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Spin-relaxation rates have been calculated for the D’yakonov-Perel �DP� mechanism involving the interac-
tion with polar-optical phonons. The inelastic nature of the collisions has been fully taken into account and
expressions for the energy-dependent time constants have been found for arbitrary degeneracy and for both
strong and weak spin-population differences. We investigate the energy and temperature dependence of the
spin-relaxation rates for a range of quantum well �QW� widths and quantum wire �QWR� cross sections. The
spin-relaxation time is found to exhibit a monotonic temperature dependence and an E−2 dependence on
subband energy.
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I. INTRODUCTION

There is considerable interest in spin-polarized dynamics
in quantum confined structures currently, due to the many
proposed spintronic devices. For the most part, interest has
focused on spin-relaxation rates in quantum wells of III-V
semiconductors. Due to the ease with which a spin-polarized
population may be generated by selective optical pumping.
The D’yakonov-Perel �DP�1 mechanism extended to quan-
tum wells2 is highlighted as being dominant in GaAs at room
temperature.3–5 One-dimensional confinement suppresses
spin-relaxation. A symmetric quantum wire �QWR� with a
single subband preserves spin polarization, even if there is
significant spin-orbit coupling due either to bulk �Dressel-
haus� or structural �Rashba� inversion asymmetry.6 In an
asymmetric wire, spin relaxation will proceed via the DP
mechanism assuming spin-orbit coupling due to bulk inver-
sion asymmetry is present. At room temperature in III-V
compound semiconductors such as GaAs the DP mechanism
is dominant for spin relaxation and the most powerful scat-
tering mechanism in is polar-optical-phonon �POP� scatter-
ing. The presence of scattering will enhance spin relaxation
via the DP mechanism. Spin relaxation in QWR’s has been
studied with the aid of Monte Carlo simulations.7,8 While
both of these reports consider POP the former limit them-
selves to elastic collisions and the latter consider tempera-
tures below 50 K only. Motivated by the ultimate goal of
room temperature devices, we have examined the DP mecha-
nism in two-dimensional �2D� and one-dimensional �1D�
taking the inelastic nature of the POP scattering fully into
account.

The profoundly inelastic nature of the interaction means
that a simple momentum-relaxation time cannot be defined
and standard formulas for relaxation rates found in the litera-
ture cannot be used. The problem is well known in transport
theory where various techniques have been employed to
solve the Boltzmann equation either approximately or nu-
merically. However, in principle an exact solution of the
Boltzmann equation can be obtained by using a ladder
technique9,10 in which the energy rungs of the ladder are
separated by a phonon energy. Starting at a high energy

where a momentum-relaxation time constant can be defined,
one can use the ladder technique to define a time constant for
the lowest rung. Repetition of the technique yields the time
constant for the next lowest rung, and so on for the higher
rungs. Recently this technique has been used in the case of
bulk GaN,11 AlGaN/GaN heterostructure12 and by us for
bulk13 DP mechanism.

The paper is organized as follows: Section II describes the
Hamiltonian for the DP mechanism, Sec. III describes the 2D
case, Sec. IV the 1D case, and Sec. V presents the results and
discussion for both.

II. THE D’YAKONOV–PEREL MECHANISM

The conduction-band Hamiltonian is of the form:

H =
k2

2m* +
�

2
„� · ��k�…, ��k� = �� �1�

�2 =
2

9

�2

�1 + ���1 +
2

3
���

1

m* −
1

m
�B2

Eg
� =

�0

Eg
�2�

where k is a two-dimensional momentum in the plane, � is
the bulk spin splitting coefficient,14 � are the Pauli matrices,
m* is the effective mass, m is the free-electron mass, Eg is the
band gap, �0 is the spin-orbit splitting, and B is the matrix
element describing the interaction with the second subband.
In the D’yakonov-Perel mechanism � is interpreted as a vec-
tor defining the direction of an effective magnetic field and
� is then the precession frequency of the spin. Precession
itself does not relax all components of spin; collisions are
required that change the direction of �. The operative time is
the momentum-relaxation time �p, as distinct from the scat-
tering time, associated with the scattering mechanism. When
��p�1 the spin relaxes before a scattering event can take
place. Typically, however, the spin-splitting of the conduc-
tion band is very small and the scattering time is very short
and so ��p	1. In this paper we are only concerned with the
contribution coming from polar-optical phonon scattering
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III. QUANTUM WELLS

The componenets of the precession frequency of the spin
are:

�x = �kx�ky
2 − kz

2�, �y = �ky�kz
2 − kx

2�, �z = �kz�kx
2 − ky

2�
�3�

Taking the confinement direction to be along z we can re-
place �kz

2� with Ki
2 by taking the expectation value.

�x=�kx�ky
2−Ki

2� , �y =�ky�Ki
2−ky

2� , ��z�=0 where i is the
subband index. Thus we have:11

�x = − �1 cos 
 − �3 cos 3
 �4�

�y = �1 sin 
 − �3 sin 3


�1 = �k�Ki
2 −

k2

4
�, �3 = �

k3

4
, tan 
 =

ky

kx

Scattering takes k to k� and Ki to Kj. For simplicity we
consider only intrasubband transitions, on the assumption
that higher bands will not be occupied. This assumption is
valid since the energy separation to the next lowest subband
is �10 kT. The tensor components of the scattering times are
obtained by first considering k to be along the x direction.
The scattered component is:

�x� = − �1� cos � − �3� cos 3� �5�

where � is the scattering angle. Similarly the y component is:

�y� = �1� cos � + �3� cos 3� �6�

We now have two time constants one associated with � the
other with 3�.

This situation is conveniently described using spin-
density-matrix methods.15 The method has already been em-
ployed by us to analyze the bulk.13

It is common to limit our discussion to those scattering
mechanisms involving elastic collisions, but this is not pos-
sible when the interaction is with optical phonons, except in
the unrealistic high-energy limit when E���. In most cases
�and temperatures� of practical interest E is less than or of
the order of the phonon energy, thus we must take into ac-
count separately the role of absorption and emission pro-
cesses. Taking into account occupation probabilities and de-
generacy we then have:

i
1

�
�H1�k�, ̄	 + 


k�

Wkk�
abs��n + 1�

f0�E + ���
f0�E�

1�k�

− n
f0�E�

f0�E + ���
1�k��� + 


k�

Wkk�
em �n

f0�E�
f0�E − ���

1�k�

− �n + 1�
f0�E − ���

f0�E�
1�k��� = 0. �7�

The spin density, �k� is defined as ̄+1�k� and the bar
denotes an average over all directions of k , n is the phonon
occupation number, H1�k�= 1

2�(� ·��k�) and assuming solu-
tions of the form 1�k�=−i��*�E� /�	�H1�k� , ̄	.

Connection is thereby made to states E−�� and E+��
and from these states to more remote states. Since it is not
possible to define an overall momentum-relaxation we define
an energy-dependent time constant �*(E) associated with
each of the directionally dependent terms in analogy with the
corresponding solution of the Boltzmann equation for optical
mode scattering.

Using the properties of the spin operator we can evaluate
the commutator in Eq. �7� and obtain the rate of decay of a
spin component:

dsx

dt
= − �*�E�sx��y

2 + �z
2� − sy�x�y − sz�x�z� �8�

As Pikus and Titkov15 have pointed out, the rate is a tensor
quantity that reduces to a scalar when an average over direc-
tion is taken since

�i� j = 0, i � j, and �x
2 = �y

2 = ��1
2 + �3

2�, �z
2 = 0

�9�

1

Tz
=

2

Tx,y
= 2��1

2�1 + �3
2�3� �10�

We now need to determine �*(E) from Eq. �7�, substitution of
expressions for H1�k�, 1�k� and  gives Eq. �11�.
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− n
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where

�p� = �p�/�p,

cos �� = �1 − �q2/2k2� + ���/2E�	/�1 + ���/E� ,

cos �� = �1 − �q2/2k2� − ���/2E�	/�1 − ���/E�

with p=1 or 3. The effective time constants are obtained
from the coupled equations:

A��E��*�E + ��� + B��E��*�E − ��� + C��E��*�E� = 1

�12�

with E=�+m��, 0����� and m=0, 1, 2, etc. and A��E�,
B��E�, and C��E� are the relevant collision integrals �see the
Appendix�. For m sufficiently large �E���� a time-constant
can be defined and then used to solve for all the lower energy
time-constants. Matrix inversion techniques are employed to
solve the set of m equations.
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IV. QUANTUM WIRES

Taking the confinement directions to be along x and y
results in scattering along the wire either forward or back-
ward in z. Again we limit ourselves to intrasubband scatter-
ing due to the large energy separation to the next subband.
The minimum energy gap for the widest wire considered is
�3 kT. The expectation values are �kx

2�=Ki
2 and �ky

2�=�i
2

with i and j the subband indices.

�i� j = 0, i � j, and �x
2 = �y

2 = 0, �z
2 = ��kz�Ki − � j�	2

�13�

1

Tz
= 0,

1

Tx,y
= �*�E��z

2 �14�

It is immediately apparent from Eq. �14� that for electrons
injected with their spins aligned along the axis of the wire,
there will be no DP relaxation. Spins aligned in the x-y plane
will relax. In order to calculate the energy dependent time
constant, �*(E), we again substitute into Eq. �7�.
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where kz��kz�� is the scattered wave vector for absorption
�emission�.

The effective time constants are obtained from the
coupled equations as for the quantum well case Eq. �12� with
the collision integrals now given by A��E�, B��E�, and C��E�
�see the Appendix�.

V. RESULTS

Spin-relaxation rates were also calculated for the
Elliott-Yafet16,17 mechanism. The relaxation times are so
long as compared with those of the DP mechanism that, as
for the bulk, we neglect the Elliott-Yafet mechanism in the
context of polar-optical phonon scattering in intrinsic GaAs
over our chosen temperature range. We have also confirmed
that a bulk phonon spectrum is sufficient to describe the
interaction by comparing results using confined phonon
spectra such as the DC �dielectric continuum� model. Effec-
tive scattering times, �* were calculated using the ladder
method, the resulting time constants were compared with
those obtained from an analytic solution employing four
rungs. There being little discrepancy in the two methods, we
have used the simpler analytic solution throughout.

Calculations of the electron spin-relaxation rates in the
conduction band �assumed to be parabolic� of nondegenerate

GaAs used the room-temperature data given in Blakemore18

�Table I� and the estimate for the matrix element, B, given by
Fishman and Lampel14 B=10�2 /2m describing the interac-
tion with the second electron subband. Commonly quoted
values in the literature are given in terms of energy ��, writ-
ing our frequency in terms of energy gives 28 eV Å3. This
value is consistent with other reports in the literature for
bulk,14,19 although the inclusion of many more remote bands
has been reported to reduce �� to 19.7 eV Å3.20

The effective scattering time, �*, for the DP mechanism
was obtained at a given temperature as a function of energy
using the first four rungs of the phonon energy ladder. �� is
taken to be 28 eV Å3 throughout. Results for a 5 nm quan-
tum well are shown in Fig. 1�a� for 300 K and in Fig. 2�a� for
200 K. Computations were also carried out for temperatures
225, 250, 250, 275, and 325 K. The time constants exhibit a
sharp step at �� due to the sudden onset of polar-optical
phonon emission. Spin-relaxation rates were calculated using
Eq. �10� and the corresponding times, Ts, are shown in Figs.
1�b� and 2�b�. There is a large difference in magnitude be-
tween bulk and 2D spin relaxation times even though the
effective scattering times are very similar. The reason for this
is the strong dependence of Ts on subband energy.

Thermally averaged rates were computed for each tem-
perature and the corresponding times are shown in Fig. 3. As
one might expect, the POP scattering rate decreases toward
low temperature as the phonon population decreases, the
spin-relaxation time, Ts, also decreases, giving a monotonic
dependence on temperature. In practice, the reduction of the
DP spin-relaxation time toward low temperatures will be
ameliorated by the increasing rôle played by other scattering
mechanisms, primarily those associated with piezoelectric
scattering, deformation-potential scattering and charged-

FIG. 1. Spin relaxation in a 5 nm GaAs quantum well �QW� at
300 K via the DP mechanism. �a� Effective scattering time associ-
ated with the POP interaction. Solid curve �1, dash curve �3. �b�
Spin-relaxation time.

SPIN RELAXATION IN CUBIC III-V … PHYSICAL REVIEW B 72, 045326 �2005�

045326-3



impurity scattering. The effect of any or all of these at room
temperature will be to increase the spin-relaxation time via
the DP mechanism. The times we quote are, therefore, to be
regarded as lower limits.

Thermally averaged rates were also calculated for various
well widths. Figure 4 shows the spin-relaxation time against
subband energy. The quantum well subband energies are de-
termined by assuming finite Al0.3Ga0.7As barriers. The spin-
relaxation time exhibits an E−2 dependence on confinement
energy in agreement with experiment.3,5 For a quantum well
with a subband energy, E1e�kT D’Yakonov-Perel predict
that the spin-relaxation rate will scale as �pTE2. Our results
show that the spin-relaxation time scales as T2 and the
energy-dependent time-constant scales as T−3. Thus our re-
sults give the exact same dependencies on temperature and
confinement energy as predicted by D’Yakonov-Perel.

As we have already shown an electron injected with its
spin aligned along the axis of the wire will not experience
spin relaxation. In addition any orientation of spin will be
preserved within a wire of symmetric cross section and with
a single subband. First we examined the effect of wire cross-
sectional asymmetry on the spin-relaxation time. Wire cross
sections of 4 by 4.1 nm to 4 by 7 nm were considered. For
simplicity we have limited our study to two subbands; inter-
subband scattering becomes possible for a 4 by 4.8 nm cross-
section wire. The effective scattering time, �*, for the DP
mechanism was obtained at a given temperature and wire
cross section as a function of energy. Spin-relaxation rates
were calculated using Eq. �14�. The dramatic effect of cross-

FIG. 5. �a� Variation of effective scattering time with longitudi-
nal energy at 300 K for a quantum wire �QWR� of cross section 4
by 4.1 nm. �b� Variation of spin-relaxation time with longitudinal
energy at 300 K for a quantum wire �QWR� of cross section 4 by
4.1 nm.

FIG. 2. Spin relaxation in a 5 nm GaAs quantum well �QW� at
200 K via the DP mechanism. �a� Effective scattering time associ-
ated with the POP interaction. Solid curve �1, dash curve �3. �b�
Spin-relaxation time.

FIG. 3. Temperature dependence in GaAs of the 2D DP spin-
relaxation time.

FIG. 4. Subband energy dependence in GaAs QW of the DP
spin-relaxation time.
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sectional asymmetry on spin relaxation can be seen in Figs. 5
and 6. Figure 5 shows the variation of effective scattering
times �Fig. 5�a�	 and spin-relaxation times �Fig. 5�b�	 with
longitudinal energy for a wire of cross section 4 by 4.1 nm.
Figure 6, as in Fig. 5, but with a cross section of 4 by 4.5 nm.
The time constants exhibit a sharp step at �� due to the
sudden onset of polar-optical phonon emission. Although the
time constants for the two cross sections are identical, since
the temperature is the same, the strong dependence on con-
finement energy results in quite different spin relaxation
times.

Figure 7 shows the variation in spin-relaxation time with
increasing wire cross section. These times are obtained by
performing a thermal average integrating over energy. A
Lorentzian level broadening term is introduced to enable in-
tegration of the density of states in 1D.21 Figure 8�a� shows
the variation of the spin-relaxation time with Lx fixed at 4.0
nm while Ly is varied. When the wire is almost symmetric
the difference in confinement energies is very small and the
resulting spin-relaxation time is very long. For successively
more asymmetric wires the spin-relaxation time becomes
shorter, eventually becoming quasi-2D when a sufficient
number of subbands are considered. Ts scales as L−2. Figure
7�b� shows the same result as Fig. 7�a� but plotted in terms of
energy with a log-log scale. Ts varies as the square of the
difference between the two subband energies.

Figure 8 shows the temperature dependence of the spin-
relaxation time in GaAs. The spin relaxation time decreases

toward low temperature as the phonon population decreases.
In reality this reduction of the DP spin-relaxation time to-
ward low temperature will be balanced by the increasing role
played by other scattering mechanisms.

Equation �10� is only valid in the limit ��p	1. Figure
9�a� shows the variation of the product �� with energy for
our temperature range, solid curve 200 K and chain curve
300 K. For all temperatures considered, the relatively large
magnitude of the subband energy as compared to the phonon
energy results in �1 being on the order of or greater than �1
for energies below ��. In this limit: ��p�1, the spin will
relax as �1

−1 rather than �p
−1. The product �3�3 is less than

one for all temperatures and energies considered. Figure 9�b�
shows the variation of the product �� with energy for a wire
of nearly symmetric cross section and of slightly asymmetric
cross section. As in the 2D case the product �� becomes
large as the phonon emission threshold is reached.

FIG. 6. �a� Variation of effective scattering time with longitudi-
nal energy at 300 K for a quantum wire �QWR� of cross section 4
by 4.5 nm. �b� Variation of spin relaxation time with longitudinal
energy at 300 K for a quantum wire �QWR� of cross section 4 by
4.5 nm.

FIG. 7. Variation of spin-relaxation time with QWR cross sec-
tion at 300 K, Lx=4 nm. �a� Ly vs Ts. �b� Difference in subband
energies vs Ts.

FIG. 8. Temperature dependence of the spin-relaxation time in a
QWR of cross section 4 by 4.1 nm.

SPIN RELAXATION IN CUBIC III-V … PHYSICAL REVIEW B 72, 045326 �2005�

045326-5



It would appear that for low energies spin does not relax
via the DP mechanism. However, we must bear in mind that
other scattering mechanisms will be present and the rates of
these must be added to that of the POP rate in order to obtain
an overall energy-dependent time constant.
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APPENDIX: Collision integrals pertaining to Eq. (12)

The scattering rate for the 2D polar-optical-phonon inter-
action can be expressed as an integral over phonon states
with wave vector q in the usual way. Taking account of the
conservation of energy and crystal momentum we obtain the
integrals that derive from Eq. �12� as follows:

A��E� = −
Wo

2
���

E
�1/2

n
f0�E�

f0�E + ���
�p�

�p

��
q−

a

q+
a F11�q�cos p��

q�1 − ��m�

�kq
� +

q

2k
�2�1/2dq ,

q±
a = k„�1 + ���/E� ± 1…, cos �� =

1 − �q2/2k2� + ���/2E�
�1 + ���/E�

QW F11�q� =
1

2

���2 + �2��3�2 + 2�2� − �4�1 − e−2��
����2 + �2�	2 ,

� =
qa

2

SH F11 =
b

8�q + b�3 �8b2 + 9qb + 3q2�b = �33m*e2Ns

8�s�
2 �1/3

�A1�

For B��E�:

B��E� = Wo���

E
�1/21

2��n + 1�
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f0�E� �
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a

q+
a F11�q�dq

q�1 − ��m�

�kq
� +

q

2k
�2�1/2

+ n
f0�E − ���

f0�E� �
q−

e

q+
e F11�q�dq

q�1 − ��m�

�kq
� −

q

2k
�2�1/2 � �A2�

and the second term in B��E� is zero if E���. Finally, for
C��E� we have:

C��E� = −
Wo

2
���

E
�1/2

�n + 1	
f0�E�

f0�E − ���
�p�

�p

��
q−

e

q+
e F11�q�cos p��

q�1 − ��m�

�kq
� −

q

2k
�2�1/2dq ,

q±
e = k„1 ± �1 − ���/E�…, cos �� =

1 − �q2/2k2� − ���/2E�
�1 − ���/E�

�A3�

For E��� ,C��E�=0. The basic rate is

Wo = �e2/4���p��2m*�/��1/2

FIG. 9. Energy dependence of the dimensionless quantity �� for
temperatures of 200 solid curve and 300 K dashed curve �a� quan-
tum well �b� quantum wire.
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�p
−1 = ���

−1 − �s
−1� �A4�

and p takes values of 1 and 3.
Similarly for the 1D polar-optical-phonon interaction: For

A��E�:

A��E� = − W0n
f0�E�

f0�E + ����E + ��

E
�1/2

�� 1

2
� ��
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�1/2�qF�q,n,m�

q2 + Qa+
2 +

qF�q,n,m�
q2 + Qa−

2 �dq

�A5�

For B��E�:

B��E� = W0�n + 1�
f0�E + ���

f0�E�

�� 1

2
� ��
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�1/2�qF�q,n,m�

q2 + Qa+
2 +

qF�q,n,m�
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2 �dq

+ W0n
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�� 1

2
� ��
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�1/2�qF�q,n,m�

q2 + Qe+
2 +

qF�q,n,m�
q2 + Qe−

2 �dq

�A6�

and the second term in B�E� is zero if E���. Finally, for
C��E� we have:

C��E� = − W0�n + 1�
f0�E�

f0�E − ���
�E − ��

E
�1/2

�� 1

2
� ��

E − ��
�1/2�qF�q,n,m�

q2 + Qe+
2 +

qF�q,n,m�
q2 + Qe−

2 �dq
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For E��� , C��E�=0 where

F�q,n,m� = Gn,n�
2 �qx�Gm,m�

2 �qy�

Gr,r�
2 �q
� = ��2rr��2 �q
L
/2�2sin2�q
L
/2 + ��/2��r + r���

��q
L
/2�2 − ��2/4��r − r��2	2��q
L
/2�2 − ��2/4��r + r��2	2 �A8�

with

Qe± = Q0��E � �E − ���

Qa± = Q0�− �E ± �E + ��� �A9�

for forward and backward scattering.
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