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We investigate static charge- and spin-density modulation patterns along a ferromagnet-semiconductor
single-junction quantum wire in the presence of spin-orbit coupling. Coherent scattering theory is used to
calculate the charge and spin densities in the ballistic regime. The observed oscillatory behavior is explained in
terms of the symmetry of the charge and spin distributions of eigenstates in the semiconductor quantum wire.
Also, we discuss the condition that these charge- and spin-density oscillations can be observed experimentally.
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I. INTRODUCTION

Relativistic quantum mechanics has predicted a rapid os-
cillatory behavior of free electrons, called Zitterbewegung,
which is due to the interference between the positive- and
negative-energy components in the wave packet.1 This pecu-
liar oscillation happens because the velocity is not a constant
of motion even in the absence of any potential and has a
fluctuating component, while the momentum commutes with
the Hamiltonian. Recently, from the analogy between the
band structure of semiconductor quantum wells and relativ-
istic electrons in vacuum, it has been pointed out that elec-
trons in semiconductors undergo the same oscillatory
motion.2,3 The essential mechanism causing such a motion is
the spin-orbit �SO� coupling in the semiconductor. In a two-
dimensional electron gas confined in a heterostructure quan-
tum well, two SO coupling effects are usually taken into
account: the Rashba4 and Dresselhaus5 SO coupling effects
described by the following expressions:

HR =
�kR

m
��xpy − �ypx� and HD =

�kD

m
��ypy − �xpx� ,

�1�

respectively, where �= ��x ,�y ,�z� are the Pauli matrices.
The strength of each SO coupling is measured in terms of
characteristic wave vectors kR and kD, respectively. The
Rashba term HR arises when the confining potential of the
quantum well lacks inversion symmetry, while the Dressel-
haus term HD is due to bulk inversion asymmetry. In the
presence of SO coupling, the velocity of the electron is not a
constant of motion

dv

dt
=

2��kR
2 − kD

2 �
m2 �p � ẑ��z. �2�

The spin precession �z�t� due to the SO coupling eventually
leads to a fluctuating velocity and, consequently, to an oscil-
lating motion of the electron.

Although the oscillatory behavior of the electron is dy-
namic in the original proposal of the Zitterbewegung, it is
highly plausible that one can observe static patterns of
charge-density oscillation in some properly structured semi-
conductor samples.

In our paper we investigate static charge- and spin-density
oscillations along a ferromagnet-semiconductor single-
junction quantum wire in the ballistic limit. The charge and
spin densities across the system are calculated using coherent
scattering theory. The observed oscillatory behaviors are ex-
plained in terms of the symmetric or antisymmetric structure
of charge and spin distributions of eigenstates in the semi-
conductor quantum wire. Also, we discuss the condition that
these charge- and spin-density oscillations can be observed
experimentally.

Our paper is organized as follows: In Sec. II we investi-
gate the properties of eigenstates of semiconductor quantum
wires, paying attention to their symmetric structures in
charge- and spin-density distributions. The effect of SO cou-
pling on the structures in the presence of a confinement po-
tential is examined in detail. Section III is devoted to the
numerical calculation of charge- and spin-density modula-
tions in the ferromagnet-semiconductor single-junction sys-
tem in the presence of SO coupling. The main results are
summarized in Sec. IV.

II. PROPERTY OF EIGENSTATES IN SEMICONDUCTOR
QUANTUM WIRES

Previous works6,7 have shown that perturbation theory
cannot correctly explain the effect of moderate or large SO
coupling on energy levels and properties of eigenstates in
semiconductor quantum wires. Instead, truncating the Hilbert
space to the lowest bands2,7 or tight-binding models6 were
successfully used to investigate the role of SO coupling on
the transport through quantum wires. Here, we have imple-
mented an exact numerical method of solving the system
with arbitrary strength of SO coupling. Before introducing
the method and discussing the properties of the states ob-
tained numerically, we briefly review the structure of the
system Hamiltonian and its symmetry in terms of transverse
modes.

A. Hamiltonian and symmetry properties

We consider a quasi-one-dimensional system of electrons
in the presence of SO coupling
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HS =
p2

2m
+ V�r� + Hso, �3�

where r and p are two-dimensional position and momentum
vectors and m is the effective mass of the electrons in the
semiconductor. The electrons are confined in the y direction
by an infinite square-well potential of width L,

V�r� = �0 ��y� � L/2�
� ��y� � L/2� .

� �4�

We assume that the SO Hamiltonian Hso consists of HR and
HD, see Eq. �1�. In some semiconductor heterostructures
�e.g., InAs quantum wells� HR dominates,8 and in others
�e.g., GaAs quantum wells� HD is comparable to HR.9 A
series of experiments10 has demonstrated that the strength of
the Rashba SO coupling can be tuned by external gate volt-
ages. Note that our choice of the square-well confinement
eliminates the possibility of SO coupling due to effective
electric fields coming from the nonuniformness of the con-
fining potential. This kind of SO coupling should be consid-
ered in case of parabolic confining potential.11

It is instructive to rewrite the Hamiltonian in Eq. �3� in
second-quantized form to gain insight into the effect of SO
coupling on the transverse modes. To this end, we define
ckxn��ckxn�

† � to be the annihilation �creation� operators of the
nth transverse mode �kx ,n ,�� with a wave vector kx and a
spin-branch index �=± in the absence of SO couplings. It is
convenient to choose the spin-polarization axis n̂
= �cos � , sin �� to be along the effective magnetic field due
to the SO coupling for waves propagating in the x direction
such that

��� =
1
�2
��e−i�/2

ei�/2 	 �5�

with �
arg�kD+ ikR�.12 In terms of these operators, the
Hamiltonian is expressed as

HS
2nd = 

kx
�

n�

	n��kx�ckxn�
† ckxn�

+ 
nn����

knn�w���ckxn�
† ckxn���	 . �6�

This expression shows that SO coupling leads to two effects.
On one hand, it lifts the spin degeneracy by shifting the
energies of the transverse modes such that

	n��kx� 

�2

2m
��kx − �kso�2 + �n


L
�2	 − �so �7�

with kso
�kR
2 +kD

2 and �so
�2kso
2 /2m. On the other hand, it

mixes the transverse modes according to the amplitudes
knn�w��� given by

knn� 

4

L

nn�

n2 − n�2��− 1��n+n�−1�/2 �n � n� mod 2�
0 otherwise

�
�8a�

w 

�2

mkso
�2ikRkD kD

2 − kR
2

kR
2 − kD

2 − 2ikRkD
	 . �8b�

As shown in Eq. �8�, the SO coupling mixes transverse
modes with opposite parities and possibly opposite spins.
Therefore, the eigenstates of the Hamiltonian in Eq. �6� are
generally not symmetric or antisymmetric.

Still, the charge- and spin-density pattern can be symmet-
ric or antisymmetric: For simplicity, we focus on the case
when only one of two SO coupling terms exists; that is,
kRkD=0. In this case, for any symmetric confinement poten-
tial satisfying V�y�=V�−y�, the Hamiltonian commutes with
the so-called spin-parity operator Ps
 Py�n̂ ·��, where Py is
the inversion operator for the y component such that
Py��x ,y�=��x ,−y�.13 The eigenstates of the system should
thus also be eigenstates of the spin-parity operator, having
the eigenvalues ±1, which is evident from the fact that
Ps

2=1. Denoting kxns�r� to be the wave function of an
eigenstate for wave vector kx, subband index n, and quantum
number of spin-parity s= ±1, one can show that the
spin-density components Skxns

m̂ �r�
kxns
† �r��m̂ ·��kxns�r�

for m̂� n̂ should be antisymmetric with respect to
y=0,7,14 while the charge density and the spin component
Skxns

m̂ for m̂= n̂ are symmetric. For example, Skxns
ẑ �y�

=kxns
† �−y��n̂ ·���z�n̂ ·��kxns�−y�=−Skxns

ẑ �−y�. These
�anti�symmetric properties for m̂= ẑ persist even in case
kRkD�0, when there is no simple operator like Ps commut-
ing with the Hamiltonian. However, as �kR� and �kD� are tuned
to come close to each other, the antisymmetric components
decrease in magnitude and even vanish when �kR�= �kD� since
the off-diagonal terms in the matrix w that couple modes
with opposite spins vanish. Interestingly, for �kR�= �kD�, the
spin operator n̂ ·� itself commutes with the Hamiltonian and
the SO coupling couples only the transverse modes with the
same spin �see Eq. �8b�� so that a common spin-quantization
axis can be defined for all the eigenstates.15

The symmetry properties discussed up to now are not re-
stricted to the square-well potential case. One can show that
the same reasoning works in the case of a harmonic
potential.14 All that one should do is to redefine the ampli-
tude knn� according to the confinement potential. For the
symmetric potential satisfying V�−y�=V�y�, the amplitude
knn� has nonzero values only when n and n� have opposite
parities and reproduces the same symmetry properties as dis-
cussed above. Hence, the choice of confinement potential
does not lead to any qualitatively different effect. Therefore,
we focus on the square-well potential since it is convenient
for numerical calculations.

B. Numerical calculation of eigenstates

It is possible to obtain the eigenstates numerically by di-
agonalizing the Hamiltonian in Eq. �6� in a truncated basis of
transverse modes. Since we need eigenstates at a given en-
ergy, not a given wave vector, we have adopted another nu-
merical method to obtain the eigenstates: First, prepare
eigenstates at a given energy in the absence of the confine-
ment potential12 and then numerically find a set of wave
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vectors kx such that the linear superposition of four eigen-
states sharing the same wave vector kx satisfies free boundary
conditions at the infinite walls; that is, vanishes at y= ±L /2.
This method is superior to the diagonalization of the Hamil-
tonian HS

2nd in two aspects; numerically, one can obtain exact
eigenstates in this way, and an infinite set of evanescent
waves, that is, eigenstates with complex kx at the targeted
energy, can be found systematically. Evanescent waves
turned out to be important in transport through �semi-�finite
samples.12

First, we consider the case where only Rashba SO cou-
pling is present �kD=0�. Figure 1 shows the spectra of this
system and the properties of the eigenstates for weak and
strong SO coupling. Small SO coupling �kRL�1� splits the
spin degeneracy according to Eq. �7� �see upper half of Fig.
1�a�� and each spin branch s= ±1 keeps its spin-polarization
direction approximately such that ��n̂ ·���kxns= ��y�kxns�s as
long as kx is not so large �kxL� �2kRL�−1�. Becuase of the
antisymmetry of the spin distribution, the spin-expectation
values ��x� and ��z� strictly vanish irrespective of the SO
coupling strength. However, the spin-density component
Skxns

ẑ �r� is finite and has an opposite sign for different
branches: Skxns

ẑ �r��−Skxn−s
ẑ �r�. As kRL increases, on the other

hand, the mixing of the transverse modes with opposite spins
becomes more apparent such that level crossings happen
even in the same subband for n�1 �see lower half of Fig.
1�a�� and the spin polarization is changed and even reversed
compared to the case of weak SO coupling. Figure 1�b�

shows that at strong SO coupling �kRL=3� and large
kxL ���2kRL�−1�, the spins of two branches in the lowest
subband �n=1� are polarized parallel to each other:
��y�n=1,kxs�sgn�kx� for both s= ±1.7 This is due to mixing
with higher-subband states having opposite spin, which
manifests itself well in Fig. 1�c�, where the charge-density
profile of the state s=−1 of the lowest subband exposes the
contribution from the higher subband n=2. The charge- and
spin-density profiles in Fig. 1�c� also confirm the �anti�sym-
metric structure proven based on the symmetry of the sys-
tem.

Dresselhaus SO coupling HD, related to HR by a unitary
transformation U= ��x+�y� /�2, gives rise to an energy spec-
trum and charge- and spin-density profiles identical to those
obtained in the Rashba SO coupling case except for the ro-
tation of spin axes such that x→y, y→x, and z→−z and the
substitution of kR by kD.

In the presence of both Rashba and Dresselhaus SO cou-
pling terms, the spin polarization of the eigenstates is not
along the x or y axes any longer, since there are nonzero
spin-expectation values ��x� and ��y�, and its direction de-
pends on the ratio kR /kD. Nevertheless, as shown in Fig. 2,
the spin-density profiles are found to have �anti�symmetric
structures similar to the previous cases: Sx̂/ŷ�y�=Sx̂/ŷ�−y� and
Sẑ�y�=−Sẑ�−y�. Note that both spin-x and -y components are
symmetric. The antisymmetric component Sẑ�y� is observed
to decrease in magnitude as kD approaches kR, and eventually
vanishing when kR=kD. This behavior, consistent with the
argument in terms of coupling matrix elements of w in Eq.
�8b�, indicates that whereas the Rashba and Dresselhaus SO
coupling can induce an antisymmetric distribution of Sẑ�y�
separately, the presence of both of them will lead to a reduc-
tion in Sẑ�y�.

In summary, SO interaction in the presence of a symmet-
ric confining potential can result in antisymmetric structures
in the spin distributions of individual eigenstates, especially
in the spin-z component. This phenomenon manifests itself
strongly when either Rashba or Dresselhaus SO coupling is
present and vanishes as both coupling strengths become
equal to each other.

FIG. 1. �Color online� �a� Spectra of a quantum wire confined
by a square-well potential in the presence of Rashba spin-orbit �SO�
coupling: kRL=1 �upper� and 3 �lower�. The dotted lines correspond
to the modes in the absence of SO coupling. The energy is scaled by
E1=�2
2 /2mL2, the ground-state energy at kx=0 in the absence of
SO coupling. �b� Spin expectation value ��y� for four low-lying
states at kRL=3. Same colors as in �a� are used to identify the
levels. �c� Charge �black thick�, spin-y �red dotted�, and spin-z �blue
solid� density profiles along the y direction for the lowest subband
�n=1� with s= +1 �upper� and −1 �lower� at kRL=3 and E /E1=3.

FIG. 2. �Color online� Charge �black thick�, spin-x �green
dashed�, spin- y �red dotted�, and spin-z �blue solid� density profiles
along the y direction for the lowest subband �n=1� with s= +1
�upper� and −1 �lower� at �kRL ,kDL�= �a� �3,1� and �b� �3,2� and at
energy E /E1=3.
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III. CHARGE AND SPIN MODULATIONS IN THE
PRESENCE OF SPIN-ORBIT COUPLING

In this section we investigate the charge- and spin-density
modulations in a ferromagnet-semiconductor single junction
quantum wire. Static charge- and spin-density oscillations
are induced by injecting a spin-polarized current from ferro-
magnet to semiconductor. We make use of the coherent scat-
tering theory to calculate the charge- and spin-density modu-
lations in the ballistic regime and uncover the fact that the
�anti�symmetric structure of eigenstates in semiconductor
quantum wires studied in Sec. II is deeply related to such
density oscillations.

A. Scattering theory

The single-junction system consists of a ferromagnetic
�F ;x�0� and a semiconducting �S ;x�0� region confined by
a square-well potential of width L. While the electrons in the
semiconductor region are governed by Eq. �3�, the Hamil-
tonian for the ferromagnet region is16

HF =
p2

2m
+ V�r� − �h/2���z − 1� . �9�

The spin-splitting energy h is assumed to be large compared
to the other energy scales such that only the majority spin
state �spin-up state� is available at the energy of interest.
Here we have assumed that both regions have identical ef-
fective masses and lower band edges, because the impedance
mismatch due to a difference in them does not affect the
density oscillation in a qualitative way. Furthermore, we
have assumed a single band in the ferromagnet,16 which is
justified in some ferromagnet-semiconductor heterostruc-
tures. For example, ab initio calculations17 for spin injection
from Fe to InAs, GaAs, or ZnSe have shown that due to
symmetry of the band structure of Fe, only one majority-spin
band contributes to transport through the semiconductor for
normal incidence. Hence, for our quasi-one-dimensional sys-
tem, the effect of the other bands can be disregarded without
significant error as long as the interface is clean enough. In
order to set up the scattering theory one should construct a
set of eigenstates in both regions at a given energy E. Denote

	m
F/S�r�=ei	kmx

F/Sx�m
F/S�y� to be eigenstates in the ferromagnet-

semiconductor regions propagating in the x �	= + � or −x �	
=−� direction at energy E, where m= �n ,s� is a composite
index with subband index n and spin-parity index s and
�m�y� is a spinor for the state. Note that the wave vector kmx

can be complex valued in the case of evanescent waves.
The boundary conditions at the interface �x=0� are then

specified by the following two equations:

�F�r��x=0 = �S�r��x=0 �10a�

�vx
FF�r��x=0 = �vx

SS�r��x=0 �10b�

for all y� �−L /2 ,L /2�. Here the wave functions in both
regions can be expanded in terms of the eigenstates as
follows: F�r�=mcm

�i�+m
F �r�+mcm

�r�−m
F �r� and S�r�

=mcm
�t�+m

S �r� with complex coefficients cm
�i,r,t�. The velocity

operators, vx
F= px /m and vx

S= �px−��kR�y +kD�x�� /m differ
from each other due to the presence of SO coupling in the
semiconductor.

The SO coupling deforms the transverse modes such that
they do not match in the ferromagnet and semiconductor
regions. It is thus impossible to reduce the scattering prob-
lem to a one-dimensional one. Instead we set up an infinite
number of coupled linear equations for the coefficients c�i,r,t�

by multiplying both sides of Eqs. �10a� and �10b� with �m
F�y�

and integrating them over y. The coupled linear equations are
then solved numerically for the reflection and transmission
coefficients cm

�r,t� at given incident coefficients cm
�i�. In our

study we focus on the injection of the electron through the
lowest transverse mode such that c�n=1,s=+�

�i� =1 and the other

incident coefficients are zero. Since the contribution of eva-
nescent waves in high subbands is very small in this case, the
coupled equations can be truncated to a finite-dimensional
system with negligible errors. By using the coefficients ob-
tained in this way, we calculate and investigate the charge-
and spin-density profiles, ��r�
�F/S�r��2 and Sm̂�r�

F/S†�r��m̂ ·��F/S�r� in Sec. III B and III C.

B. Charge oscillation due to spin-orbit coupling

First, we investigate the charge-density oscillation due to
Rashba SO coupling and focus on the energy levels for
which only two propagating states exist in the semiconductor
region. Figure 3 shows the charge-density profiles near the
ferromagnet-semiconductor junction for various strengths of

FIG. 3. �Color online� Charge-density profiles along the quan-
tum wire in the neighborhood of the ferromagnet-semiconductor
interface. A spin-polarized current is injected in the lowest trans-
verse mode from the ferromagnet �x�0� to the semiconductor �x
�0�. The distances are scaled by L. Here we have set E /E1=3 and
varied the strength of the Rashba SO coupling from kRL=1 to 3.
Irregular patterns near the interface are caused by evanescent waves
whose contributions increase with kR.
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the Rashba SO coupling and clearly disclose the static oscil-
latory patterns perpendicular to the propagating direction.
The patterns oscillate around the centerline of the wire, and
the oscillation amplitude increases with the coupling strength
kRL. For large SO coupling �kRL�1.5� the electron does not
stay any longer near the centerline, forming high-density is-
lands off center.

This oscillation is a direct consequence of the fact that the
two propagating waves are eigenstates of the spin-parity op-
erator with opposite eigenvalues s= ±1. This follows from
the symmetry properties of the spinor �m�y� with respect to
spin parity. Since

�m�y� = ��m↑�y�
�m↓�y� 	 �11�

fulfills Ps�m�y�=s�m�y�, one can easily prove that �m↓�y�
= is�m↑�−y�. By using this property of �m�, the charge den-
sity ��r� can be divided into symmetric and antisymmetric
parts with respect to y=0

��x,y� = �s�y� + �a�x,y� , �12�

where

�s�y� = 
s=±1,�=↑/↓

��m��y��2 �13a�

�a�x,y� = 2 Re�ei�kx 
�=↑/↓

��n,+���y���n,−��
* �y�	 . �13b�

Here the transmission coefficients cm
�t� are absorbed in �m�.

While the symmetric component �s�y�=�s�−y� is uniform
along the wire, the antisymmetric part �a�x ,y�=−�a�x ,−y�
oscillates along the x direction with period �=2
 /�k and
generates the density modulations shown in Fig. 3. Here, �k
is the wave-vector difference of two propagating modes.
Note that the antisymmetric part �a is proportional to the
product c�n,+�

�t� c�n,−�
�t�� . For incoherent injection of electrons with

opposite spins, this product averages to zero so we have no
density modulation.

The oscillation period � depends on both the SO coupling
strength and the energy of the incident electron, as shown in
Fig. 4�a�. At weak SO couplings the period is determined by
the characteristic wave vector kR such that it decreases like
��
 /kR, regardless of the energy. As kR increases further,
on the other hand, the period increases with kR, having a
minimum. In addition, the period gets longer at higher ener-
gies. The nonmonotonic behavior of the period is another
manifestation of mixing between transverse modes due to the
SO coupling. Figure 4�b� shows the dependence of the oscil-
lation amplitude ymax on the SO coupling strength and the
energy. Here the oscillation amplitude is given by the dis-
tance between the centerline �y=0� and the points where the
density reaches its maximum. The parabolic dependence of
ymax on kR at small SO couplings indicates that the charge-
density oscillation is a second-order effect of the SO cou-
pling. As kR is increased, the amplitude does not increase any
longer and instead saturates to ymax�L /5 as long as the con-
dition on the number of propagating waves is not violated.

At higher energies more than two propagating waves are
involved in the scattering process in the semiconductor re-
gion, and the charge density oscillation pattern due to their
interference cannot be specified by one period. Instead, some
beating patterns appear, as shown in Fig. 5. While the SO
coupling still leads to oscillatory motion of the charge, oscil-
lations of short and long periods are mixed and the pattern
becomes complicated.

Our observation is related to the prediction of Schliemann
et al.2 about the oscillatory behavior of free electrons in the
presence of Rashba SO coupling: the center of an electron
wave packet oscillates in the direction perpendicular to its
group velocity v with the frequency 2kR �v�, giving rise to the
oscillation period 
 /kR along the propagating direction. Con-
trolled steady injection of wave packets with the same v can
produce the static-density modulations that we have ob-
served. They also studied the dynamic oscillation of an elec-

FIG. 4. �Color online� �a� Period and �b� amplitude of the charge
oscillation as functions of Rashba SO coupling strength kRL for
various energies E /E1=1 �red dotted�, 2 �green dashed�, and 3 �blue
dotted-dashed�. The black solid lines are obtained from perturbation
theory such that �a� the line goes like �=
 /kR, and �b� they show a
parabolic dependence on kR.

FIG. 5. �Color online� Charge-density profiles at kRL=2 and
E /E1=14. The density scale is the same as in Fig. 3.
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tron with a given momentum kx in quantum wires, where the
electron is prepared initially in the lowest-lying spin-
polarized states. In this case, since the initial state is not an
energy eigenstate, dynamic beating patterns due to the inter-
ference of waves with different energies are observed. On the
other hand, our static-density oscillation patterns are due to
the interference of the energy eigenstates with a given en-
ergy. For that reason, such beating patterns and the resonance
phenomena, leading to the sharp peak in the oscillation am-
plitude, are absent in our observation.

We now include the effect of the Dresselhaus SO coupling
on the charge-density modulation. The unitary relation be-
tween two SO terms HR and HD, discussed in Sec. II, guar-
antees that the Dresselhaus SO coupling results in exactly the
same charge-density oscillation as the Rashba SO coupling.
In the presence of both coupling terms, however, the oscilla-
tion vanishes as the strengths of two terms become equal to
each other. Figure 6 shows that the amplitude of the oscilla-
tion decreases with kD /kR for finite kR and the oscillation
disappears when kR=kD. This tendency is quite similar to the
dependence of the antisymmetric distribution of Sẑ�y� on the
SO coupling. It also supports the close relation between the
charge-density oscillation and the antisymmetric structure of
eigenstates in semiconductor quantum wires.

Before closing this section we address the experimental
observability of the charge-density modulations. Since the
oscillation patterns depend on the energy of the incident
electron, it should be checked whether the superposition of
charge-density patterns from different energies can weaken
the overall density oscillation. Figure 4�a� shows that for
large SO coupling �kRL�1.5� the period strongly depends on
the energy. Therefore, in the case of a large voltage drop
across the junction the injection of electrons with a wide
range of energy will smear the density modulation by super-
posing density patterns oscillating with different periods. For
small SO coupling, on the other hand, the phase as well as
the oscillation period pattern are weakly dependent on the
energy, leading to the superposition of commensurate density
patterns. In addition, the states below the Fermi level are
irrelevant to the charge-density oscillation because the levels
are filled incoherently such that their charge distributions are
always symmetric with respect to y=0. Hence the condition
for the observation of charge-density oscillation patterns is
that either the SO coupling strength or the applied voltage
across the junction should be small enough. Also, our simple
ferromagnet model requires that the interface between ferro-

magnet and semiconductor should be clean enough to avoid
blurring of the oscillation pattern due to incoherent superpo-
sition of density patterns induced by different bands in the
ferromagnet. Under these conditions, charge oscillations can
be detected via high-resolution scanning probe microscopy
techniques18 by imaging the charge density directly or by
measuring the change of conductance along the quantum
wire as a function of the position of a tip that can deplete
charges under it.2

C. Spin oscillation due to spin-orbit coupling

In the presence of SO coupling the electron spin precesses
in the effective magnetic field that depends on the momen-
tum. Spin-density patterns thus reflect such spin precession
as well as the charge-density distribution discussed in Sec.
III B. Figure 7 shows spin-density profiles along the quan-
tum wire if only Rashba SO coupling is present. The spin
precessing patterns in Sẑ�r� indicate that the effective mag-
netic field is approximately perpendicular to the electron’s
moving direction. The spin distribution Sẑ�r� is not symmet-
ric with respect to y=0 in the semiconductor region, and this
behavior gets stronger as the SO coupling increases. It is
because the spin pattern follows the charge-density oscilla-
tion that is also asymmetric. While Sx̂�r�=0 for all r, Sŷ�r� is
nonvanishing inside the semiconductor, increasing in magni-
tude with the SO coupling strength. Unlike Sẑ�r�, Sŷ�r� get
biased to positive values as kR is increased, indicating a spin
polarization along the y direction. This is a direct conse-
quence of the spin polarization of the lowest modes at large
kx and kR �see Sec. II B�.

The Dresselhaus SO coupling also gives rise to similar
spin profiles; the spin axes x and y are exchanged, and the
spin distributions are mirror-reflected with respect to y=0. In
the presence of both coupling effects, on the other hand, the
spin-density patterns, with all the components nonvanishing,

FIG. 6. �Color online� Charge oscillation amplitude as a func-
tion of the ratio kD /kR for kRL=1 and E /E1=3.

FIG. 7. �Color online� Spin-density distributions, Sŷ�r� �upper�
and Sẑ�r� �lower� for kRL= �a� 1 and �b� 2 in the same configuration
as used in Fig. 3. The plus and minus signs indicate the sign of the
spin densities and are assumed to be repeated periodically along the
x axis. Here we have set E /E1=3. Note that Sx̂�r�=0.
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become distorted as shown in Fig. 8. Slanted patterns appear
due to the absence of any symmetry with respect to y=0. As
long as kR�kD, the spin is preferentially polarized along
either x �when kD�kR� or y �when kR�kD� direction. For
kR=kD an unbiased spin precession takes place for all the
spin components.

Under the same condition found for the detection of
charge-density modulations, the spin-density distributions
can be experimentally observed. Spin-polarized scanning
tunneling microscopy19 with magnet-coated tips or optical
techniques such as the spatially resolved Faraday rotation

spectroscopy20 can produce high-resolution images of spin-
density profiles.

IV. CONCLUSION

We have investigated the symmetry properties of eigen-
states in semiconductor quantum wires and observed the
charge- and spin-density modulations along quantum wires
consisting of a ferromagnet-semiconductor junction by using
the coherent scattering theory. We have shown that the
Rashba or Dresselhaus SO coupling terms induce charge-
density oscillations perpendicular to the propagating direc-
tion and that these oscillations are caused by the �anti�sym-
metric structure of charge and spin distributions in
eigenstates. These charge- and spin-density oscillations can
be experimentally observed as long as the SO coupling
strength or the voltage drop across the junction are small
enough.

Impurities, dirty interfaces, and electron-electron interac-
tions that are not included in our study affect the transport in
low-dimensional systems. Although these effects will there-
fore influence the form of the charge-density modulations
and make it more homogeneous, the charge-density modula-
tion may still be observed in sufficiently clean and low-
density samples.
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Sŷ�r� �middle�, and Sẑ�r� �lower� in the same configuration as used
in Fig. 3. Same parameters and color scaling as in Fig. 7 are used
except that kRL=2 and kDL=1.

CHARGE- AND SPIN-DENSITY MODULATIONS IN … PHYSICAL REVIEW B 72, 045353 �2005�

045353-7


