodic arrays, thus minimizing the elastic en-
ergy. A periodic array of misfit dislocations has been recently
observed in a related system, namely, AlN on Si�111�.43 In
this latter case of periodic dislocations, the nonuniform strain
is constrained to a layer with the thickness not exceeding the
distance between dislocations, and the broadening of the dif-
fraction peaks is almost absent. Thus, we conclude that the
broadening of our rocking curves by misfit dislocations can
be neglected.

Screw dislocations are not the only possible source of the
peak broadening in symmetric reflections. Edge threading
dislocations can contribute to these reflections if the disloca-
tion lines deviate from the layer normal. Even if such devia-
tions are small, the effect cannot be neglected since the den-
sity of edge threading dislocations is much larger than the
density of screw threading dislocations. The stress relaxation
at the free surface gives rise to additional distortions around
the outcrops of the edge threading dislocations, contributing
to an additional broadening to the symmetric reflections.
Thus, Eq. �10� and, particularly, Eqs. �23� provide an upper
estimate of the screw threading dislocation density since they
are assumed to be the only source of broadening for symmet-
ric reflections.

The films studied in the present work do not contain mis-
oriented grains, which allowed us to analyze the pure case of
x-ray diffraction from randomly distributed dislocations. The
present work provides, however, also a background for the
analysis of films with misoriented grains. There are two ef-
fects of the grains on the peak shape, caused by the size and
the misorientation of the grains, respectively. The size effect
can be included by using Eq. �20�. We found that this equa-
tion adequately describes the effect of the finite thickness of
the film and we expect that it can describe the in-plane grain
size effect as well. The inclusion of the size effect does not
complicate the numerical calculations of the peak profiles.
The finite size effects give rise to the q−2 asymptote and can
be found directly from the peak profile plotted in log-log
scale. In the case of moderate mosaicity, the correlation func-
tion �1� has to be written as a function of two in-plane coor-
dinates and integrated with finite limits, given by the mosa-
icity, to obtain the x-ray diffraction peak profile.

VII. CONCLUSIONS

The width of either symmetric or asymmetric reflections
can be used as a figure-of-merit for the dislocation density
only if the dislocation distribution is the same in all the
samples to be compared. Even for films having a spatially
random distribution of dislocations, the width of a given re-
flection depends not only on the dislocation density, but also
on the range of correlations in the restricted random disloca-
tion distribution. The line shape analysis of the diffraction
profile as presented in this work returns the width as well as
the correlation range, and is thus a far more reliable approach
for estimating the dislocation density than a simple consid-
eration of the width alone.

The line shape analysis has shown that the x-ray diffrac-
tion profiles of the GaN films under investigation are Gauss-
ian only in the central part of the peak. The tails of the peak
follow the power laws characteristic to x-ray diffraction of
crystals with randomly distributed dislocations. The rocking
curves measured with a wide open detector follow a q−3

behavior, while the rocking curves with an analyzer crystal
obey a q−4 behavior. The study of the rocking curves with
open detector is more simple both experimentally and theo-
retically, since the diffracted intensity is larger and the peak
profile is described by a one-dimensional Fourier transform
of the pair correlation function �10�.
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The q−3 tails of the diffraction profiles are insensitive to
correlations between dislocations and allow a more reliable
determination of the dislocation densities. The entire diffrac-
tion profiles are adequately fitted by Eq. �10�. The fits pro-
vide two parameters characterizing the dislocation ensemble,

the mean dislocation density � and the screening range L.
The latter quantity corresponds to a mean size of the cells
with the total Burgers vector equal to zero. We find that, for
edge threading dislocations in GaN layers, L is only slightly
larger than the mean distance between dislocations �−1/2.
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