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Capture processes of an electronic wave packet traveling in a quantum wire into localized states of an
embedded quantum dot by means of phonon emission are studied in a quantum kinetic approach. It turns out
that due to the ultrashort length and time scales involved the capture processes exhibit a variety of quantum
kinetic features which cannot be described by a simple semiclassical capture rate. We find in general a
nonmonotonic rise of the occupation of bound states even at low temperatures where no phonon absorption is
possible. This is related to the finite collision duration and the presence of coherent superpositions between
initial and final states in the scattering process giving rise to phonon Rabi oscillations between free and trapped
states. In the case of more than one bound state in the dot typically a linear combination of these bound states
is populated, which leads to a nontrivial dynamics of the trapped carrier density. For potential profiles with
large reflection probability it turns out that also the transmission and reflection behavior is modified by the
capture process. Finally the theory is applied to a two-band model including optical excitation and excitonic
effects. For the scenarios studied in the paper these phenomena lead to some quantitative modifications but

they do not change the characteristic quantum features of the capture dynamics.
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1. Introduction

Due to the continuous reduction of length and time scales
in modern nano- and optoelectronic structures and devices
the carrier dynamics in these systems is increasingly gov-
erned by quantum mechanical features. The basic assump-
tions inherent in the semiclassical kinetic theory, i.e., the
separation of the dynamics into sequences of free flights,
where the carriers are accelerated by the effective local elec-
tric field, and scattering processes which occur pointlike in
space and time between states with well-defined momentum
and energy, lose their validity. For the description of both
transport processes and optical properties a quantum kinetic
approach is needed which overcomes the limitations of semi-
classical kinetics.!?

Carriers moving in potential profiles varying on a nanom-
eter scale do not behave anymore like classical particles
which are accelerated according to the local potential gradi-
ent. This deterministic behavior is complemented by a sto-
chastic aspect given by the quantum mechanical probabilities
for reflection and transmission. Furthermore such profiles
may change the spectral characteristics of the carriers by
introducing a discrete part in the energy spectrum associated
with localized states. Besides the modifications of the ballis-
tic part (free flights) of the dynamics also the description of
scattering processes has to be changed. In particular in the
presence of localized states the notion of a local scattering
process between states with well-defined momenta does not
make sense anymore because these localized states do not
have well-defined momenta. This problem can be overcome
by calculating scattering rates between the states defined by
the potential, which is of course successfully done in the
modeling of carrier transport in low-dimensional structures
like quantum wells and quantum wires. Difficulties arise,
however, if scattering processes between states with different
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effective dimensionalities are considered, such as capture
processes from delocalized states into localized states. In this
case the scattering rates typically depend on the normaliza-
tion volume of the delocalized states which then has to be
fixed by some more or less rigorous argument. This behavior
is related to the fact that as long as only occupations are
considered, as is often done in these calculations, the elec-
trons that occupy continuum states are always completely
delocalized. Spatially inhomogeneous distributions where
the carriers are not completely delocalized require superpo-
sitions of these states and therefore off-diagonal elements in
the density matrices defined with respect to these states.
Examples for such capture processes into states with
lower dimension are abundant in modern micro- and nano-
structured devices. In a quantum well laser carriers have to
be trapped from the three-dimensional transport states into
the two-dimensional states in the active region. In the case of
self-assembled quantum dots carriers are often generated op-
tically in the two-dimensional wetting layer states from
which they are trapped into the zero-dimensional quantum
dot states. Also combined quantum wire—quantum dot struc-
tures have been fabricated either by cleaved-edge
overgrowth® or by growth on a patterned substrate.* In these
structures carriers may undergo transitions between one-
dimensional quantum wire states and zero-dimensional quan-
tum dot states. In the present paper we will address such a
capture from quasi-one-dimensional into quasi-zero-
dimensional states. Because of their importance for hetero-
structure semiconductor lasers capture rates obtained from
Fermi’s golden rule have been calculated for many years,
first mainly for the capture into quantum well states> and
more recently also for the capture into quantum dot
states.'®"13 In contrast to such a golden rule treatment, in this
paper we present a quantum kinetic description which ac-
counts for quantum coherences during the scattering process
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as well as the fundamental quantum mechanical uncertain-
ties.

Another source of ultrashort length scales in the carrier
dynamics is a localized optical excitation. By exciting the
sample through the tip of a near-field optical microscope'*~1°
spot sizes down to a few tens of nanometers have been
achieved.!” These techniques have been applied, e.g., to the
study of exciton transport’> and to selective excitations in
structured samples including quantum wells, wires, and
dots.*!1® Various aspects of the spatiotemporal dynamics of
strongly localized electronic and excitonic wave packets
have been studied theoretically mainly by using a density
matrix formalism. These include the role of the Coulomb
interaction and light field coupling'®!® and the influence of
carrier-phonon interaction which has been treated either in
the Markov approximation”® or in a quantum Kkinetic
approach.??2

Besides ultrashort length scales also ultrashort time scales
lead to a failure of the semiclassical theory. The assumption
of instantaneous scattering processes between states with
well-defined energies is not compatible with the fundamental
uncertainty between energy and time. The limitations of a
semiclassical kinetic theory which are reached when reduc-
ing length and/or time scales are overcome by a quantum
kinetic theory.!">?3 A variety of quantum kinetic phenomena
on ultrashort time scales has been studied in recent years
both theoretically and experimentally. Most of the investiga-
tions have been performed on spatially homogeneous
systems.?*=3! More recently, the quantum kinetic theory has
also been applied to spatially inhomogeneous systems.?! In
quantum dot structures the ultrafast initial decoherence of the
optical polarization has been found to be essentially related
to pure dephasing, i.e., to interaction processes without real
transitions between electronic states, which results in a genu-
inely non-Markovian dynamics and non-Lorentzian
spectra.3?>734 In the case of transport of strongly localized
wave packets energy-nonconserving transitions may lead to
an additional spatial broadening of the wave packet.”!

In this paper we will study the dynamics of carrier trans-
port and capture processes in a quantum kinetic approach. To
be specific, we will assume that the carriers are initially pre-
pared as a localized traveling wave packet in a semiconduc-
tor quantum wire, e.g., by means of an ultrafast optical ex-
citation through the tip of a near-field optical microscope.
This wave packet then approaches a quantum dot embedded
in the wire and, due to the interaction with longitudinal op-
tical phonons, may undergo transitions from the initial delo-
calized continuum states into localized bound states. There-
fore, the present scenario combines the aspects of ultrashort
length scales both in the initial carrier distribution and in the
potential profile with the ultrashort time scales introduced by
the optical excitation. It will turn out that the question of the
final state reached after a capture process is by no means a
trivial one. Hence it is of particular importance that the quan-
tum kinetic treatment is independent of the basis chosen for
the dynamical variables, in contrast to the semiclassical de-
scription which requires an a priori knowledge of the final
state of a scattering process.

The scenario we are studying introduces another fascinat-
ing aspect. By exciting the wave packet in the quantum wire
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region below the threshold for LO phonon emission and con-
sidering the case of low temperatures, the electron-phonon
interaction is effectively switched on only when the wave
packet reaches the dot region. Furthermore, for the traveling
part the interaction is switched off again when the wave
packet leaves the dot region. This is somewhat similar to the
case of an atom flying through a microcavity where the in-
teraction with the light field is also present only as long as
the atom is inside the cavity.?> Indeed we observe in the
carrier dynamics signatures of carrier-phonon Rabi oscilla-
tions in analogy with atom-photon Rabi oscillations in a mi-
crocavity. The short effective duration of the carrier-phonon
interaction gives rise to another phenomenon which is simi-
lar to the carrier-light interaction in the case of a short laser
pulse. It turns out that the carrier-phonon interaction may
create electronic quantum beats between different localized
quantum dot states similar to the creation of electronic quan-
tum beats after ultrafast optical excitation.

The paper is organized as follows. In Sec. II we will
briefly review the density matrix approach to quantum kinet-
ics for spatially inhomogeneous systems. Here we will com-
pare different representations and address the question of the
most suitable basis for numerical implementations. Section
IIT is then devoted to numerical results for various combina-
tions of system parameters and initial or excitation condi-
tions. We will start with sufficiently smooth potentials where
essentially no reflection occurs and compare potential pro-
files with different numbers of bound states. Then we will
consider the case of square well potentials which in certain
energy ranges exhibit a noticeable probability for reflection
of the incident carriers. Here the main focus will be the ques-
tion of how the transmission and reflection properties of the
potential profiles are modified by capture processes. Finally
we will extend our analysis to a two-band model. This will
allow us to treat consistently the optical excitation by a short
and spatially localized laser pulse and thus to model in a
more realistic way possible experimental scenarios. In Sec.
IV we will summarize our results and draw some conclu-
sions.

II. Theory

In this paper we will study capture processes in both a
one-band and a two-band model. The two-band model in-
cludes the optical generation of carriers by means of a short
laser pulse. In order to describe realistically the coupling of a
light field to a semiconductor in the region close to the band
edge it is essential to include also the Coulomb interaction at
least on the mean-field level to describe excitonic effects and
the Coulomb-induced modifications of the oscillator strength
of band-to-band continuum transitions. The one-band model
is obtained from the two-band model by switching off the
carrier-light and Coulomb interaction and neglecting the hole
dynamics. The full Hamiltonian for our system as well as a
detailed derivation and discussion of the quantum kinetic
equations of motion in the density matrix approach both in
momentum and Wigner representation can be found in Ref.
21. While in a homogeneous system these density matrices
are diagonal in a crystal momentum (Kk-space) representation,

045354-2



TRANSPORT OF A WAVE PACKET THROUGH ...

in an inhomogeneous system also the off-diagonal elements
are nonvanishing. The basic electronic variables in the two-
band model are therefore the single-particle density matrices
for electrons f¢ and for holes f”, and the interband density
matrix p defined as

ff(r,k=<clirck>, fﬁr,k=<d£'dk>’ pk’,k=<d—k’ck>v (1)

where ¢} and dj (c, and dj) describe the creation (annihila-
tion) of an electron and a hole with momentum Kk, respec-
tively.

Besides the momentum representations other representa-
tions may be used and indeed may be more convenient for
specific purposes. One possibility is the Wigner representa-
tion. The Wigner functions of electrons and holes are defined
as

Flr)=2 eV o kvan- 2
q

This function has the strongest analogy with a classical dis-
tribution function. In the one-band model calculations we
will use the Wigner representation to define an initial condi-
tion. The semiclassical Boltzmann equation for a space-
dependent distribution function can be obtained by trans-
forming the equations of motion to the Wigner representation
and performing a Markov approximation under the assump-
tion of sufficiently slow spatial and temporal variations. Such
a Markov approximation, however, always implies an a pri-
ori selection of the basis and therefore the resulting semiclas-
sical equations of motion are no longer independent of the
basis. A detailed discussion of this aspect including a com-
parison between different types of Markov approximations
can be found in Ref. 21. The full quantum kinetic theory, on
the other hand, is completely independent of the choice of
the single-particle basis. Therefore, the basis may be selected
according to its convenience for practical calculations.

Here we are interested in the dynamics in the the presence
of a confinement potential V*"(r) for electrons and holes. In
this case a natural basis is given by the eigenfunctions cor-
responding to these potentials which are solutions of the
time-independent Schrodinger equations for electrons and
holes,

ﬁ2
[— A ve»f%r)} ' =m0
Here, m®" are the effective masses of electrons and holes,
@ (r) are the single-particle wave functions, and € are the
corresponding single-particle energies. In general, for the
problems studied here the single-particle spectrum is par-
tially discrete (for the bound states) and partially continuous
(for the delocalized states). Therefore this representation is
particularly transparent for the study of transitions between
delocalized and localized states, i.e., the carrier capture pro-
cesses which are at the focus of the present paper.

The basic variables in this representation are the electron
density matrix PZ',n’ the hole density matrix Pzr,n’ and the
interband density matrix p,, which are defined as
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p;’,n = <CI,C,1>, pﬁ’,n = <djl’dn>’ Pn'n= <dn’cn>’ (4)

where ci and df, (c, and d,,) denote the creation (annihilation)
of an electron and a hole in the nth eigenstate ¢ of the
single-particle Hamiltonian. These density matrices are re-
lated to the respective k-space density matrices by a unitary
transformation which reads, e.g., for p%

Py = 2 BB Ky, (5)
k' .k

with the momentum representation of the single-particle
eigenstates

1 .
~e,h 3 . —ikr eh
(k) = fd re o(r), (6)
@, \FV ¢

V being a normalization volume. Analogously, p° is related
to the Wigner function according to

1\ L1 1 .
05, =2 q’éf,,(k— —q)@j (k + —q) X — f Br e (r).
ns o 2 2 Y

()

The equations of motion in this basis have a similar form as
in the momentum representation discussed in detail in Ref.
21 [Egs. (15)—(17)]. When comparing the equations of mo-
tion in the k-space representation and in the eigenbasis of the
single-particle Hamiltonian one notices that in the latter case
the single-particle potential does not appear anymore, but in
general the structure is more complicated. The reason is that
in the momentum representation both the Coulomb interac-
tion and the electron-phonon interaction are described by
coupling matrix elements depending on a single momentum
argument. In the eigenbasis the Coulomb matrix elements
depend on four electronic indices and the carrier-phonon
coupling depends on two electronic indices and the phonon
momentum.”? Therefore the solution of the equations re-
quires more summations to be performed than in the momen-
tum representation. This leads to the question of which rep-
resentation is better suited for a numerical modeling of the
carrier kinetics. Here it turns out that this strongly depends
on the system parameters as well as on the excitation or
initial conditions for the dynamics. If these conditions are
chosen such that only a relatively small energy range is rel-
evant, e.g., by excitation close to the band edge, the eigen-
basis is much more convenient because only the states with
single-particle energies in this energy range have to be taken
into account. In the momentum representation, if spatial
variations on short length scales are involved either by a
confinement potential or by a strongly localized initial con-
dition, states up to rather high momenta have to be included
in order to resolve these short-range spatial variations.
Therefore the basis set must be much larger, which makes
the numerics less efficient. If, on the other hand, an excita-
tion rather high up in the bands is studied, as has been the
case in Ref. 21, the number of states which has to be in-
cluded is comparable in both representations. In that case the
simpler structure of the equations of motion in the momen-
tum representation makes this one favorable for the numeri-
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cal implementation. In the present paper we are mainly in-
terested in carrier capture processes. Therefore we will
assume excitation conditions close to the band edge such that
by the emission of a phonon a localized state in the confine-
ment potential can be reached. In this case the eigenbasis
turned out to be much more efficient. In addition we have
checked that the calculations in both representations indeed
lead to exactly the same results thereby confirming the base
independence of the quantum kinetic approach.

III. Results

After having introduced the theoretical approach we will
now apply the quantum kinetic theory to capture processes of
carriers traveling in a cylindrical GaAs quantum wire with an
embedded quantum dot. The carriers are coupled via the
Frohlich interaction to bulk longitudinal optical phonons
with an energy of Aw; =36.4 meV. The confinement poten-
tials for electrons and holes are taken as the sum of a lateral
confinement potential with infinitely high barriers modeling
the quantum wire and a longitudinal potential V*/(z) describ-
ing the embedded quantum dot. The eigenstates of the single-
particle potential then factorize into a lateral part given by a
Bessel function and the eigenfunction ¢“"(z) of the longitu-
dinal potential. In the lateral direction we will consider only
the lowest eigenmode of a cylindrical quantum wire with
100 nm? cross section, which therefore reduces the problem
to an effectively one-dimensional system. In the longitudinal
direction we take periodic boundary conditions with a peri-
odicity length that is sufficiently large such that during the
simulation time the boundaries are not reached by the wave
packets. In this paper we will restrict ourselves to rather low
excitation densities. In this case it is a good approximation to
treat the phonon system as a phonon bath, neglecting effects
related to coherent and nonequilibrium phonons. Further-
more, we will consider only the case of low temperatures
where phonon absorption processes are negligible. Results
for elevated temperatures will be published elsewhere.

Our main focus is the spatiotemporal dynamics of elec-
trons and holes. Therefore we will extract from the single-
particle density matrices the spatially resolved electron and
hole densities according to

nMz0) =2 ¢ (@ps) (0" (2). (8)

’
n',n

For the interpretation of the results it will be particularly
useful to study also the dynamics of the occupations of cer-
tain single-particle states. These occupations are given by the
diagonal elements of the density matrices p;’,ﬁ(t).

In the first part we present results of calculations made in
a one-band model, where the wave packet is assumed to be
generated locally in the vicinity of the dot. The generation
process is not explicitly included; instead we use an initial
condition which reflects the result of the optical excitation.
Below we will show that for the present parameters this is a
reasonable approximation. For the initial distribution we
choose a Wigner function which factorizes into a Gaussian in
position space [full width at half maximum (FWHM) 25 nm]
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and a Gaussian in the kinetic energy (mean energy 18 meV,
FWHM 18 meV). This is chosen to mimic an optical genera-
tion by an ultrafast Gaussian laser pulse through the tip of a
near-field microscope in the vicinity of the quantum dot.
However, in k space we put the initial distribution only on
one side of the energy parabola, where the momentum is
directed toward the dot. We thus concentrate on the part of
the electron wave packet moving toward the dot. The part of
the wave packet that is moving away from the dot is obvi-
ously unimportant for studies of the capture process. This
will be shown explicitly in the last part of this section where
we account for the full k-symmetric carrier generation within
a two-band model.

We will analyze the influence of weakly reflecting as well
as strongly reflecting quantum dot potentials on the dynam-
ics of the wave packet traveling in the quantum wire. The
weakly reflecting quantum dot potential for the electrons
V¢(r) is modeled by

V¢(z) = - Vysech(z/a). 9)

The parameters V|, and a determine the depth and the width
of the dot, respectively, and therefore the number and ener-
gies of the bound states. The strongly reflecting quantum dot
potential will be modeled by a square well potential of depth
V, and width a.

A. Weakly reflecting quantum dot potential: One bound level

First we will consider the case of a shallow, weakly re-
flecting potential [Eq. (9)] which is achieved by setting V,
=30 meV and @¢=4 nm. This quantum dot potential has one
bound level at an energy of —14.4 meV. Figure 1 shows the
electron density as a function of space and time for the cases
(a) without and (b) with carrier-phonon interaction. The spa-
tial profile of the initial distribution and the quantum dot
potential are shown in the inset. Let us first concentrate on
the case without carrier-phonon interaction. The wave packet
starts 90 nm away from the dot center and begins to spread
due to the dispersion. When the wave packet reaches the dot
region (from about —20 to 20 nm), it splits because of the
higher kinetic energy and the resulting higher group velocity
of the front part of the wave packet above the dot. After the
passage it reshapes again and no density remains in the dot
region. Since the dot potential is sufficiently smooth there is
almost no reflection of the wave packet in this case.

Figure 1(b) shows the electron dynamics including the
interaction with longitudinal optical phonons, where the situ-
ation is completely different. Again, the wave packet moves
toward the dot but now a considerable contribution of the
density remains in the dot region. This clearly indicates a
capture into the localized state of the dot by means of the
emission of a LO phonon. In addition to this capture we
notice another significant difference compared to the case
without phonon interaction. We do not have just one trans-
mitted wave packet but the initially transmitted wave packet
is followed by a sequence of other smaller wave packets.
This already indicates that the capture process when viewed
at such short time and length scales exhibits pronounced dif-
ferences compared to a process described simply by a semi-
classical capture rate.
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FIG. 1. Electron density in the one-band model as a function of space and time (a) without and (b) with carrier-phonon interaction. Inset:
initial electron distribution and quantum dot potential in real space with one bound level at —14.4 meV.

To interpret the real space dynamics we have analyzed the
occupations of the single-particle eigenstates. Figure 2(a)
shows the occupation of the bound state as a function of time
normalized to the total occupation of all states. We observe
that the occupation remains essentially zero until about 200
fs when the wave packet reaches the dot region. Then the
occupation exhibits a steep rise reflecting the capture of car-
riers from the continuum states to the bound state by means
of phonon emission. However, the occupation does not rise
monotonically as one would expect from a simple semiclas-
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FIG. 2. (a) Occupation of the bound level at —14.4 meV as a

function of time and (b) occupation of the continuum states at ¢
=0 and 550 fs for the same scenario as in Fig. 1.

sical capture rate but it exhibits an overshoot and pronounced
oscillations until it finally reaches an asymptotic value of
about 32%. The overshoot and the oscillations are clear sig-
natures of quantum kinetics. They are a consequence of the
fact that unlike in classical kinetics here a scattering process
has a finite temporal duration. During the evolution a coher-
ent superposition of an initial continuum electron state with-
out a phonon and a final electron state with a phonon emitted
builds up. Only with increasing time do the coherences de-
cay and the semiclassically allowed transition survives. At
short times, according to energy-time uncertainty also
energy-nonconserving transitions are possible, which give
rise to the initial overshoot in the occupation of the bound
state.

Characteristic for the present scenario is the fact that the
spatial propagation of the carriers through the structured
sample leads effectively to a temporal variation of the inter-
action between electrons and phonons. As long as the wave
packet is in the quantum wire region we find some small
effects due to a polaron dressing of the carriers which, how-
ever, leads only to small modifications of the wave packet
dynamics when compared to the case without carrier-phonon
interaction. As soon as the wave packet reaches the quantum
dot region phonon emission becomes possible and, thus, the
interaction is effectively switched on. If we had a single
initial state and a single phonon mode this would lead to
electron-phonon Rabi oscillations between the initial state
without phonon and the final state with phonon, very similar
to the case of atoms entering a microcavity where the switch-
ing on of the carrier-light interaction leads to electron-photon
Rabi oscillations.* In our case we have a continuum of ini-
tial states and therefore a continuum of Rabi frequencies
with variable detuning. This leads to a rather strong damping
of the oscillations seen in Fig. 2(a). These Rabi-like oscilla-
tions also explain the emission of the follow-up wave pack-
ets. Whenever the system is in the continuum state without
phonon there is a certain probability that the carriers leave
the dot. Indeed, a close look at Fig. 1(b) reveals that the
wave packets are always emitted when the occupation of the
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ground state has a minimum. Since at low temperatures, as
considered here, only phonon emission processes are pos-
sible, only coherences between initially occupied continuum
states and the localized state build up. Thus, starting from
continuum states with well-defined directions of their mo-
menta, also after the completion of a full Rabi cycle only the
initially occupied continuum states will be repopulated. This
explains why the emitted wave packets always have the same
direction as the initial wave packet. It should be mentioned
that despite the qualitative analogy with atoms moving
through a microcavity there are also several differences
which prevent a direct quantitative comparison. Due to the
broad continuum of energies here it is not justified to per-
form a rotating wave approximation as is usually done in
quantum optics. Perfect Rabi oscillations, however, are only
obtained within this approximation. Counter-rotating contri-
butions lead to a coupling of the various transitions. In addi-
tion we have carrier-phonon coupling terms which are diag-
onal in the electron or hole states. These terms are also not
present in the standard quantum optics models. Such a diag-
onal coupling gives rise to pure dephasing which is known to
be the main source for the initial decoherence in strongly
confined quantum dots.>*

Figure 2(b) shows the occupations of the continuum states
at two different times. The initial distribution (#=0) reflects
the Gaussian Wigner distribution centered at 18 meV. Above
a few meV the states are essentially plane waves and there-
fore the occupation of the eigenstates essentially agrees with
the Wigner distribution. Only close to the band edge does the
quantum dot potential modify the states resulting in some
differences between the two pictures. The second curve (¢
=550 fs) refers to a time when the capture is nearly com-
pleted. We find a pronounced dip in the occupation at an
energy of 22 meV which is exactly one LO phonon energy
above the bound state. Thus, indeed the capture is most pro-
nounced for the semiclassically allowed transition. But we
also notice that there is a considerable broadening: the dip in
the occupation has a width of several meV. This broadening
reflects the energy-time uncertainty which cannot be ne-
glected on these ultrafast time scales.

Since after the capture process a certain range of energies
is missing in the continuum occupation, the question arises
of what happens if the transmitted wave packet reaches an-
other quantum dot. This is shown in Fig. 3 where the spatial
electron density profile is plotted at different times for the
case of two quantum dots separated by 100 nm. Due to the
large distance between the dots they are effectively un-
coupled and have quasidegenerate bound states. Figure 4
shows the corresponding time-resolved occupations of the
ground states of the two quantum dots. For the first dot cen-
tered at =50 nm we observe the same behavior as discussed
above: The capture starts at about 200 fs, the ground-state
occupation exhibits an oscillatory behavior, and it reaches
about 32%. The second dot is reached by the transmitted
wave packet at about 500 fs. Subsequently, a transient occu-
pation of the bound state of this dot builds up although we
know that there is essentially no occupation in the continuum
states about one LO phonon energy above the bound state.
This is again a typical quantum kinetic feature related to
energy time uncertainty. At =700 fs we observe a clear peak
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FIG. 3. Spatially resolved electron density at different times for
the case of an electron wave packet approaching two identical quan-
tum dot potentials. The lower part shows the double quantum dot
potential with effectively uncoupled bound states of the dots at
—14.4 meV.

in the spatially resolved profiles at the position of the second
dot (cf. Fig. 3). After about 850 fs, however, most of this
occupation has disappeared and only a few percent occupa-
tion is remaining. In Fig. 3 we only see the electrons trapped
in the first dot as well as the outgoing wave packet leaving
the regions of the quantum dots.

B. Weakly reflecting quantum dot: Three bound levels

The quantum dots studied so far were characterized by a
single bound state. Let us now consider the case of a quan-
tum dot potential with more than one bound state. To con-
centrate on the capture we choose again a sufficiently smooth
potential to minimize reflection of the incident wave packet.
Therefore we take again a potential of the form of Eq. (9),
but now with the parameters V=40 meV and a=10 nm.
This potential has three bound states at energies of —30.6,
—15.2, and =5.8 meV. The initial conditions for the wave

0 025 05 075 1 1.26 1.5
time (ps)

0

FIG. 4. Occupation of the bound levels in the two quantum dots
of Fig. 3 as a function of time.
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FIG. 5. Electron density as a function of space and time for the
case of an electron wave packet approaching a quantum dot poten-
tial with three bound states.

packet are the same as in the previous case. Figure 5 shows
the corresponding electron density as a function of space and
time. We see again the initial wave packet approaching the
quantum dot, the transmitted wave packet, and a part which
remains localized around z=0, i.e., in the region of the quan-
tum dot. If we compare this result with the result for the
quantum dot with one bound level, we notice an interesting
additional feature: The trapped wave packet has now a two-
peak structure and the occupation oscillates between these
two peaks. This is even more clearly visible in Fig. 6 where
the spatial profiles of the electron distribution at different
times are plotted for the cases without (dotted lines) and with
(solid lines) electron-phonon interaction. Without interaction,
as in the case of one bound state the wave packet exhibits
some distortions in the region of the quantum dot but after-
wards it reshapes and it is essentially completely transmitted.

n®(z) (arb. units)

< 0 58 mev
-156.2 meV

O -

2 20

= -30.6 meV

N 40

@« 1 L 1

> .200 -100 0 100 200

z (nm)

FIG. 6. Spatial profile of the electron density at different times
for the case of a quantum dot potential with three bound states;
dotted lines are without and solid lines with electron-phonon inter-
action. The lower part shows the potential profile together with the
energies of the bound states.
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FIG. 7. (a) Occupations of the bound levels as functions of time
(level 1, =30.6 meV; level 2, —15.2 meV; level 3, —5.8 meV) and
(b) imaginary part of the coherences between the bound levels.

With carrier-phonon interaction switched on we see the os-
cillating double peak structure of the trapped carrier density.
Obviously the trapped carrier density initially tries to follow
the incoming wave packet until it reaches the right border of
the quantum dot. There it is reflected and it starts to perform
spatial oscillations inside the dot.

To understand this dynamical behavior let us look again at
the occupations of the bound states. The individual occupa-
tions as well as the sum over all three bound states are plot-
ted in Fig. 7(a) as a function of time. Again, the occupations
start to grow at about 200 fs when the wave packet reaches
the quantum dot. Interestingly we find that first the occupa-
tion of the third level starts to grow, then that of the second
level, and finally the occupation of the lowest level. This can
be understood from the spatial structure of the bound states.
The deeper the energy of the bound state the more localized
is the wave function. Therefore the traveling wave packet
first overlaps with the highest, i.e., the third, state. This tran-
sition, however, is far off resonance and therefore the occu-
pation is only transient. The second state is closest to reso-
nance. Its occupation exhibits a dynamical behavior similar
to the case of a single bound state as studied above. After
some oscillations it reaches an asymptotic value of about
27%. The transition to the lowest state at =30.6 meV is reso-
nant for the carriers close to the band edge. These carriers are
quite slow and therefore the occupation grows much more
slowly than for the second state where the carriers in the
initial state move much faster. In total we find a capture
efficiency of about 55%.

The dynamics of the occupations, however, does not yet
explain the oscillations found in the trapped density. Their
origin becomes clear when looking at the off-diagonal ele-
ments of the density matrix in the subspace of the bound
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states. The imaginary parts of these coherences between all
pairs of the three bound states are plotted as a function of
time in Fig. 7(b). Like the diagonal elements they have been
normalized to the total occupation. The real parts exhibit a
similar behavior and are therefore not shown here. We find
that after about 200 fs all off-diagonal elements are nonvan-
ishing and they exhibit a periodic oscillation. The period of
the oscillation of the variable p;; agrees with the Bohr period
of the transition 277 /(e;~¢;). The presence of these off-
diagonal elements demonstrates the fact that after the capture
process the carriers do not simply occupy with a certain
probability one of the bound states; instead they are in a
coherent superposition of these states. We find a particularly
pronounced coherence between the ground state and the first
excited state where the off-diagonal elements are indeed of
the same order of magnitude as the diagonal elements. This
coherent superposition of the symmetric ground state with
the antisymmetric first excited state gives rise to the spatial
oscillations of the trapped wave packet observed in Figs. 5
and 6. These oscillations are therefore a typical quantum
mechanical effect and would not be present in any calcula-
tion based on a semiclassical capture rate.

The creation of coherent superposition states in an inter-
action process shows again strong analogies between carrier-
phonon and carrier-light interaction. As already mentioned,
due to the motion of the traveling wave packet across the
quantum dot region the carrier-phonon interaction is active
only during a certain time interval. From the wave packet
dynamics without carrier-phonon interaction in Fig. 6 we can
extract an effective interaction time of about 200 fs which
also agrees with the rise time of the occupation of the second
level in Fig. 7. This time is shorter than the Bohr period of
the most important coherence between the ground and the
first excited state which is 270 fs. Therefore the situation is
similar to the case of the interaction with a short laser pulse
where also quantum beats between different states are ex-
cited if the pulse spectrum overlaps with two or more tran-
sitions or, equivalently, if the pulse duration is shorter than
the Bohr periods corresponding to the energy differences of
the transitions involved.

C. Strongly reflecting quantum dot

In the previous sections we have discussed smooth quan-
tum dot potentials. In those cases the incoming electron
wave packet has been partly captured into the localized states
of the dot while the remaining part was transmitted through
the dot region. As soon as there are sharp potential variations
there appears a third possibility, the reflection of the incom-
ing carrier distribution. A typical example where such a be-
havior occurs is a square well potential. Therefore, in this
section we study the carrier capture processes in the case of
a square well potential with a depth of —25 meV and a width
of 30 nm. This dot has two bound states at energies of —11.2
and —21.4 meV. We will compare an initial condition where
the incoming wave packet is located in a reflection maximum
with the case where the energy of the wave packet is cen-
tered at a transmission maximum. For the potential profile
chosen here the first reflection maximum is at an energy of
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FIG. 8. Spatial profiles of the electron density at different times
for the case of an electron wave packet approaching a square well
potential. (a) refers to an initial excess energy of 12 meV (reflection
maximum) and (b) to an excess energy of 34 meV (transmission
maximum). The dotted lines are without and the solid lines with
carrier-phonon interaction.

12 meV with a reflection probability of about 25%. The next
transmission maximum is then at 34 meV. Therefore, as ini-
tial conditions we have chosen Gaussian kinetic energy dis-
tributions centered around these two values and, as in the
previous cases, with a FWHM of 18 meV. The spatial pro-
files of the electron distribution at different times for these
two initial conditions are plotted in Fig. 8. The left panel
refers to the injection at the reflection maximum while the
right panel corresponds to the transmission maximum. In
both cases the dotted lines are the results of calculations
without carrier-phonon interaction and the solid curves are
the results including carrier-phonon interaction. Let us first
discuss the results without this interaction. In Fig. 8(a) the
wave packet approaches the dot. Then, due to reflections at
the two interfaces between quantum dot and surrounding ma-
terial a standing wave pattern builds up inside the dot region
and finally a part of the wave packet is transmitted while
another part is reflected. This reflected wave packet inter-
feres with the slow parts of the incoming wave packet which
results in the oscillatory density profiles at negative values of
z. Due to the absence of carrier-phonon interaction there is
essentially no electron density remaining in the region of the
quantum dot. In the case of injection at the transmission
maximum [dotted line in Fig. 8(b)] we again observe the
buildup of the standing wave pattern in the quantum dot, but
at later times the wave packet reshapes and it is nearly com-
pletely transmitted through the quantum dot region.

Let us now come to the cases with carrier-phonon inter-
action switched on (solid curves in Fig. 8). We first notice
that for both initial conditions now there is a considerable
part of the electron density remaining in the quantum dot
region indicating the carrier capture. The trapped carrier den-
sity exhibits a one peak structure in Fig. 8(a) while in Fig.
8(b) it is characterized by a two-peak structure. This different
behavior can be understood from Fig. 9, where we have plot-
ted the occupations and coherences of the bound states for
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FIG. 9. (a), (b) Occupations of the bound
states and (c), (d) coherences between these states

as a function of time for the case of a square well
potential. The left part (a), (c) refers to an initial
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energy of 12 meV (reflection maximum), the
right part (b), (d) to an initial energy of 34 meV
(transmission maximum).
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the present scenarios. Indeed, for carriers incident at the re-
flection maximum [Figs. 9(a) and 9(c)] the capture mainly
results in an occupation of the ground state with only a small
occupation of the excited state. This is because the incident
energy is roughly one LO phonon energy above the ground
state such that this transition is close to resonance. The
ground-state wave function is an even function without a
node which explains the single-peak structure in the trapped
density profile. For the case of injection at the transmission
maximum [Figs. 9(b) and 9(d)] the initial energy is much
higher and the transition to the excited state is much closer to
resonance than the ground-state transition. Therefore, now
the excited state is mainly populated; it has an odd wave
function with a node in the center and thus gives rise to the
two-peak structure of the trapped density.

When comparing the results with and without carrier-
phonon interaction in Fig. 8 we notice another interesting
feature. When injecting at the reflection maximum the re-
flected part is nearly unchanged by the capture. Essentially
all of the trapped carriers are taken from the transmitted
wave packet which is considerably reduced compared to the
case without electron-phonon interaction. A different behav-
ior is observed in the case of injection at the transmission
maximum. Without carrier-phonon interaction there is essen-
tially only transmission; therefore this part has to be reduced
when capture processes occur. However, in addition to the
capture we now find also a considerable enhancement of the
reflected contribution. Thus we find that the presence of an
inelastic channel (the emission of LO phonons) also modifies
the elastic scattering properties of the potential profile. This
can be traced back to two basic phenomena. First the pres-
ence of carrier-phonon interaction in a quantum kinetic cal-
culation slightly modifies the spectral properties of the qua-
siparticles. Instead of electrons we now deal with polarons
with a slightly changed effective mass and ground state en-
ergy. This renormalization leads to a shift of the position of

time (ps)

0.75 1

transmission or reflection maxima. In the present case this is
of minor importance because these maxima are relatively
broad. Second and more important, as is well known from a
Fabry-Pérot resonator, the perfect transmission at a certain
energy is a result of the perfect destructive interference of all
waves which are reflected at the two boundaries. The pres-
ence of an inelastic channel modifies the phases of the wave
functions and therefore destroys the condition of exact de-
structive interference resulting in a finite reflection at this
energy.

D. Capture in the two-band model

Up to now we have discussed the results obtained within
a one-band model. This has allowed us to concentrate on the
electronic capture process and in particular to analyze the
pertinent quantum features in such processes which are a
consequence of the ultrashort length and time scales. In these
calculations we started with a given initial distribution. Of
course, for a realistic modeling it is necessary to specify how
such an initial condition could be realized. As already men-
tioned in the introduction, a carrier distribution that is local-
ized both in real space and momentum space could be
achieved by an optical excitation of an intrinsic semiconduc-
tor with a strongly focused laser pulse, e.g., by means of
excitation through the tip of a near-field microscope.'!¢ In
the present section we include explicitly this generation pro-
cess. Now the electron-phonon system is initially in the well-
defined vacuum state. The laser pulse is modeled by a trans-
verse electric field which is Gaussian in space and time and
is coupled to the semiconductor by means of the usual dipole
coupling.'® We thus neglect possible effects of longitudinal
evanescent fields of the near-field tip. Such fields are known
to become important very close to the tip. Typically they are
of minor importance if there is some kind of spacer between
the tip and the semiconductor nanostructure, in our case, e.g.,
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a barrier material around the quantum wire. It is well known
that the optical properties of semiconductors in particular in
the vicinity of the band gap are strongly determined by Cou-
lomb effects.? Therefore in the following we will compare
calculations performed without Coulomb interaction with
calculations where this interaction has been included on the
mean-field level and which, therefore, fully account for the
presence of an excitonic absorption as well as Coulomb-
induced modifications of the oscillator strengths of optical
transitions in the band-to-band continuum.

To be comparable with the one-band calculations we have
chosen the same potential profile for the electrons as in Sec.
Il B, i.e., a weakly reflecting potential supporting three
bound states. Assuming a valence band discontinuity of 2/3
of the electron discontinuity as well as standard GaAs mate-
rial parameters, this leads to a quantum dot potential for the
holes with seven bound states which, however, will not be
important in the following. To model the optical excitation
we use a 50 fs laser pulse with an excess energy of 20 meV

centered at =0 and a Gaussian spatial distribution centered
at z=-90 nm with a FWHM of 25 nm. The resulting spatial
profiles of electrons and holes at different times are plotted in
Fig. 10. Here the left panel refers to the calculations without
Coulomb interaction while in the right panel this interaction
has been included on the mean-field (time-dependent
Hartree-Fock) level. Around r=0 we see the generation of
the electron and hole distributions. The electron distribution
starts to separate into a left- and a right-moving wave packet
already during the excitation process. The holes, because of
their much smaller group velocities, separate into two wave
packets only at much later times. Because of these slow ve-
locities they do not reach the quantum dot within the simu-
lation time and therefore we do not observe hole trapping in
the present case. The most obvious difference in the electron
dynamics compared to the one-band calculations (see Fig. 6)
is the presence of two wave packets moving in opposite di-
rections. This is because the coupling to the light field is
symmetric with respect to k and therefore does not lead to a
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preferential direction. But the results also show that the wave
packet moving away from the quantum dot does not influ-
ence the capture dynamics, therefore it was justified to con-
centrate on a wave packet moving in one direction in the one
band calculations. Also the trapping dynamics is very similar
to the one-band case. In Fig. 10 we again find a two-peak
structure and spatial oscillations of the trapped electron dis-
tribution very similar to Fig. 6. This is also confirmed by Fig.
11 where we have plotted the occupations and coherences of
the bound electron states in the two-band case. The most
pronounced difference compared to Fig. 7 is the reduction of
all variables roughly by a factor of 2. This is simply due to
the presence of the wave packet moving away from the dot
which contributes to the total carrier density and therefore to
the normalization of the density matrix elements. Some small
quantitative differences are related to the fact that the coher-
ent generation process with a pulse of finite duration does
not lead exactly to the same initial distribution as used in the
one band calculations. It has been found earlier’! that in a
quantum kinetic model we find a somewhat enhanced occu-
pation at higher energies which is probably the reason for the
somewhat larger occupation of the third state in the two-band
calculations.

Interestingly we find only small differences between the
calculations with and without Coulomb interaction. The rea-
son is that obviously the excess energy of 20 meV is already
sufficient to essentially remove excitonic effects. Neverthe-
less there are a few Coulomb-related features observable.
First of all, the total number of electron-hole pairs which is
generated by a laser pulse of given field amplitude is reduced
if the Coulomb interaction is switched on, as can be seen
most clearly in the hole density profiles in Fig. 10. This is a
consequence of the Coulomb-induced modifications of the
oscillator strengths of interband transitions which in a quan-
tum wire leads to a reduction of the absorption above the
band gap? in contrast to two- and three-dimensional systems
where the absorption is enhanced.’” Second, we find that the

06 08

occupation of the ground state is smaller in the calculations
with Coulomb interaction than without this interaction. This
can again be attributed to the reduction of the absorption
above the band gap in quantum wires which completely re-
moves the singularity at the band edge typical for one-
dimensional systems. As already mentioned in Sec. III B, the
ground state is mainly populated from carriers close to the
band edge because this transition is close to resonance.
Therefore, the effective reduction of the density of states in
this energy window also reduces the capture processes from
these states. Finally, when looking at the electron density
profiles in Fig. 10(b) we observe a small peak which remains
localized at the position of the generation. These are elec-
trons which are bound in excitons with vanishing center-of-
mass momentum. Since the exciton line in the absorption
spectrum is very strong, the small spectral overlap of the
exciting pulse with this line is still sufficient to produce a
small but clearly observable number of excitons. The forma-
tion of bound excitons from electron-hole pairs excited in the
continuum below the threshold for LO phonon emission due
to the interaction with acoustic phonons occurs on a much
longer time scale and need not to be taken into account
here.® Besides these three phenomena, the reduction of the
total density, a somewhat reduced occupation of the ground
state, and a small excitation of bound excitons, the capture
process turns out to be essentially not affected by the mean-
field Coulomb terms.

IV. CONCLUSIONS

In this paper we have presented a detailed analysis of the
ultrafast dynamics of carrier capture processes in semicon-
ductor nanostructures due to the polar interaction with LO
phonons. Our calculations have been based on a quantum
kinetic density matrix approach for both a one-band and a
two-band model. The former allowed us to concentrate on
the capture process of a single species of carriers; within the
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latter we then have included the optical excitation process as
well as the Coulomb interaction in mean-field approximation
which allowed us to realistically model a scenario which at
least in principle is experimentally accessible.

Our results showed that on the ultrashort length and time
scales considered here there are plenty of deviations from the
simple semiclassical picture of a capture process described
by a capture rate. At low temperatures where phonon absorp-
tion processes are absent such a capture rate would always
lead to a monotonic rise of the occupation of bound states. In
contrast, we have found already in the simplest case of a
smooth quantum dot potential with a single bound state that
the occupation exhibits a nonmonotonic rise including an
overshoot and subsequent oscillations. The overshoot is the
result of energy-time uncertainty. The oscillations can be in-
terpreted as carrier-phonon Rabi oscillations between a con-
tinuum state without phonon and a localized state with pho-
non which are excited due to the effective switching on of
the carrier-phonon interaction when the wave packet reaches
the quantum dot region.

The capture process exhibits additional interesting fea-
tures in the case of quantum dot potentials with more than
one bound state. In this case we have found that in general
the capture does not simply lead to certain occupations of the
bound states but that linear superpositions of these bound
states are populated. These superpositions then give rise to a
nontrivial spatiotemporal dynamics of the trapped carrier
density, e.g., in the case of a superposition between states
with even and odd symmetry to spatial oscillations inside the
quantum dot. The creation of these superposition states can
be understood from the effectively finite duration of the
carrier-phonon interaction which is active only as long as the
traveling wave packet is in the dot region.

If the quantum dot potential exhibits sharp discontinuities
as in the case of a square well potential, besides transmission
and capture there is also the possibility of reflection of the
incident wave packet. We have found that the inelastic car-
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rier capture process may have a pronounced effect on the
reflection and transmission characteristics. Because it affects
the phase of the wave packet dynamics it can remove the
conditions for perfect destructive interference of the reflected
parts and thereby considerably enhance the reflection prob-
ability.

We have then extended our studies to the more realistic
two-band model including the coherent carrier generation
process and excitonic effects. We found some quantitative
differences compared to the one-band calculations but re-
markably little influence on the dynamics of the capture pro-
cess. In particular the capture into superposition states asso-
ciated with spatial oscillations of the trapped electron density
are almost the same as in the one-band case. Therefore the
use of the numerically simpler one-band model for the study
of the kinetics of capture processes at least under the present
excitation conditions is well justified. But, of course, as soon
as optical signals have to be calculated, for example to inter-
pret spatially resolved pump-probe experiments,'® a two-
band model is necessary.

The strong deviations from the semiclassical picture re-
ported here for the ultrafast dynamics of capture processes
directly reflects the memory structure inherent in the quan-
tum kinetic treatment. Our results reveal a variety of inter-
esting phenomena which become accessible when the quan-
tum kinetic regime is reached. Moreover, the phase
sensitivity that is characteristic for such memory effects may
open perspectives to manipulate the interacting dynamics
when the system is probed on ultrashort time and length
scales.
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