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We present an approach to spin dynamics by extending the optical Bloch equations for the driven two-level
system to derive microscopic expressions for the transverse and longitudinal spin-relaxation times. This is done
for the six-level system of electron and hole subband states in a semiconductor or a semiconductor quantum
structure to account for the degrees of freedom of the carrier spin and the polarization of the exciting light and
includes the scattering between carriers and lattice vibrations on a microscopic level. For the subsystem of the
spin-split electron subbands we treat the electron-phonon interaction in second order and derive a set of
equations of motion for the 2�2 spin-density matrix, which describes the electron spin dynamics and contains
microscopic expressions for the longitudinal �T1� and transverse �T2� spin-relaxation times. Their meaning will
be discussed in relation to experimental investigations of these quantities.
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I. INTRODUCTION

The Bloch equations, originally formulated as equations
of motion �EOM� for magnetic moments1 have turned out to
apply, in general, to the dynamics of quantum-mechanical
two-level systems.2 One prominent example are the optical
Bloch equations �OBE� in atomic or semiconductor physics
with the components of the Bloch vector composed of the
entries of the density matrix for a driven two-level system
under excitation by a scalar light field �see, e.g., Ref. 3�.
Usually carrier scattering is accounted for by adding phe-
nomenological damping terms connected with a longitudinal
�T1� and a transverse �T2� relaxation time. In the context of
OBE, T1 characterizes the decay time of the population in-
version or the relaxation into an equilibrium distribution,
whereas T2 is the time scale on which the coherence between
exciting light and optical polarization gets lost. A further
evolution of the OBE are the semiconductor Bloch equations
�SBE�, which were formulated to describe optical phenom-
ena in semiconductors under intense excitation by including
many-particle terms due to Coulomb interaction between the
carriers.4 These equations yield a microscopic formulation of
T1 and T2 caused by carrier-carrier5 or carrier-phonon
scattering.6,7 In spite of their successful application to carrier
dynamics, the OBE and SBE, in their original form, are not
capable of contributing to the current topic of spin dynamics
in semiconductors. Recently, this shortcoming was partially
overcome by extending the SBE with respect to the spin
degree of freedom of the carriers �including spin-orbit cou-
pling� and the polarization degree of freedom of the exciting
light,8 necessary to create a nonequilibrium spin distribution
by optical orientation.9 These extended SBE �derived by ap-
plying the Hartree-Fock truncation� are restricted, however,
to the coherent regime and hence fall short of describing
scattering as origin of spin relaxation and spin decoherence,
which are key issues of spintronics and quantum
computation.10 On the other hand, the structure of these
equations resembles those used in the phenomenological
approach of spin dynamics,9,11,12 thus indicating the possibil-
ity of a microscopic approach to spin relaxation in the lan-
guage of Bloch equations by explicitly including scattering
processes.

It is the aim of this paper to provide a microscopic for-
mulation of spin dynamics in semiconductors and semicon-
ductor heterostructures. We do this by starting from the ex-
tended OBE for the six-level system of electron and hole
subband states, containing the spin of the carriers and the
polarization of the exciting light �this corresponds to taking
into account only the single-particle contributions to the SBE
of Ref. 8� and include the electron-phonon interaction as a
possible scattering mechanism. For the subsystem of the con-
duction band states �spin-split by spin-orbit coupling� we
formulate the full dynamics as a set of EOM for the 2�2
spin-density matrix and the phonon-assisted density matri-
ces. By using a correlation-based truncation scheme in
second-order Born approximation, we derive the scattering
rates �in the Boltzmann limit and beyond� to arrive at equa-
tions describing the electron spin dynamics including relax-
ation �due to electron-phonon interaction� on a strictly mi-
croscopic level, whereas existing theories �see, e.g., Ref. 12�
are a mixture of microscopics and phenomenology. We want
to stress also that, regarding the creation of a nonequilibrium
spin population, our theoretical concept differs from some
experimental situations. In our OBE a nonequilibrium spin
polarization is due to optical orientation, whereas in spin-
tronic devices it is usually created by spin injection.13 How-
ever, this difference will not become relevant in the context
of this paper concentrating on the spin relaxation because of
carrier-phonon interaction.

This paper is organized as follows: In Sec. II we introduce
the system Hamiltonian, formulate the full dynamics of the
system without truncation, and derive the EOM for the elec-
tron subsystem. In Secs. III and IV we present the
correlation-based truncation scheme used to achieve a closed
set of equations for the entries in the 2�2 density matrix
related to the spin-split conduction band states. It represents
an extension of the coherent OBE for the spin-density matrix
by contributions because of electron-phonon scattering. In
Sec. V we relate the dynamics of the density matrix with
those of experimental observables and discuss the meaning
of the corresponding spin-relaxation times. Finally, we draw
the conclusions of our results and give an outlook.
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II. SPIN-DEPENDENT OBE INCLUDING
CARRIER-PHONON INTERACTION

The Hamiltonian of the system is formulated in second
quantization using the notation of Ref. 8. We restrict our
discussion to the case of a quantum-well structure �QW�, but
the equations can be formulated in the same way for a bulk
semiconductor. We consider a six-level system consisting of
states from the spin-split lowest electron subband �with an-
gular momentum or pseudospin indices mc= ± 1

2 � and the cor-
responding heavy �mv= ± 3

2 � and light hole �mv= ± 1
2 � sub-

band at wave vector k under excitation by a light field of
arbitrary polarization and due to carrier-phonon interaction

H = H0 + Hlight + Hphonon. �1�

In the following, we address the individual contributions to
H. Following Ref. 8, we adopt the diagonal form of

H0 = �
k�mc�

�mc�
�k��cmc�

† �k��cmc�
�k��

+ �
k�mv�

�mv�
�k��vmv�

�k��vmv�
† �k�� , �2�

written with annihilation operators for electrons �holes�
cmc�

�k�� �vmv�
�k��� and corresponding creation operators. The

time dependence of these operators is understood. The
single-particle energies are denoted as �mc�

�k�� ��mv�
�k��� for

electrons �holes�. Although the structure of these single-
particle contributions is formally equivalent to a multisub-
band approach �see, e.g., Ref. 14�, the physical content dif-
fers. In the multiband case the eigenenergies describe
different bands separated by an energy gap �e.g., first- and
second-electron subband�. In contrast, we deal with subband
states whose spin degeneracy is lifted due to k-dependent
spin-orbit coupling15–17 caused by bulk inversion asymmetry
�BIA or Dresselhaus term�18 and/or structure inversion asym-
metry �SIA or Rashba term�19,20 �see Fig. 1�, which are asso-
ciated with spin precession. The diagonal form of H0 means
that the angular momentum or pseudospin is defined with
respect to the direction of the wave vector k. This particular
dependence of the pseudospin orientation on the direction of
k is visualized for the Rashba spin-orbit interaction in Fig. 2.
In dipole approximation, the interaction of the light field
with the electrons and holes reads

Hlight = − �
mc�mv�

k�

�E�t� · dmc�mv�
cv �k��cmc�

† �k��vmv�
† �k�� + H.c.� ,

�3�

where E�t� is the electric field vector of the exciting light and
dmc�mv�

cv �k�� is the dipole matrix element between the two sub-

band states with pseudospin index mc� and mv�. The latter
includes the optical selection rules �for details, see Ref. 8�.
The vector notation is essential to account for the polariza-
tion degree of freedom, which allows one to create a non-
equilibrium pseudospin distribution due to optical
orientation.9

The Hamiltonian describing the phonons and the carrier-
phonon interaction is given by

Hphonon = �
q

���q�b†�q�b�q� + �
k�q
� �

mc�mc�

�gmc�mc�
e �q�

�cmc�
† �k� + q�b�q�cmc�

�k�� + H.c.� + �
mv�mv�

�gmv�mv�
h �q�

�vmv�
† �k� + q�b�q�vmv�

�k�� + H.c.�	 , �4�

with the annihilation �creation� operator of a phonon b�†��q�.
The linear interaction of phonons with electrons �holes� is
ruled by the matrix elements gmc�mc�

e �q� �gmv�mv�
h �q��, which be-

FIG. 3. Possible scattering processes on the energy contours
�thin full lines� connected with a change of the pseudospin.

FIG. 1. Sketch of subband splitting due to spin-orbit
coupling.

FIG. 2. Sketch of constant energy contours of an electron sub-
band �dashed lines�, spin-split due to Rashba spin-orbit interaction.
The dependence of the pseudospin orientation on the wave vector is
visualized by the arrows.
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cause of our choice of the energy eigenstates as basis is
labeled by pseudospin indices. This expresses the fact, that a
change of the wave vector due to a scattering event is, in
general, accompanied by a change of the pseudospin state as
visualized in Fig. 3. We note that without spin-orbit coupling
the eigenstates are simple products of orbital and spin �-up or
-down� eigenstates. Consequently, the matrix elements of the
�spin-conserving� electron-phonon interaction reduce to
gmc�mc�

=g�mc�mc�
. The actual dependence of the interaction ma-

trix element on q is determined by the interaction mecha-
nism, which has to be specified for a quantitative analysis.6,7

We note in passing, that the same system has been studied
recently21 even including, besides electron-phonon interac-
tion, also impurity and carrier-carrier scattering, but not us-
ing the eigenstates of H0. Instead the spin-orbit coupling is
treated there explicitly as an effective k-dependent magnetic
field giving rise to an inhomogeneous broadening. In Sec. V
we shall discuss this situation, which is related to the present
choice of basis by a k-dependent unitary transformation.

In order to achieve expressions for the carrier-phonon
scattering, we have to evaluate the EOM of the density ma-
trix. In the basis of energy eigenfunctions of H0 the density
matrix for the assumed six-level model

��k� = 
��mcm̄c��k� ��mcmv��k�
��mvmc��k� ��mvm̄v��k�

� �5�

falls into different blocks, where ��mcm̄c��k� is the 2�2 ma-
trix for the lowest conduction band and ��mvm̄v��k� represents
the 4�4 matrix for the hole states. The off-diagonal blocks

��mcmv��k� and ��mvmc��k� include the coupling between va-
lence and conduction band states by the exciting light field.8

They describe the interband or optical coherence between
the hole and electron states coupled by the light field and
their time derivative defines the EOM of the interband polar-
ization Pmcmv

�k�= �cmc

† �k�vmv

† �k�
. Without electron-phonon
interaction the EOM of all entries of the 6�6 density matrix
would form a closed set of equations representing the coher-
ent spin-dependent OBE for the system. A detailed theoreti-
cal study of the optical coherence and polarization dynamics,
yet without addressing the spin or pseudospin, can be found
in Ref. 14.

The pseudospin dynamics, in particular, the relaxation and
decoherence, is contained in the time evolution of the diag-
onal blocks, which shall be exemplified here for the electron
system. The same steps of calculation would lead to the cor-
responding equations for the hole system, which, however,
are more complicated due to the additional orbital degrees of
freedom. The 2�2 pseudospin-density matrix for the elec-
trons is

��mcm̄c��k� = 
 �mcmc
�k� �mc−mc

�k�

�−mcmc
�k� �−mc−mc

�k� � . �6�

The single entries are expectation values of products of a
creation and an annihilation operator �mcm̄c

�k�
= �cmc

† �k�cm̄c
�k�
. We evaluate the commutators of the system

Hamiltonian, Eq. �1�, with cmc

† �k�cm̄c
�k� and take the thermal

expectation value to find their EOM

i��t�mcm̄c
�k� = ��mc

�k� − �m̄c
�k���mcm̄c

�k� + �
mv

�E�t� · dm̄cmv

cv �k�Pmcmv
�k� − E*�t� · dmcmv

cv* �k�Pm̄cmv

† �k��

+ �
qmc�

�gmc�mc

e �q��cmc�
† �k + q�b�q�cm̄c

�k�
 − gm̄cmc�
e �q��cmc

† �k�b�q�cmc�
�k − q�


+ gmcmc�
e* �q��cmc�

† �k − q�b†�q�cm̄c
�k�
 − gmc�m̄c

e* �q��cmc

† �k�b†�q�cmc�
�k + q�
� . �7�

The first two lines are the single-particle contributions of the SBE in Ref. 8. They describe the dynamics caused by the
spin-split energy levels and by the excitation of the electrons of either pseudospin from the valence subbands depending on the
polarization of the driving light field. The three-operator terms specify the scattering of an electron �in one of the spin- split
subbands� from one k to another one �in the same or the other spin-split subband� thereby absorbing or emitting a phonon, as
visualized in Fig. 3. The three-operator terms �or their thermal expectation values� establish the phonon-assisted density
matrix,6 whose entries obey EOMs of which we present as an example the one for smc�m̄c

�k+q ,q�= �cmc�
† �k+q�b�q�cm̄c

�k�


i��tsmc�m̄c
�k + q,q� = ��mc�

�k + q� − �m̄c
�k� − ���q��smc�m̄c

�k + q,q� + �
k�q�

�
m̃cm̃c�
m̃vm̃v�

�gm̃c�mc�
e �q��

��cm̃c�
† �k + q + q��b�q��b�q�cm̄c

�k�
 − gm̄cm̃c

e �q���cmc�
† �k + q�b�q��b�q�cm̃c

�k − q��


+ gmc�m̃c

e* �q���cm̃c

† �k + q − q��b†�q��b�q�cm̄c
�k�
 − gm̃c�m̄c

e* �q���cmc�
† �k + q�b�q�b†�q��cm̃c�

�k + q��
 + gm̃c�m̃c

e* �q�

��cm̃c

† �k��cmc�
† �k + q�cm̃c�

�k� + q�cm̄c
�k�
 − gm̃v�m̃v

h �q��vm̃v

† �k��cmc�
† �k + q�vṽ��k� + q��cm̄c

�k�
� . �8�

MICROSCOPIC APPROACH TO SPIN DYNAMICS:… PHYSICAL REVIEW B 72, 045311 �2005�

045311-3



As can be seen from Eqs. �7� and �8�, we run into a hierarchy
problem with EOMs containing terms with an increasing
number of operators, which is typical for systems with inter-
actions. This hierarchy problem can be overcome by a proper
truncation. The standard procedure is to neglect the existence
of coherent phonons corresponding to the expectation value
of a single bosonic operator �first-order factorization� and to
take into account only the expectation values that lead to a
phonon occupation number.6,7

III. BOLTZMANN LIMIT

The goal of the truncation is to gradually filter out the
scattering terms up to a certain order in the interaction rel-
evant for the investigated dynamics. To express the scattering
contributions in the Boltzmann limit caused by electron-
phonon interaction, we formulate the following rules for the
truncation: �i� After factorization of the four-operator terms
only expressions containing a macroscopic expectation value
are taken into account. �ii� Scattering terms contributing to
the Boltzmann limit are those proportional to the squared
absolute value of the interaction matrix element in Eq. �7�.
This means that we neglect the so-called polarization scatter-
ing due to inter- and intraband processes,22 which we refer to
in Sec. IV.

Applying these rules modifies Eq. �8� and leads to an
equation with the following characteristic structure:

�tx�t� = − i�x�t� + y�t� , �9�

where x�t� stands for the three-operator term and y�t� corre-
sponds to products between phonon occupation functions
��q�= �b†�q�b�q�
 and entries of the electron density matrix
�mcm̄c

�k��. As presented in Ref. 6, equations of this type can
formally be integrated to yield

x�t� = x�t0�e−i��t−t0� + �
0

t−t0

e−i�t�y�t − t��dt�. �10�

Inserting this result into the EOM of �mcm̄c
�k� leads to a

non-Markovian integrodifferential equation, which can be
solved analytically by applying the Markov and adiabatic

limit.22,23 This corresponds to use instead of Eq. �10� the
following expression:

x�t� = 
− i
P
�

+ ������y�t� , �11�

where P denotes the principal value. With this approach we
solve the EOM for the different entries of the phonon-
assisted density matrices appearing in Eq. �7�.

As we are interested in the relaxation due to electron-
phonon interaction, we write down only the scattering con-
tributions to the EOMs of the entries of the pseudospin-
density matrix, Eq. �6�, which correspond to damping terms.
We obtain for the diagonal entries

��t�mcmc
�k��scatt1 = − �mcmc

out �k��mcmc
�k�

+ �mcmc

in �k��1 − �mcmc
�k�� , �12�

with the characteristic rates for scattering “out” of or “in” to
the state with pseudospin mc and wave vector k. The explicit
form of �mcmc

out �k� is given by

�mcmc

out �k� =
�

�
�
q,mc�

�gmc�mc
�q��2����mc�

�k + q� − �mc
�k� − ���q��

��1 − �mc�mc�
�k + q����q�

+ ���mc�
�k − q� − �mc

�k� + ���q��

��1 − �mc�mc�
�k − q���1 + ��q��� . �13�

It has the characteristic form of expressions obtained from
Fermi’s Golden Rule: all terms are proportional to the abso-
lute squared value of the interaction matrix elements and to
the � function to warrant energy conservation in the scatter-
ing process. �mcmc

in �k� has the same form but with changed
phonon and electron occupation factors.

For the off-diagonal entries we may write the scattering
contributions as

��t�mc−mc
�k��scatt1 = − �mc−mc

e−p �k��mc−mc
�k� , �14�

with

�mc−mc

e−p �k� =
�

�
�
qmc�

��gmc�mc

e �q��2���mc�
�k + q� − �−mc

�k� − ���q�� � ��1 − �mc�mc�
�k + q����q� + �mc�mc�

�k + q��1 + ��q���

+ �gmc�mc

e �q��2���mc�
�k − q� − �−mc

�k� + ���q�� � ��1 − �mc�mc�
�k − q���1 + ��q�� + �mc�mc�

�k − q���q��

+ �gmc�−mc

e �q��2���mc�
�k + q� − �mc

�k� − ���q�� � ��1 − �mc�mc�
�k + q����q� + �mc�mc�

�k + q��1 + ��q���

+ �gmc�−mc

e �q��2���mc�
�k − q� − �mc

�k� + ���q�� � ��1 − �mc�mc�
�k − q���1 + ��q�� + �mc�mc�

�k − q���q��� . �15�
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Following the line of arguments in Ref. 4 or 5, where the
SBE have been derived for the two-level system of a con-
duction and a valence band state with carrier-carrier interac-
tion, we may identify the damping rates in our pseudospin
system with the inverse relaxation times

1

T1,k
= �

mc�

��mc�mc�
in �k� + �mc�mc�

out �k�� �16�

1

T2,k
= �mc−mc

e−p �k� �17�

of a Bloch vector, whose components are defined in the
usual way by entries of the 2�2 pseudospin-density matrix.
In spite of the similarities in the microscopic expressions of
T1,k and T2,k for our system, we do not find the relation
2T1,k=T2,k as for the system studied in Ref. 5. We note
instead a one-to-one correspondence between the individual
contributions to both rates except for the sign changes in
the pseudospin index mc, which—given the small spin-
splitting—leads to a relation T1,k�T2,k. In fact for a system
with spin-degenerate electron states, �mc

�k�=�−mc
�k� �as in

systems with inversion symmetry�, we find exactly T1,k
=T2,k. This is in accordance with the argument used for
two-level systems �see, e.g., Chap. 4 of Ref. 10�, that a
significant difference in these times �T1	T2� arises, if,
because of separation of the two levels, the decay of the
population inversion requires energy dissipation. Making
the gedanken experiment by assuming that the spin-orbit in-
teraction is completely “switched off,” the pseudospin and
the orbital degree-of-freedom decouple. Hence, all depen-
dencies on pseudospin indices are redundant because only
spin-conserving scattering processes are possible. As a

consequence no relaxation to a pseudospin equilibrium is
possible because the scattering due to phonons is no longer
capable of changing the pseudospin orientation. Neverthe-
less, the scattering does not vanish but leads to a redistribu-
tion of the states in k space within the separate pseudospin
reservoirs.

IV. BEYOND THE BOLTZMANN LIMIT

In order to include all scattering terms up to second
order in the electron-phonon interaction, we have to go be-
yond the Boltzmann limit by taking into account also those
contributions to the EOM of the phonon-assisted density ma-
trices �taking Eq. �8� as an example�, which were omitted in
Sec. III. This is achieved by relaxing the second truncation
rule used in Sec. III and leads to additional contributions
only to the EOM of the off-diagonal entry of the 2�2 elec-
tron pseudospin-density matrix, which can be cast into the
form

��t�mc−mc
�k��scatt2 = −

1

i�
�
qmc�


̄mc�−mc�
e−p �q��mc�−mc�

�k + q� .

�18�

In contrast to Eq. �14� one has to sum here over the pseu-
dospin index and the wave vector, which enters differently in

the self-energy 
̄mc�−mc�
e−p �q� and in �mc�−mc�

�k+q�. A corre-

sponding scattering contribution was found in Refs. 5 and 6
for the interband polarization, i.e., for the off-diagonal entry
of the 2�2 density matrix considered there. In order to
present the structure of the self-energy we extract all contri-
butions containing �according to Eq. �11�� a � function by
writing

�̄mc�−mc�
e−p �q� =

�

�
�g−mc−mc�

e �q�gmcmc�
e* �q����−mc�

�k + q� − �mc
�k� + ���q�� � ��1 − �mcmc

�k����q� + �mcmc
�k��1 + ��q���

+ g−mc−mc�
e �q�gmcmc�

e* �q����mc�
�k + q� − �−mc

�k� + ���q�� � ��1 − �−mc−mc
�k����q� + �−mc−mc

�k��1 + ��q���

+ gmc�mc

e �q�g−mc�−mc

e* �q����mc�
�k + q� − �−mc

�k� − ���q�� � ��1 − �−mc−mc
�k���1 + ��q�� + �−mc−mc

�k���q��

+ gmc�mc

e �q�g−mc�−mc

e* �q����−mc�
�k + q� − �mc

�k� − ���q�� � ��1 − �mcmc
�k���1 + ��q�� + �mcmc

�k���q��� . �19�

We can identify the source terms composed of products of
distribution functions and related to the different scattering
processes. As before, the energy conservation is contained in
the � function �therefore, we have omitted the contribution
with gm̃v�m̃v

h �q� as a factor because the energy difference be-

tween conduction and valence band states is usually much
larger than the phonon energy�. In contrast to Eq. �15�, the
terms are not proportional to the absolute squared values of
the interaction matrix elements, which is typical for the con-

tributions beyond the Boltzmann limit, as can be seen by
comparing to the corresponding result for the two-level sys-
tem of Ref. 6, which shows a similar structure. There the
terms beyond the Boltzmann limit have been denoted as po-
larization scattering22 with reference to the interband polar-
ization, whereas here they mean the corresponding scattering
processes in the dynamics of �mc−mc

�k�.
Together with the results of the previous sections we may

now write the full set of EOMs for the pseudospin-density
matrix
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�t�mcmc
�k� =

1

i�
�
mv

�E�t� · dmcmv

cv �k�Pmcmv
�k� − H.c.�

− �mcmc

out �k��mcmc
�k� + �mc−mc

in �k��1 − �mcmc
�k��

�20�

�t�mc−mc
�k� =

1

i�
��mc

�k� − �−mc
�k���mc−mc

�k�

+
1

i�
�
mv

�E�t� · d−mcmv

cv �k�Pmcmv
�k�

− E*�t� · dmcmv

cv* �k�P−mcmv

† �k��

− �mc−mc

e−p �k��mc−mc
�k� + �

qmc�


̄mc�−mc�
e−p �q�

��mc�−mc�
�k + q� . �21�

It contains in a microscopic formulation the pseudospin dy-
namics in electron subbands due to spin-orbit coupling, spin-
selective optical excitation, and electron-phonon interaction
�for carrier-carrier interaction see the remark at the end of
this paper�. By properly defining a Bloch vector, as in Sec.
III, and looking at the damping terms in the corresponding
Bloch equations, we can again specify the longitudinal and
transverse pseudospin relaxation times. As it turned out, only
T2,k is modified by additional terms �beyond the Boltzmann
limit� discussed in this section, while T1,k remains un-
changed.

V. CHANGING THE SPIN BASIS

When describing experiments designed to measure the
spin-relaxation time �SR and the spin-decoherence time �SD
of a system �see, e.g., Ref. 13 and references therein�, a basis
is used with spin states oriented relative to a fixed direction,
e.g., the growth direction of the QW structure. According to
this choice, spins are spin-up �↑� or spin-down �↓� when
aligned parallel or antiparallel to this direction, but in the
presence of spin-orbit interaction spin is not a good quantum

number. Consequently, the kinetic part of the Hamiltonian
�including spin-orbit terms� for a general wave vector k is
not diagonal. In order to be consistent with this convention,
we translate the results of Secs. III and IV, formulated in the
eigenstates of H0, to the spin-up and spin-down basis. The
unitary transformation connecting the two basis systems de-
pends on the wave vector k and the type of spin-orbit inter-
action to be considered. To keep the discussion as general as
possible, we take into account the two most frequently dis-
cussed mechanisms of spin-orbit coupling, namely, the lin-
earized Dresselhaus term and the Rashba spin-orbit
interaction.24,25 Accordingly, we have instead of H0 the
Hamiltonian

H↑↓ = Hkin + HR + HD, �22�

with the kinetic energy Hkin= ��2 /2m*�k2 ·12�2 of the free
electron with effective mass m*. The Rashba-Hamiltonian
has the form HR=��kx
y −ky
x� with the Rashba coefficient
�, the Pauli spin matrices 
x/y and the components kx/y of the
in-plane wave vector. The linearized Dresselhaus-
Hamiltonian has a similar form, given by HD=��kx
x

−ky
y� with the weighting parameter �. The appearance of
the Pauli spin matrices in HR and HD indicates the use of a
basis with spin orientation parallel �or antiparallel� to the z
axis �which usually is the growth direction of the QW�. The
unitary transformation we are looking for is obtained by di-
agonalizing H↑↓ �Eq. �22�� to find the eigenvectors

� ± 
k =
1
�2


±Ak

1
� , �23�

with

Ak =
− �k+ + i�k−

���2 + �2��kx
2 + ky

2� − 4��kxky

�24�

and the common abbreviation k±=kx+ iky.
Applying the transformation matrix, composed of these

eigenvectors, to the density matrix ��mcm̄c��k�, we get the
spin-density matrix in the basis of the spin-up and spin-down
states

��↑↓��k� = 
�↑↑�k� �↑↓�k�
�↓↑�k� �↓↓�k�

� =
1

2
 d+�k� + 2R�Ak
*�mc−mc

�k�� − d−�k� + 2iI�Ak
*�mc−mc

�k��

− d−�k� − 2iI�Ak
*�mc−mc

�k�� d+�k� − 2R�Ak
*�mc−mc

�k�� � , �25�

with d±�k�=�mcmc
�k�±�−mc−mc

�k�. For a particular choice of
the spin-orbit interaction �Rashba or Dresselhaus� the corre-
sponding unitary transformation can be derived on the basis
of this result.

Spin-dynamics experiments, such as time-resolved photo-
luminescence or Faraday rotation �for an overview of recent
experiments using these techniques see Ref. 10� or photogal-
vanic effect26 do not aim at the dynamics of the density

matrix of an individual k but at quantities such as the spin
polarization

S = �
k

��↑↑�k� − �↓↓�k�� �26�

and the spin coherence21
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C = �
k

��↑↓�k�� , �27�

defined for the whole population of the two-level system.
Their decay is characterized by the spin relaxation time �SR
and the spin decoherence time �SD. With the results of Secs.
III and IV we are now in the state to formulate the relation
between these quantities and the relaxation times T1,k and
T2,k by applying the unitary transformation to express

S = �
k

4R�Ak
*�mc−mc

�k�� �28�

C = �
k

�d−
2 + 4I�Ak

*�mc−mc
�k�� . �29�

The time-derivatives of S and C depend on those of the origi-
nal pseudospin-density matrix ��mcm̄c��k�. Thus, the decay
times of S and C, i.e., the spin relaxation and the spin deco-
herence are determined by T1,k and T2,k �derived in the pre-
vious sections�, yet in a complicated relation. A microscopic
calculation of �SR and �SD has to make use of this relation.
Nevertheless, it is possible to state that the decay of the spin
polarization S is determined only by �mc−mc

�k�, i.e., by the
transverse pseudospin-relaxation time T2,k, while the decay
of the spin coherence C depends on both the longitudinal and
transverse pseudospin-relaxation times T1,k and T2,k.28 The
existence of a complicated relation between T1,k, T2,k for a
simple spin-split two-level system and the spin polarization
and spin coherence decay times of a whole carrier population
has been mentioned before in the literature �see Chap. 4 of
Ref. 10� but without making it explicit.

VI. CONCLUSIONS

In this paper we have presented a microscopic formula-
tion of spin dynamics in semiconductor heterostructures. It is

based on the density matrix approach and its particular form,
the optical Bloch equations. Starting from the six-level sys-
tem of conduction and valence band states driven by optical
excitation and including carrier-phonon interaction we derive
explicitly the EOM for the 2�2 density matrix of the elec-
tron subsystem whose energy levels are spin-split due to
spin-orbit coupling. We employ a truncation scheme to in-
clude electron-phonon interaction in second order. In this
limit we derive microscopic expressions for the longitudinal
and transverse �pseudo-� spin-relaxation times for the indi-
vidual spin-split two-level system at a fixed k. Finally a con-
nection between these results and spin-relaxation times char-
acterizing the dynamics of a whole population and accessible
by experiments is established. It takes into account the dif-
ferent sets of eigenstates used in our microscopic derivation
�which diagonalizes the spin-orbit coupling� and in the inter-
pretation of the measurable times �with a fixed axis for spin
quantization and nondiagonal spin-orbit coupling�. Thus we
provide at the same time a microscopic formulation of spin
dynamics and its relation to experiments.

We would like to emphasize that the concept presented
here can be extended to include also carrier-carrier interac-
tion thus arriving at an extension of the coherent SBE of Ref.
8. For preliminary results we refer to Ref. 27. Further steps
will be numerical evaluations of the microscopic expressions
for realistic quantum structures and the explicit treatment of
the spin dynamics for the hole system.
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