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We present a formulation of the scattering matrix method for spin-dependent electron transport in a quantum
waveguide with spin-orbit interaction �SOI�. All the required Hamiltonian matrices needed in the implemen-
tation of the formulation are represented in a basis of the transverse spatial eigenstates and the spin eigenstates
of the leads. Thus the method has great flexibility and can be easily applied to systems with complex geo-
metrical structure, potential distribution, and SOI strength profile. Also, the method is numerically stable and
can be used to treat spin-dependent multisubband scattering processes accurately. We have applied the method
to the spin-dependent electron transport in quasi-one-dimensional �Q1D� conductors, with a region of the
Rashba SOI of uniform strength and with a region containing a Rashba SOI superlattice, made from a semi-
conductor heterostructure. The total conductance, spin-dependent conductances, and spin polarization of the
system are calculated for a fully spin-polarized electron beam injected from a lead into the SOI region. For the
Q1D conductor with a single region of the Rashba SOI, it is found that when the Fermi energy is set at a value,
for which the total conductance is at a plateau, the spin-dependent conductances show regular oscillations with
increasing SOI strength. This is approximately true even when the total conductance is at a high plateau and
thus multiple subbands in the waveguide are open for conduction. However, when the Fermi energy is set at a
value close to the onset of a subband �with the subband index n�2�, the spin-polarized conductances plotted
against the SOI strength and the SOI region length show sharp resonance features or complex fluctuations.
These irregular conductance characteristics arise from SOI-induced strong coupling between subbands. For the
Q1D conductor modulated by an array of strong Rashba SOI stripes, the total conductance shows regular
superlattice behavior, while the spin-dependent conductances show complex behavior with regions of slow
oscillations and regions of rapid oscillations. As in the Q1D conductor with a single SOI region, the slow
oscillations are found in the energy regions where the total conductance is at plateaus. However, the rapid
oscillations appear at energies close to the onsets of subbands with the subband index n�2. These oscillations
originate from strong spin scattering by localized states formed in the SOI-modulated superlattice region.
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I. INTRODUCTION

The ballistic electron spin-transport phenomena have at-
tracted recent attention1–12 due to their potential applications
in the design of spintronic devices. The main challenge in the
field of spintronics is to achieve the injection, modulation,
and detection of electron spin in nanometer scale structures.
In 1990, Datta and Das13 proposed a spin transistor which is
an analog of the standard electro-optic light modulator. In
their model, ferromagnetic contacts were used as spin-
polarized source and detector, and the electron spin was ma-
nipulated via the Rashba spin-orbit interaction �SOI�. The
SOI is a relativistic effect due to an effective magnetic field
experienced by electrons when moving through an electric
field. This electric field can, e.g., be due to structural
�Rashba� or crystal �Dresselhaus� inversion asymmetry in the
device. These asymmetries will lift the electron spin-
degeneracy for nonvanishing momentum creating spin-split
energy bands even when no external magnetic field is
present. In a two-dimensional electron gas �2DEG� system
the dominating term is the Rashba SOI, arising from the
inversion asymmetry of the quantum well. This interaction
can also be tuned by an applied gate voltage perpendicular to
the well. This control of the interaction, which was first em-

ployed by Datta and Das in their proposed spin transistor,
opens the possibility to modulate the electron spin state.

The pioneering development of spintronics requires a
proper theoretical model to discover and to understand trans-
port phenomena with SOI. Recent extensive theoretical work
has thus been devoted to the study of these phenomena.2–9 In
Refs. 2 and 3, discrete lattice models and the recursive
Green’s function technique were used to study the properties
of electron transport in quasi-one-dimensional �Q1D� quan-
tum wires with SOI. The numerical results showed a perfect
spin modulation of conductance when intersubband interac-
tions were neglected. With intersubband interactions in-
cluded, the modulation deviated from the usual sinusoidal
characteristics expected from a single-subband model. Spin
transport in Q1D structures was also studied with continuous
wave models and the transfer/scattering-matrix formalism.4–7

However, in most of these studies, the calculations were
made by taking only the two lowest subbands into account.
This has the benefit of producing analytical two-band disper-
sion relations of the Hamiltonian, but has a drawback of
neglecting the influence of higher subbands on the conduc-
tance. Such influences could further affect the spin modula-
tion of the conductance as well as give rise to interesting new
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features, such as resonances, due to band-mixing and inter-
ference.

In this paper, we present a continuous-wave, multimode,
scattering-matrix formalism to model spin-dependent elec-
tron transport in a quantum waveguide with SOI in the
linear-response regime and at zero temperature. In our
model, we consider the quantum waveguide created in a
2DEG by a transverse confining potential. We will only take
the Rashba SOI into account in the formulation. Incorpora-
tion of the Dresselhaus SOI in our model is straightforward.
By SOI we will thus hereafter refer to the Rashba spin-orbit
interaction. In the formalism, all the Hamiltonian matrices
are represented in a common basis of the transverse spatial
eigenstates and the spin eigenstates of the leads. Thus our
method can be used to treat spin-dependent multisubband
scattering processes accurately. The method can also be
implemented in the study of spin devices with a complex
structure and SOI profile with little numerical effort.

The paper is organized as follows. In Sec. II, the
scattering-matrix formalism for multimode spin-dependent
transport in a 2DEG waveguide structure is presented. In
Sec. III, we apply this formalism to the problems of spin-
dependent transport through a Q1D conductor with a region
of SOI modulation and through a Q1D conductor with a
region of a SOI superlattice. Finally, the paper is summarized
and concluded in Sec. IV.

II. MODEL AND FORMALISM

The system under consideration �see Fig. 1�a� for a sche-
matic illustration� is a 2DEG defined in a semiconductor
heterostructure with growth direction along the z axis. The
2DEG, lying in the x-y plane, is restricted to a Q1D quantum
conductor of width w by a transverse confining potential
Vc�x�. The electrons transport ballistically in the conductor

along the longitudinal y direction. The single-particle Hamil-
tonian of the system under the effective mass approximation
with SOI is given by

H =
p2

2m* + Vc�x� + VE�r� +
1

2�
���r��� � p� + �� � p���r��z,

�1�

where p is the momentum operator, m* the effective mass,
Vc�x� the confining potential, VE�r� a general spin-
independent potential inside the conductor, ��r� the SOI
strength which is proportional to the heterostructure-
interfacial electric field, taken to be in the z-direction, and �
the Pauli matrix vector. The Hamiltonian has been symme-
trized in order to be Hermitian when the interaction strength
is spatially dependent.14,15 For a constant interaction
strength, the form commonly found in the literature is ob-
tained. In the leads, we let �=0 and VE=0, and assume that
the eigensolutions to the transverse part of the Schrödinger
equation are known and are represented by eigenvectors �n�
with eigenvalues �n. The electron eigenwave functions in the
leads can in general be written in the form of eiky�n��, where
�n��= �n���� with �= ±1, and �1�= �1,0�T and �−1�= �0,1�T

representing, respectively, the spin-up and spin-down states
in the �z spin-representation. In the conductor region of �
�0 and VE�0, we will solve the system by discretizing the
conductor along the transport y direction into N transverse
stripes. Assuming that each stripe is sufficiently narrow in
width, so that the potential VE and the SOI strength � can
approximately be considered to be y independent, the elec-
tron eigensolutions in this stripe can be solved by expanding
the wave function as

��� = eiky�
n,�

dn
��n�� . �2�

Here we require the states to be normalized so that
�n��dn	

� �2=1. Inserting the above equation into the
Schrödinger equation defined by the Hamiltonian, Eq. �1�,
leads to

�
n,�

�	E − �n −
�2k2

2m* 

mn
��� − Vmn
���

+ 	��mn +
�

2
�mn − k�mn

��,−��dn

� = 0, �3�

with

Vmn = �m�VE�r��n� ,

�mn = �m���r�
�

�x
�n� ,

�mn = �m�
���r�

�x
�n� ,

�mn = �m���r��n� ,

where VE�r� and ��r� may, respectively, be approximated as
VE�x ,y�� and ��x ,y�� with y� being some coordinate along

FIG. 1. �a� Schematic illustration of a Q1D conductor with a
SOI region �shaded�. �b� Typical dispersion relations of infinite
leads and for a uniform SOI region of infinite length. The spin
degeneracy in the leads is lifted in the SOI region for k�0. The
energy bands in the SOI region are also lowered due to the effective
potential well created by the SOI.
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the y direction within the stripe. From Eq. �3�, we see that
the SOI introduces mixing between the spin states as well as
mixing between the subbands. This implies that spin and
subband indices originally used in the lead regions are not
good quantum numbers in the SOI region and the electron
eigenstates should, in general, be written in the form of the
expansion of Eq. �2�. Equation �3� can be solved for eigenen-
ergies En for a given k value to obtain the dispersion rela-
tions, En�k�, of the system �see Fig. 1�b� for examples�.

However, in an electron transport problem, Eq. �3� has to
be solved for k as an eigenvalue problem for a given electron
energy E. This can be implemented in an expanded basis16,17

as follows. By introducing auxiliary coefficients, fn	
� =k	dn	

� ,
we can rewrite Eq. �3� as

	0 1

S T

	D

F

 = k		D

F

 , �4�

with

�S�mn
��� =

1



��E − �n�
mn

��� − Vmn
���

+ 	��mn +
�

2
�mn

��,−�� ,

�T�mn
��� = −

�mn




��,−�,

�D�n	
� = dn	

� , �5�

and 
=�2 /2m*. For a given energy E, Eq. �4� gives a set of
eigenwave numbers, k	, and a set of corresponding eigenvec-
tors, dn	

� , within each stripe.
It is important to notice that because of the SOI induced

translational shift in k-space of the dispersion relations �see
Fig. 1�b��, propagation direction of an eigenstate in the SOI
region cannot be identified by the sign of its eigenwave num-
ber. Instead, the mean velocity needs to be used to determine
the propagation direction of the eigenstate. Here it should be
emphasized that proper determination of the propagation di-
rections of all the eigenstates of the system is a critical step
in implementation of the scattering-matrix formalism for a
multimode waveguide. Using the velocity operator derived
directly from the Hamiltonian,

v̂y =
i

�
�H,y� =

py

m* +
��r�

�
�x, �6�

we can calculate the expectation value of v̂y for the eigen-
state corresponding to the eigenwave number k	 as

�v̂y�	 = �
m��n�

�dm	
�� �*�m���

�k	

m* +
��r�

�
�x�n��dn	

� . �7�

When k	 is real, Re�v̂y�	 is known as the quantum mean
velocity of the state with wave number k	.

In line with Ref. 17, we divide the set of eigenwave num-
bers into two subsets. The first subset consists of wave num-
bers, 
kI	�, which are complex but have a positive imaginary
part, or which are real and whose corresponding eigenstates

have a positive mean velocity. The second subset consists of
wave numbers, 
kII	�, which are complex and have a nega-
tive imaginary part, or which are real and whose correspond-
ing eigenstates have a negative mean velocity. The eigen-
states in the first subset are those which are evanescent or
propagating in the forward direction and the eigenstates in
the second subset are those which are exploding or backward
propagating. Note that the two subsets have an equal number
of elements.

In order to solve for the full wave function of an electron
at energy E for the entire system, we now write the wave
function in stripe j as

�� j� = �
	n�

�dIn	
�j��aI	

�j�eikI	
j �y−y0

j � + dIIn	
�j��aII	

�j� eikII	
j �y−y0

j ���n�� ,

�8�

where y0
j is some reference coordinate for stripe j. Since the

choice of y0
j is arbitrary, i.e., the calculation for electron

transport should not depend on the choice of y0
j , we can

choose a set of y0
j , such that y0

L=y0
1, y0

R=y0
N+1, and y0

j+1−y0
j

= lj, where lj is the width of stripe j. The continuity require-
ments on the electron probability density and flux density at
the interface between stripes j and j+1, i.e., �� j�y=y0

j+1

= �� j+1�y=y0
j+1 and ��v̂y

j� j��y=y0
j+1 = ��v̂y

j+1� j+1��y=y0
j+1, lead to a

set of linear equations relating the wave function expansion
coefficients in stripe j with those in stripe j+1,

	AI
j

AII
j 
 = M�j, j + 1�	AI

j+1

AII
j+1 
 , �9�

where AI
j and AII

j are the vectors containing 
aI	
�j�� and 
aII	

�j� �,
respectively, and

M�j, j + 1� = 	�I
j 0

0 �II
j 
−1	PI

j PII
j

QI
j QII

j 
−1	PI
j+1 PII

j+1

QI
j+1 QII

j+1 
 ,

�10�

with

��I
j�		 = eikI	

j lj
, ��II

j �		 = eikII	
j lj

,

�PI
j�n	

� = dIn	
�j��, �PII

j �n	
� = dIIn	

�j�� ,

�QI
j�n	

� = �
m
��kI	

j

m* dIm	
�j��
nm +

�nm

�
dIm	

�j�−�� ,

�QII
j �n	

� = �
m
��kII	

j

m* dIIm	
�j�� 
nm +

�nm

�
dIIm	

�j�−�� . �11�

The full transfer matrix, M�L ,R�, relating the coefficients of
the left and right leads is found from matrix multiplication of
the individual matrices connecting adjacent stripes. The
transfer matrix method is prone to numerical instabilities for
large systems due to the presence of the exploding terms

��II�		� in the formalism.17,18 However, by defining a scat-
tering matrix, S�L ,R�, relating the outgoing waves from the
conductor to the incoming waves we can remove the numeri-
cal instabilities caused by the exploding terms from the cal-
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culations. The system of linear equations then reads

	AI
R

AII
L 
 = S�L,R�	AI

L

AII
R 
 . �12�

The elements of the scattering matrix S are given in terms of
elements of the transfer matrix M, and are readily obtainable
from Eqs. �10� and �11�. For a detailed derivation and ex-
plicit expressions of the scattering matrix, we refer to Refs.
17 and 18. The coefficients AI

j and AII
j at a stripe j inside the

conductor can easily be extracted within the scattering ma-
trix formalism using a procedure presented in Ref. 19. This
gives a means of calculating the wave function inside the
conductor according to Eq. �8�.

A unique solution of the Schrödinger equation of the
quantum system can only be obtained after we impose a
boundary condition on the electron wave function. Here we
are interested in the transport properties of the system. We
therefore need to consider the situation that an electron of
energy E is incident in subband m, with spin ��, from the left
lead into the conductor. In the left lead we will then have
both forward and backward propagating waves, whereas in
the right lead only forward propagating waves will be
present. The wave function in the left and right leads can
then be written as

��L� = eikm
���y−y0

L��m��� + �
n�

aIIn
�L��eikIIn

� �y−y0
L��n�� ,

��R� = �
n�

aIn
�R��eikIn

� �y−y0
R��n�� . �13�

Thus the boundary condition imposed on the electron wave

function is AI
L=Im

�� and AII
R =0, where �Im

���n
� is a unit vector

with elements given by �Im
���n

�= �n� �m���. Here we note that
in writing the wave function in the left lead, we have explic-

itly written the wave vector of the incident electron as km
��, in

order to clarify the boundary condition satisfied by the wave
function. We have also added a superscript � to the wave
vectors, kIn

� and kIIn
� , to specify the spin orientation of the

transmitted and reflected waves. Inserting the boundary con-
dition into Eq. �12� gives us the expansion coefficients of the
transmitted and reflected waves,

AI
R = S11�L,R�Im

��,

AII
L = S21�L,R�Im

��. �14�

The electrical current carried by the electron state is given
by

J�E,km
��� = − e Re�v̂y� , �15�

where e�0 is the electron charge unit. Note that in the above
equation, the mean velocity needs to be calculated with the
corresponding wave function of the electron with energy E
and spin �� incident in subband m from the left lead. How-
ever, the calculation does not depend on the value of y, as
required by the current continuity condition. This allows us
to simplify the evaluation of the electric current carried by

the electron wave using the expression of the wave function
in the right lead, where ��r�=0 and VE�r�=0. The result is

J�E,km
��� = −

e�

m*�
n�

R

kn
��aIn

� �2, �16�

where R denotes that the sum is taken over all states for
which kn

�=�2m*�E−�n� /� is real. Here the class index, I, has
been dropped from the wave vector kIn

� , and superscript �R�
has been dropped from the expansion coefficient aIn

�R�. The
linear-response conductance of the system at zero tempera-
ture now reads

G = −
e

h
�
m��

R
J�EF,km

���

�km
��/m*

=
e2

h
�
m��

R

�
n�

R
kn

��aIn
� �2

km
��

= �
m��n�

R

Gnm
���,

�17�

where kn
��aIn

� �2 /km
���Tnm

��� is the transmission probability.
Similarly we can define the reflection probability as

R = �
m��n�

R

Rnm
��� = �

m��n�

R
kn

��aIIn
� �2

km
��

. �18�

Here again the superscript �L� has been dropped from the
expansion coefficient aIIn

�L�. By not performing the sums over
the spin indices 
� ,��� we can extract the spin-dependent
conductances, G���, and reflection probabilities, R���, for
electrons injected with spin �� and scattered into states with
spin �. From the spin-dependent conductances we can define
the spin polarization in the z direction as

Pz =
G↑↑ + G↑↓ − G↓↑ − G↓↓

G↑↑ + G↑↓ + G↓↑ + G↓↓ . �19�

Limiting the calculation to electrons injected in spin up state
only, Eq. �19� can be simplified to

Pz =
G↑↑ − G↓↑

G↑↑ + G↓↑ . �20�

The method presented above is formulated in a basis of
infinite order and is exact provided that the conductor region
is divided into an infinite �or a sufficiently large� number of
stripes. However, solving Eq. �4� numerically requires trun-
cating the basis set 
�n���. In the actual calculations, we will
set the basis set as large as it is necessary to obtain a desired
convergence in the calculated transport quantities.

III. NUMERICAL RESULTS AND DISCUSSION

A. Single SOI region

We now demonstrate the implementation of the formalism
presented in the previous section by first applying it to a
waveguide structure with a region of the SOI of uniform
strength, made from an InGaAs/ InAlAs heterostructure. We
assume that the waveguide has a width w and is defined by a
hard-wall confinement potential, i.e., Vc�x�=0 for x� �0,w�
and � otherwise. The conductor region with the SOI is de-
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fined inside the waveguide and has a length L and the same
width w as the waveguide �see Fig. 1�a��. In the calculations,
we take L=220 nm, unless otherwise stated, and w
=100 nm. We also assume a nonvanishing, constant, but tun-
able strength, ��r�=��0, in the SOI region. We further as-
sume that the electrons have an effective mass of m*

=0.042me, where me is the free electron mass. We have cal-
culated the total conductance, the spin-dependent conduc-
tances, spin polarization, and spin-flipped reflection for the
device as a function of the Fermi energy EF, the SOI strength
�, and the length L of the SOI region. The results are dis-
played in Figs. 2–7. Here we should note that only the results
of the calculations for electrons injected with spin-up polar-
ization states from the left lead into the SOI region are pre-
sented and discussed in this work. The results of the calcu-
lations for electrons injected with the opposite spin-
polarization states are identical, if the spin labels, ↑ and ↓,
are interchanged.

In Figs. 2, 3�a�, and 3�b�, the calculated total conductance,
G, spin-dependent conductances, G↑↑ and G↓↑, and spin po-
larization, Pz, of the transmitted electrons at different values
of � are plotted against the Fermi energy EF. Figure 3�c�
shows the results of the calculations for the spin-flipped re-
flection probability, R↓↑. In general, the SOI entangles the
spin-up and spin-down states of an electron and will cause
the electron spin to precess when the electron propagates
through the SOI region. For �=3�10−12 eV m the SOI is
rather weak and the electron spin can only be slightly rotated
after it passes through the SOI region. This is seen in Fig.
2�a� as a reduction in the spin-up conductance, G↑↑, as well
as a corresponding increase in the spin-down conductance,
G↓↑. However, the spin polarization, Pz, approximately re-
mains at a constant and is independent of the Fermi energy
�the solid line in Fig. 2�c��. Furthermore, the total conduc-

tance, G, shows roughly the same quantized conductance
characteristics as observed in a uniform Q1D conductor
without including the SOI region. At �=9�10−12 eV m, the
similar behaviors of the conductances are found �Fig. 2�b��.
However, sharp conductance dips appear at Fermi energies
close to the onset of subbands with the subband index n
�2. These Fano-resonance type dips appear as a result of
subband interaction; they can be attributed to interference
between the waves which propagate via Q1D subbands
through the SOI region and the waves which pass through
the SOI region via bound states derived from higher sub-
bands due to the presence of an SOI-induced effective poten-
tial well �see Fig. 1�b��.20,21 In addition, the spin polarization,
Pz, becomes overall negative at �=9�10−12 eV m �the
dashed line in Fig. 2�c��, which indicates that at this in-

FIG. 2. Total conductance G �thin solid line�, spin-up conduc-
tance G↑↑ �thick solid line�, and spin-down conductance G↓↑

�dashed line� as a function of the Fermi energy EF at �a� �=3
�10−12 eV m and �b� �=9�10−12 eV m for electrons injected in
spin-up states into the SOI region with the size of L=220 nm and
w=100 nm. �c� Spin polarization Pz of the system as a function of
the Fermi energy EF. The solid line is the result for �=3
�10−12 eV m and the dashed line is the result for �=9
�10−12 eV m.

FIG. 3. �a� Total conductance G �thin solid line�, spin-up con-
ductance G↑↑ �thick solid line�, and spin-down conductance G↓↑

�dashed line� as a function of the Fermi energy EF for electrons
injected in the spin-up states into the SOI region with the size of
L=220 nm and w=100 nm and the SOI strength of �=33
�10−12 eV m. �b� The corresponding spin polarization Pz. �c� Spin-
flipped reflection probability, R↓↑, of the system.

FIG. 4. Total conductance G �thin solid line�, spin-up conduc-
tance G↑↑ �thick solid line�, and spin-down conductance G↓↑

�dashed line� as a function of the SOI strength � for electrons in-
jected in the spin-up states into the SOI region with the size of L
=220 nm and w=100 nm at �a� the Fermi energy EF=6.5 meV and
�b� the Fermi energy EF=7.9 meV.
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creased SOI strength the electron spin has been rotated more
than 90° after it goes through the SOI region.

For a further increased SOI strength, the conductance and
spin-polarization spectra tend to show complex structures,
due to the presence of strong coupling between subbands. In
Fig. 3�a� the results of the calculations for the interaction
strength �=33�10−12 eV m are plotted. For this strong in-
teraction, the total conductance maintains its good quantized
conductance shape, but the two spin-dependent conductances
show large variations or oscillations. These oscillations ap-
pear to be particularly strong around subband edges �except
the first one�, where strong and complicated subband cou-
plings are expected to appear.22 The calculated spin polariza-
tion as shown in Fig. 3�b� also exhibits large variations and
strong oscillations, differing from the weak SOI strength
cases as shown in Fig. 2�c�. We would like to emphasize
again that the appearance of the spin-dependent conductance
oscillations and spin-polarization oscillations is a clear de-

viation from the prediction of a single-subband model and
they can only be found when a multisubband coupling model
is employed. Figure 3�c� shows that the spin-flipped reflec-
tion is significantly strong at energies close to subband edges
�except for the lowest one�. It was noted in Ref. 5 that spin-
flipped reflection should not occur. This was argued because
the reflected electron will rotate its spin back when traveling
in the opposite direction. However, this is only true for the
particular conditions studied in Ref. 5, i.e., when only one
subband is open for conduction. When multiple subbands are
open for transmission the electron can travel back in differ-
ent subbands. Since the speed at which the spin rotates is
different for different subbands, the electron will not neces-
sarily end up in its original spin state, resulting in a nonva-
nishing spin-flipped reflection amplitude.

The above results clearly indicate that although the quan-
tization characteristics of the total conductance show a weak
dependence on the SOI strength, the behaviors of the two
spin-dependent conductances and the spin polarization de-
pend strongly on the SOI strength. It is this SOI dependence
of the spin-polarized conductances that has been proposed to
be employed in the realization of spin transistor devices. To
give a more complete account for this SOI dependence, we
show in Fig. 4 the calculated total conductance, G, and spin-
dependent conductances, G↑↑ and G↓↑, as a function of the
SOI strength � at two fixed Fermi energies. Figure 4�a�
shows the results for EF=6.5 meV. At this Fermi energy, the
total conductance, G, stays at a quantization plateau �see the
thin solid line in Fig. 4�a� and also Figs. 2 and 3�. However,
the two spin-dependent conductances, G↑↑ and G↓↑, show
rather regular oscillations. Thus a good modulation of the
spin-dependent conductances can be achieved with a multi-
mode quantum waveguide, as long as the total conductance
can be tuned to stay at a conductance plateau. Figure 4�b�
shows the results of the calculations for EF=7.9 meV, at
which the total conductance stays close to resonance dips. It
can be seen that with increasing SOI strength �, the two
spin-dependent conductances, G↑↑ and G↓↑, still show rather
regular oscillations, except at those � values where the total

FIG. 5. Total conductance G �thin solid line�, spin-up conduc-
tance G↑↑ �thick solid line�, and spin-down conductance G↓↑

�dashed line� as a function of the SOI strength � for electrons in-
jected in the spin-up states into the SOI region with the size of L
=220 nm and w=100 nm at �a� the Fermi energy EF=28.5 meV
and �b� the Fermi energy EF=32 meV.

FIG. 6. Total conductance G �dotted line�, spin-up conductance
G↑↑ �thick solid line�, and spin-down conductance G↓↑ �thin solid
line� as a function of the length L of the SOI region with the width
w=100 nm and the SOI strength �=33�10−12 eV m: �a� the results
for the Fermi energy at EF=6.5 meV and �b� the results for the
Fermi energy EF=7.9 meV.

FIG. 7. Total conductance G �dotted line�, spin-up conductance
G↑↑ �thick solid line�, and spin-down conductance G↓↑ �thin solid
line� as a function of the length L of the SOI region with the width
w=100 nm and the SOI strength �=33�10−12 eV m: �a� the results
for the Fermi energy at EF=28.5 meV and �b� the results for the
Fermi energy EF=32 meV.
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conductance, G, shows sharp dips. Similar results are found
for energies corresponding to five subbands open �see Fig.
5�. These results have an important implication in terms of
device technology: it is not absolutely required to have a
single-mode conductor in order to realize a well-controlled
spin transistor device.

Finally, we discuss the results of the calculations as a
function of the SOI region length L, shown in Figs. 6 and 7.
In these calculations, the SOI strength has been set to �
=33�10−12 eV m, but the same Fermi energies as in Fig. 4,
i.e., EF=6.5 and 7.9 meV, and in Fig. 5, i.e., EF=28.5 and
32 meV, have been assumed, respectively. It is clearly seen
that at EF=6.5 meV �Fig. 6�a��, the total conductance stays
at a plateau and only shows a weak dependence on the length
L. It can also be seen from the figure that with increasing
length L, the two spin-dependent conductances show regular
oscillations. However, the amplitudes of the oscillations are
strongly L-dependent and are approximately varied periodi-
cally as the SOI region length L increases. This beating phe-
nomenon of the spin-dependent conductances has already
been reported in Ref. 5 and can be understood approximately
as a result of the sum of the two individual transmissions
through the first and second subbands, which oscillate with
different frequencies. However, in strong contrast, the total
conductance at EF=7.9 meV shows strong, irregular oscilla-
tions �Fig. 6�b��. The same goes for the two spin-dependent
conductances. These irregular fluctuations result again from
strong intersubband coupling. At EF=28.5 meV, five sub-
bands are open for conduction. The intersubband interaction
is then expected to be strong and of a complicated nature. It
is therefore not obvious that the above simple sum of contri-
butions is valid. However, it is seen in Fig. 7�a� that some
regular beating patterns as a function of length exist when
the Fermi energy is on a conductance plateau. At EF
=32 meV, an energy close to a high-index subband edge,
these regular beating patterns are again destroyed �Fig. 7�b��,
due to the strong intersubband coupling.

B. Rashba superlattice

The study is now extended to the structure of a periodic
array of N units in the Q1D waveguide of width w �see the
inset of Fig. 8�. Each unit consists of a region of length L1
with finite SOI and a region of length L2 with vanishing SOI.
The period of the array structure is then L1+L2. Such a struc-
ture has previously been studied using a transfer-matrix
method.5 However, the study was made under the assump-
tion that only the two lowest subbands are involved in the
transport and the calculations were performed in a truncated
basis consisting of only two sublevels. Thus the contribution
to the localized states in the superlattice region from the
evanescent states and the effects of interaction with high-
energy subbands are neglected. Here, to further demonstrate
the power of our scattering-matrix formalism, we study the
spin-dependent electron transport in regimes, where multiple
subbands are open for conduction, with a basis set as large as
necessary to obtain a desired convergence in the calculated
quantities.

The total conductances, G, calculated for structures with
L1=L2=100 nm, �=33�10−12 eV m, w=100 nm, and N=1,

2, and 10 units are plotted in Fig. 8 as a function of the Fermi
energy EF. For one unit �N=1�, the conductance shows simi-
lar behavior as in Fig. 3�a� and is included for reference.
With two units �N=2�, regions of suppressed conductance
start to form on the conductance plateaus. For ten units �N
=10�, these conductance suppression regions have developed
into gaps, indicating the formation of minibands in the su-
perlattice region. At each side of a conductance gap there are
regular high-frequency oscillations. These oscillations appear
as a result of electron transmission through the miniband
states which have a discrete nature for the superlattice with a
finite number of periods. Such features are generally ex-
pected for periodic structures �see, for example, Ref. 18�.

It is now interesting to ask whether the spin-dependent
conductances show similar features as the total conductance
of Fig. 8. In Fig. 9 we plot the individual spin conductances
for the structures with N=2, 3, 5, and 10 units. Here the plots
for N=3 and N=5 units have been added to show the devel-
opment. For the superlattice structure with two units, the
spin-dependent conductances show rather simple behaviors
except close to the subband edges �Fig. 9�a��. For the super-
lattices with an increasing number of units, the spin-
dependent conductances develop and show complex behav-
iors with regions of slow oscillations as well as regions of
rapid oscillations �Figs. 9�b�–9�d��. The slow oscillations oc-
cur at energies away from the onsets of subbands. However,
the rapid oscillations are found at energies close to the onsets
of subbands with the subband index n�2. It is very interest-
ing to note that these spin-dependent oscillations are not
found in the total conductance �Fig. 8�, indicating that a con-
duction peak for one spin orientation coincides with a con-
duction dip for the opposite spin orientation. Thus the rapid
oscillations originate from strong spin scattering by localized
states in the superlattice region. Since the rapid oscillations
appear at energies close to an edge of a subband with sub-
band index n�2, the localized states contain significant con-
tributions from high-index subbands in the SOI regions, in
difference from the miniband states which are formed from a
single subband �or, in other words, the subbands of the same
index in the entire superlattice region�. Thus these localized

FIG. 8. Total conductance G as a function of the Fermi energy
EF for a Rashba superlattice with �=33�10−12 eV m, L1=L2

=100 nm, w=100 nm, and N=1, 2, and 10 units. The plots have
been offset for clarity. The inset is a schematic illustration of the
Rashba superlattice structure.
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states need to be represented by including many high-energy
subbands in the calculations, and a two-subband model may
fail to produce the rapid oscillations in the spin-dependent
conductances. In Fig. 10 we plot the spin polarization corre-
sponding to Fig. 9. Here the fast oscillations are again seen
in the energy regions where the spin-dependent conductances
show rapid oscillations. The oscillations in the spin polariza-
tion close to the second subband edge are especially clear.
Here, for every unit added, more oscillation peaks in the spin
polarization are found.

IV. CONCLUSIONS

We have presented a formulation of the scattering matrix
method for spin-dependent electron transport in a quantum
waveguide. In the formulation, only the Rashba SOI has

been taken into account. However, the incorporation of the
Dresselhaus SOI and an applied magnetic field in the formu-
lation is straightforward. The transfer matrices needed in the
implementation of the scattering-matrix method has been de-
rived. In particular, we have represented all the required
Hamiltonian matrices in terms of the transverse spatial
eigenstates and the spin eigenstates of the leads. Thus the
method has great flexibility and can easily be applied to sys-
tems with complex geometrical structure, potential distribu-
tion, SOI strength profile, etc. Also, the method is numeri-
cally stable and can be employed to treat spin-dependent
multisubband scattering processes accurately. As applica-
tions, the method has been implemented in the studies of
spin-dependent electron transport in Q1D conductors, with a
region of the Rashba SOI and with a region containing a
Rashba superlattice, made from a semiconductor heterostruc-
ture. The total conductance, spin-dependent conductances,
and spin polarization of the device system have been calcu-
lated for electrons injected in a pure spin-polarized, say spin-
up, state from a lead into the SOI region.

For the Q1D conductor with a single region of the Rashba
SOI, the calculations show that at weak SOI strengths, the
main effect of the SOI is to entangle the spin-up and spin-
down states of an electron and to rotate the electron spin as
the electron goes through the SOI region. As a result, the
spin polarization for a given structure is roughly Fermi-
energy independent and the subband coupling has a negli-
gible effect on the spin polarization. At strong SOI strengths,
the spin-dependent conductance as well as spin polarization
show strong Fermi-energy dependences. It is shown that the
influence of SOI-induced subband coupling on the spin-
dependent transport is particularly strong at Fermi energies
close to the onsets of subbands �with the subband index n
�2�. However, at a Fermi energy, where the total conduc-
tance is at a conductance plateau, the spin-dependent con-
ductances still show rather regular oscillations with increas-
ing SOI strength � or SOI region length L. Our results
indicate that to achieve a well-controlled spin transistor de-
vice, it may not be absolutely required that the SOI-
incorporated waveguide conductor be operated in the single-
mode conduction regime.

For the Q1D conductor modulated by a periodic array of
strong Rashba SOI regions, the total conductance shows the
standard superlattice behavior. However, the spin-dependent
conductances and the spin polarization show complex behav-
ior with regions of slow oscillations and regions of rapid
oscillations. As in the Q1D conductor with a single SOI re-
gion, the slow oscillations are found in the energy regions
where the total conductance is at a plateau. The rapid oscil-
lations appear at energies close to the onsets of subbands
with the subband index n�2. These oscillations originate
from strong spin scattering by localized states in the SOI-
modulated superlattice region, which, in difference from the
miniband states formed within a single subband, contain sig-
nificant contributions from high-energy subbands. Because
of the complex nature of the spin-dependent conductances, a
Rashba SOI-modulated superlattice may hardly be used as a
well-controlled spin-modulating device, although it could be
used for standard superlattice applications.

FIG. 9. Spin-up conductance G↑↑ �solid line� and spin-down
conductance G↓↑ �dashed line� as a function of the Fermi energy for
the Rashba superlattice structure with �=33�10−12 eV m, L1=L2

=100 nm, w=100 nm, and �a� N=2, �b� N=3, �c� N=5, and �d�
N=10 units.

FIG. 10. Spin polarization Pz as a function of the Fermi energy
EF for the Rashba superlattice structure in Fig. 9. The plots, with
the zero polarization indicated by a horizontal line in each plot,
have been offset for clarity.
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