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We present an extensive comparative study of ground-state densities and pair distribution functions for
electrons confined in two-dimensional parabolic quantum dots over a broad range of coupling strength and
electron number. We first use spin-density-functional theory to determine spin densities that are compared with
diffusion Monte Carlo �DMC� data. This accurate knowledge of one-body properties is then used to construct
and test a local approximation for the electron-pair correlations. We find very satisfactory agreement between
this local scheme and the available DMC data, and provide a detailed picture of two-body correlations in a
coupling-strength regime preceding the formation of Wigner-like electron ordering.
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I. INTRODUCTION

For a number of years there has been a growing interest in
studying finite quantum systems under external confinement,
such as ultracold atomic or molecular gases inside magnetic
or optical traps1 and electrons in metallic clusters2 or quan-
tum dots.3–5 The confinement introduces a different length
scale and induces interesting physical behaviors relative to
the corresponding infinitely extended model system. In par-
ticular, in a quantum dot the properties of a homogeneous
electron gas are profoundly modified by the emergence of
effects that are commonly associated with electrons in atoms.
A well-known example is the presence of a shell structure in
the energy to add electrons to a quantum dot as experimen-
tally demonstrated by means of capacitance spectroscopy6

and theoretically studied within the Hartree-Fock
approximation7,8 and by spin-density-functional theory.9–11

With regard to the spatial structure of the electronic sys-
tem, the analog of two-dimensional �2D� Wigner crystalliza-
tion has been shown in a path-integral Monte Carlo study12

to occur in two distinct stages inside a circularly symmetric
parabolic quantum dot. Radial ordering of the electrons into
shells occurs first and is followed by orientational ordering
through freezing of intershell rotations. Short-range order in
the electronic structure at lower coupling strength is de-
scribed by the pair distribution function g�r ,r�� giving the
spin-averaged probability of finding two electrons at posi-
tions r and r�. Some properties of this function and of its
extension to describe spin-resolved pair correlations have
been reported for a circular quantum dot in a DMC study by
Pederiva et al.13 In the macroscopic limit g�r ,r�� reduces to
a function of the relative distance �r−r�� of an electron pair
and describes the liquidlike short-range order in the homog-
enous electron gas.

The main purpose of this work is to present an approxi-
mate theoretical treatment of the electron-pair correlations in
quantum dots at values of the coupling strength and of the
electron number prior to the onset of Wigner crystallization.
We use spin-density-functional theory14 �SDFT� within the
usual Kohn-Sham scheme to calculate the spin densities
which are used to construct local approximations for two-

body structural properties. The accuracy of these approxima-
tions is tested against the available DMC data of Ref. 13 for
both one-body and two-body properties.

In brief, the paper is organized as follows. Section II sum-
marizes the SDFT procedure for the sake of completeness
and in order to set the stage for the later sections of the paper.
Our results are presented and discussed in Sec. III for the
one-body spin densities and in Sec. IV for the pair correla-
tion functions. An Appendix emphasizes the distinction be-
tween the short-range order of present interest and the
broken-symmetry states that are met in unrestricted Hartree-
Fock �HF� calculations8 on electrons in quantum dots. Fi-
nally, a brief summary of our main conclusions is given in
Sec. V.

II. THEORETICAL APPROACH

We consider N interacting electrons of band mass m, con-
fined in a strictly 2D parabolic quantum dot �QD�. The real-
space Hamiltonian is

ĤQD = −
�2

2m
�
�
� d2r�̂�

†�r��2�̂��r�

+ �
�
� d2rVext�r��̂�

†�r��̂��r�

+
1

2 �
�,��

� d2r� d2r��̂�
†�r��̂��

† �r��

�v��r − r����̂���r���̂��r� . �1�

Here �̂��r� and �̂�
†�r� are Schrödinger field operators obey-

ing canonical anticommutation relations, Vext�r�=m�0
2r2 /2 is

the external confining potential, and v�r�=e2 / ��r� is the in-
terparticle Coulomb potential, � being the dielectric constant
of the material. The Hamiltonian �1� commutes with the z
component Sz of the total spin and therefore Sz is a good
quantum number.

We introduce the spin density n��r�= ��̂�
†�r��̂��r��,

the density matrix �����r ,r��= ��̂�
†�r��̂���r���, and the
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two-body density n
���
�2� �r ,r��= ��̂�

†�r��̂��
† �r���̂���r���̂��r��

=n��r�n���r��g����r ,r�� , g����r ,r�� being the spin-resolved
pair distribution function �PDF�. The calculations will be car-
ried out at fixed N=N↑+N↓ and Sz= �N↑−N↓� /2, where
N�=	d2rn��r� is the total number of electrons with spin
�= ↑ ,↓.

Choosing as unit of length the harmonic-oscillator length
�0=
� / �m�0� and as unit of energy the harmonic-oscillator
quantum ��0, the QD Hamiltonian can be shown to be gov-
erned by the dimensionless parameter

� =
e2/���0�

��0
=

�0

aB
� , �2�

where aB
� =��2 / �me2� is the effective Bohr radius. The physi-

cal properties of the electron assembly are thus functions of
the quantities �, N, and Sz. We will choose parameters that
are suitable for a 2D electron gas �EG� confined in a GaAs
quantum well, i.e., m=0.067 bare electron masses and
�=12.4. With this choice aB

� �9.8 nm and the effective Har-
tree energy is e2 / ��aB

���11.9 meV.

A. Spin-density-functional theory in the Kohn-Sham scheme

Within the Kohn-Sham �KS� version of SDFT the calcu-
lation of the equilibrium densities n��r� is recast into the
solution of a set of Schrödinger-like equations for the single-
particle orbitals 	i,�

KS�r�,

�−
�2

2m
�2 + Vext�r� + vH�r;
n��� + vxc

� �r;
n����	i,�
KS�r�

= 
i,�	i,�
KS�r� . �3�

Here vH�r ; 
n���=��	d2r�v��r−r���n��r�� is the classical
Hartree potential and vxc

� �r ; 
n���=�Exc
n�� /�n��r� is the
spin-dependent exchange-correlation �xc� potential defined
as the functional derivative of the xc energy functional
Exc
n��. The approximation that we have employed for
vxc

� �r ; 
n��� is discussed below.
The KS mapping guarantees that the equilibrium spin

densities can be built from the KS orbitals in a single-particle
fashion,

n��r� = �
i�occ�

�	i,�
KS�r��2, �4�

where the sum runs over all occupied states. This equation
also provides a self-consistent closure for the KS
equations �3�. Once these equations have been solved,
the ground-state energy E of the system is obtained from
E=Ts+EH
n��+Vext
n��+Exc
n��, where Ts is the kinetic en-
ergy of the auxiliary noninteracting electron system, EH
n��
is the Hartree potential energy, and Vext
n�� is the contribu-
tion from the external potential.

B. Adiabatic connection and approximate xc potential

An implicit expression for the xc energy functional, which
highlights the importance of the PDF, is the adiabatic con-
nection formula.15 This reads

Exc
n�� =
1

2 �
�,��

� d2r� d2r�v��r − r���n��r�n���r��

��ḡ����r,r�;
n��� − 1� , �5�

where

ḡ����r,r�;
n��� = �
0

1

d� g���
��� �r,r�;
n��� �6�

is the coupling-constant averaged PDF. Here g
���
��� is the PDF

for a system with interactions v��r�=e2� / ��r� and fixed
��-independent� equilibrium densities n��r�. This function
depends on n��r� as a result of the Hohenberg-Kohn theo-
rem.

The local spin-density approximation16 �LSDA� for
Exc
n�� reads

Exc
LSDA
n�� =� d2r n�r�
xc

hom�n,
�n→n�r�,
→
�r�, �7�

where 
xc
hom�n ,
� is the xc energy per particle of a homoge-

neous 2D electron gas �EG� as a function of the total particle
density n=��n� and of the spin polarization 
=���n� /n.
Accurate results for 
xc

hom�n ,
� have been obtained in quan-
tum Monte Carlo simulations by Attaccalite et al.17 with spe-
cial attention to its dependence on 
.

The adiabatic connection formula allows one to interpret
the LSDA as an approximate choice for ḡ����r ,r� ; 
n���. One
readily obtains Eq. �7� by approximating the xc energy den-
sity from the exact expression in Eq. �5� with n
xc

hom�n ,
�
taken at the local density n�r� and at the local spin polariza-
tion 
�r�. The xc energy of the EG is given by


xc
hom�n,
� = � �

�,��

n�n��

n
�

0

+�

rdr v�r�
ḡ���
hom�r;n,
� − 1� ,

�8�

where ḡ���
hom�r ;n ,
� is the coupling-constant averaged PDF in

the 2D EG. Thus within the LSDA the exact functional
g����r ,r� ; 
n��� is approximated as

g����r,r�;
n��� � g���
hom��r − r��;n,
�n→n�r�,
→
�r�

� �g����r,r���LSDA. �9�

Analytical representations of accurate quantum Monte Carlo
data for the spin-averaged PDF of the homogeneous 2D EG
are available in the literature18 and provide a convenient in-
put for our work.

We recall at this point for later use that the exact PDF
satisfies the so-called central sum rule

� d2r�n��r��
g�����r,r�� − 1� = − ��������, �10�

in addition to the symmetry property g����r ,r��=g����r� ,r�
and to the asymptotic result lim�r−r��→+�g����r ,r��=1.
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C. Fock-Darwin basis

In the numerical solution of the KS equations we have
adopted a standard procedure involving projection of Eq. �3�
on the Fock-Darwin �FD� basis corresponding to the �com-
plete and orthonormal� set of eigenfunctions of the 2D iso-
tropic harmonic oscillator. These are the product of the

eigenstates of the angular momentum L̂z=−i��� and of the
radial functions Rn,M�r� , �n,M�r�= �2��−1/2exp�iM��Rn,M�r�.
The quantum numbers n and M represent the number of
nodes of Rn,M�r� and the angular momentum M� carried by
the state. The radial wave functions are expressed through
the generalized Laguerre polynomials.19

The projection of Eq. �3� onto the FD basis is straightfor-
ward. Decomposition of the KS orbitals, 	i,�

KS�r�
=��C�

i,����r� where � stands for the pair �n� ,M��, leads to
a matrix eigenvalue problem20 for the coefficients C�

i,�,

�
�

���HKS���C�
i,� = 
i,�C�

i,�. �11�

Here HKS is the effective KS Hamiltonian in Eq. �3�.
The equilibrium densities in Eq. �4� take the
form n��r�=��,���i
C�

i,��*C�
i,����

*�r����r�, which is
used in evaluating the xc potential from Eq. �7�. The
Hartree term in Eq. �3� is expressed through
���vH�r ; 
n������=�i,���,�
C�

i,��*C�
i,�V����, where V����

=	d2rd2r�v��r−r�����
*�r���

*�r�����r�����r� are the two-
body Coulomb matrix elements. Selection rules on the quan-
tum numbers are hidden in V����: for instance, V���� van-

ishes unless the angular momentum is conserved in a
scattering process, i.e., unless M�+M�=M�+M�. This is
easily verified through an expansion of 1/ �r−r�� in cylindri-
cal coordinates.21

In practice, the sums over the FD basis elements must be
truncated. The numerical calculations have used Nmax=20
energy levels, which corresponds to �Nmax+1��Nmax+2� /2
=231 single-particle states. Convergence of the self-
consistent procedure has been achieved with a precision of at
least 10−6 on the electron density.

III. TESTING THE LSDA FOR THE
ONE-BODY DENSITIES

A main aim of this section is to compare our LSDA re-
sults for the one-body density profiles with the state-of-the-
art DMC data of Pederiva et al.13 The comparison confirms
the conclusions already drawn in Ref. 13 and will give us
confidence in the inputs to be used in our calculations of
electron-pair correlations that will be reported in Sec. IV. We
also report numerical results obtained within the HF
approximation8 and in some cases �N=6 and 30� we illus-
trate the role of electron-electron interactions by showing the
density profiles for noninteracting electrons ��=0�.

Our LSDA and HF calculations of n��r� for circular 2D
QD’s refer to the cases N=6, 9, 12, 20, and 30. The confine-
ment energy has been chosen as ��0=3.32 meV, which cor-
responds to �=1.89. A summary of our main results is shown
in Figs. 1–3.

FIG. 1. Density profile n�r� �in units of �0
−2� as a function of r /�0 for a paramagnetic QD with N=6,12,20, and 30 electrons at

�=1.89. The results of the LSDA and of the HF are compared with the DMC data of Ref. 13. The dash-dotted lines are for noninteracting
electrons.
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It is immediately evident from Fig. 1 that the LSDA den-
sity profiles are in excellent agreement with the DMC data,
except for N=12. We have no explanation for this specific
discrepancy. In the case N=9 the ground state at �=1.89 is
partially spin polarized with Sz=3/2, while in all other cases
it is paramagnetic �Sz=0�. Figures 2 and 3 show that in the
spin-polarized case at N=9 the agreement with the DMC
data is excellent for both the total density profile n�r� and the
local spin polarization 
�r�. We have also checked that our
LSDA results are not unduly sensitive to the input chosen for

xc

hom�n ,
�. We have tested in this respect the earlier param-
etrization of 
xc

hom�n ,
� given by Tanatar and Ceperley22 and
found minor differences arising in the local spin polarization
for N=9, as is shown in the inset in Fig. 3.

We also confirm that the HF is not a good approximation
for the ground-state density profiles, especially for small val-
ues of N where the role of correlations is more important.
The quality of the HF results appears to improve with in-
creasing N, as indicated by the case N=30 in Fig. 1. The
local spin polarization for the case N=9 in Fig. 3 is also
reasonably accounted for. A brief discussion of symmetry
breaking in HF calculations of the one-body density is given
in the Appendix.

IV. PAIR CORRELATIONS

We have seen in Sec. II B how the PDF enters the adia-
batic connection formula for a formal definition of the xc
energy functional. The PDF directly describes the condi-
tional probability density P�r� ,�� �r ,��=n���r��g����r ,r��
of finding an electron with spin �� at position r� when an-
other electron with spin � is at position r. In the homoge-
neous 2D electron fluid the increase of coupling strength
with decreasing particle density towards a spin-polarized
state and a triangular Wigner crystal �WC� is accompanied
by strengthening short-range order in the electron-pair distri-
bution. This is signaled by the emergence of a peak in g�r� at
a relative distance r approaching the first-neighbor distance
dWC= �
3n /2�−1/2 in the crystal.17,22

Of course, the standard formulation of SDFT only gives
access to the equilibrium one-body densities n��r�. Several
attempts have been made23 to build a generalized functional
approach having the pair density n

���
�2� �r ,r�� as its basic vari-

able, from which both n��r� and g����r ,r�� may be obtained.
A practicable self-consistent procedure to calculate
g����r ,r�� has been proposed by Davoudi et al.,24 who ex-
tended to inhomogeneous fluids an approach originally used
by Overhauser25 to evaluate electron-pair correlations at con-
tact. An Overhauser-type approach has also been set up26 for
calculating the angularly and center-of-mass averaged pair
density, which suffices for evaluating the xc energy of an
inhomogeneous electron system.

A. The average spin-density approximation for the PDF

In the present context, we examine an alternative approxi-
mate approach to the PDF, allowing relatively simple nu-
merical calculations with results that will be compared with
the DMC data of Pederiva et al.13 for a 2D QD. Our ap-
proach is inspired to the so-called average-density and
weighted-density approximations, that have been proposed in
the literature for the purpose of transcending the LSDA in
the evaluation of the xc energy functional �see Dreizler and
Gross14 and references therein�. These approximations sat-
isfy by construction the “central sum rule” in Eq. �10�.

In this so-called average-spin-density approximation
�ASDA� the functional dependence of g����r ,r� ; 
n��� on
n��r� is taken in the form

g����r,r�;
n��� � �g���
hom��r − r��;n,
��n→n̄�r,r��,
→
̄�r,r��

� �g����r,r���ASDA, �12�

where

�n̄�r,r�� = 
n�r� + n�r���/2


̄�r,r�� = 

�r� + 
�r���/2
� �13�

�see also the work of Ebner et al.27 and of Yamashita and
Ichimaru28�. Contrary to the LSDA, the ASDA satisfies the
symmetry property g����r ,r��=g����r� ,r�. It still implies
some minor violations of the central sum rule: for instance,
we have verified that it may lead to deviations from the re-
quirement in Eq. �10� which become as large as 5% for the

FIG. 2. Density profile n�r� �in units of �0
−2� as a function of

r /�0 for a partially spin-polarized QD with N=9 electrons at
�=1.89. The symbols are as in Fig. 1.

FIG. 3. Local spin polarization 
�r� as a function of r /�0 for a
partially spin-polarized QD with N=9 electrons at �=1.89. The
symbols are as in Fig. 1. The inset shows the difference between

�r� calculated with two different parametrizations for 
xc

hom�n ,
�
�see text�.
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spin-summed PDF in the bulk of a QD with N=9 and
�=1.89.

In Fig. 4 we compare our ASDA and LSDA results for the
spin-summed PDF, defined as

g�r,r�� = �
�,��

n��r�n���r��

n�r�n�r��
g����r,r�� , �14�

with the DMC data of Pederiva et al.13 on a QD with N=9
electrons and �=1.89. The quantity being shown in Fig. 4 is
g�r ,r�=0�, which depends only on the modulus r= �r� owing
to the circular symmetry of the ground-state density. As al-
ready noted, the ASDA satisfies the symmetry property of
g����r ,r�� and it does not matter whether one sets r or r� to
zero �corresponding to the center of the QD�. However, this

is not the case for the LSDA, and we have decided to show
in Fig. 4 the choice that corresponds to setting r�=0.

It is seen in Fig. 4 that the ASDA and the LSDA give
essentially the same results when the second electron is also
close to the center of the QD, and are in good agreement
with the DMC data. But the LSDA badly fails in describing
long-range correlations, because it breaks down across the
edge of the QD at r�3�0 where n�r� is rapidly dropping to
zero. The ASDA is instead calculated at the average density
n̄�r ,0�, which tends smoothly to a constant across the QD
edge. These behaviors can be emphasized by referring to
local definitions of the rs density parameter as rs

LSDA�r�
= 
�n�r��−1/2 /aB

� and rs
ASDA�r ,r��= 
�n̄�r ,r���−1/2 /aB

�. As is
shown in the inset in Fig. 4, while rs

ASDA�r ,0� remains essen-
tially constant on crossing the QD edge, rs

LSDA�r� increases in
an exponential way heralding the breakdown of the LSDA.
In practice, however, this breakdown is less serious than it
may seem, since the two-body density is determined by the
PDF multiplied by density factors.

We proceed to present a broader view of the ASDA spin-
averaged PDF for the same partially spin-polarized QD. Fig-
ure 5 shows the geometrical coordinates that will be used in
the following figures. In Fig. 6 we show a three-dimensional
plot of g�r ,r��, when both r=xx̂ and r�=x�x̂ lie on a line x̂
passing through the center of the confining potential �see Fig.
5, top�. The main features in Fig. 6 are as follows: �i� the

FIG. 4. Spin-summed PDF g�r ,0� as a function of r /�0 for a
partially spin-polarized QD with N=9 at �=1.89. The results of the
LSDA and ASDA are compared with the DMC data of Ref. 13. The
inset shows rs

LSDA�r� �dash-dotted line� and rs
ASDA�r ,0� �solid line�

as functions of r /�0 �see text�.

FIG. 5. Top panel: definition of x and x� appearing on the hori-
zontal axis of Fig. 6 �r=xx̂ and r�=x�x̂�. Bottom panel: definition
of the azimuthal angle � giving the abscissa in Fig. 11.

FIG. 6. Spin-summed PDF g�x ,x�� as a function of x /�0 and
x� /�0 for a partially spin-polarized QD with N=9 electrons at
�=1.89. The bottom panel shows a contour plot of g�x ,x��: the thin
solid lines limit the bulk central region ��x� , �x����3�0 which is
shown in the top panel.
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Pauli-Coulomb hole lying along the diagonal x=x�; �ii� the
correlation-induced oscillations which are seen to lie along
directions parallel to this diagonal, as are better seen in the
contour plot; and �iii� the essentially flat asymptotic regions
further out. We may remark that rs

ASDA�x ,x�� is a smooth and
bounded function if at least one of the two coordinates lies in
the bulk of the QD inside its edge. The calculation loses
meaning when both coordinates are far outside the edge, so
that n̄�x ,x�� is rapidly vanishing. In fact, the needed input on
the PDF of the homogeneous 2D EG from Ref. 18 is limited
to electron densities corresponding to rs= ��n�−1/2 /aB

� up to
the value 40. The contour plot in Fig. 6 shows as hatched
areas these regions of inapplicability, located approximately
at ��x� , �x����3�0.

Before concluding this section we should comment on the
spin-resolved pair correlations for the same QD. Unfortu-
nately Ref. 18 does not provide analytical representations for
the spin-resolved PDF of the homogeneous 2D EG at finite
values of 
. This has prevented us from building the corre-
spondent spin-resolved ASDA PDF for partially spin-
polarized QD’s. However, in Fig. 7 we compare the parallel-
spin PDF’s in the HF approximation, defined as

�g���r,r���HF = 1 −
����r,r������r�,r�

n��r�n��r��
, �15�

with the DMC data of Pederiva et al.13 The quantity being
shown in this figure is g���r ,0��HF. We conclude that at the

value of the coupling strength in Fig. 7 the parallel-spin HF
PDF is already in fairly good agreement with the DMC re-
sults. On the other hand, the HF approximation completely
misses antiparallel-spin electron-pair correlations by giving
g↑↓�r ,r���HF=1.

B. Evolution of short-range order towards Wigner-like
order in a 2D QD

The attainment of Wigner-like order in confined electronic
system has been studied by a number of authors. In particu-
lar, Egger et al.29 have reported a crossover from Fermi liq-
uid to “Wigner molecule” structure in a finite-temperature
study of QD’s containing up to N=8 electrons by path-
integral Monte Carlo simulation �PIMC�. A later PIMC study
by Filinov et al.12 has regarded electron clusters in QD’s
with different particle numbers at various temperatures and
coupling strengths. For even values of N these authors took
the electronic system in a paramagnetic state and predicted a
“phase diagram” at zero temperature, which shows a transi-
tion to a radially ordered state followed at much higher cou-
pling strength by a transition to an angularly ordered state.
For instance, in the case N=10 �that is the lowest value of
the particle number in their study� the first transition occurs
at ��20 and the second at ��2770. The good predictive
value of the ASDA for electron-pair correlations allows us to
inspect how the short-range order in a QD at weak coupling
evolves with increasing � towards radial Wigner-like order-
ing. We do this below for the case N=6 and the results are
presented in Figs. 8–11.

In calculating the one-body radial probability density
2�rn�r� we enforce circular symmetry and consider only
spin states that are paramagnetic �Sz=0� or ferromagnetic
�Sz=3�. The ground state changes spin polarization with in-
creasing coupling strength: for �=1.89 and 3.54 the para-
magnetic state is lower in energy, but lies above the ferro-
magnetic state for �=6.35, 10, and 12. Figure 8 shows the
probability density for both states of spin polarization at the
above values of the coupling strength. A shoulder and ulti-
mately a marked minimum appear in the ferromagnetic state
with increasing �: similar results have already been reported
by Egger et al.29 and by Reimann et al.30 The electronic
system acquires the so-called �1, 5� structure consisting of
one electron at the center of the trap and a surrounding ring
of five electrons. We have checked that 	0

rmin2�rn�r�dr=1 for
�=10 and 12, where rmin is the position of the minimum in
the probability density, and found that the height ���� of the
probability density at rmin vanishes for ��14 �see the inset
of Fig. 8�.

We turn to present the ASDA results for the evolution of
the radial and angular dependence of the spin-summed PDF
with increasing �. Figure 9 reports the function g�r ,0� for
the ground state of the QD and shows that, whereas the para-
magnetic ground state at weak coupling does not possess any
pronounced radial structure, the ferromagnetic ground state
at �=10 and 12 exhibits a main first-neighbor peak followed
by secondary structures. All these structures are in phase
with structures in the local coupling strength rs

ASDA�r ,0�, as
is shown in the inset of Fig. 9.

FIG. 7. Parallel-spin PDF g���r ,0� as a function of r /�0 for a
partially spin-polarized QD with N=9 electrons at �=1.89. The
results of the Hartree-Fock approximation are compared with the
DMC data of Ref. 13.
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The growth of radial ordering with increasing � in the
ferromagnetic ground state is even more clearly displayed by
plotting the total conditioned probability density 2�rP�r �r�
=0��2�rn�r�g�r ,0�, which carries information on both the
one-body density distribution and the radial electron-pair
correlations. This function is shown in Fig. 10 for the QD
under discussion. The value of the coupling strength ��14

at which the height of the minimum in this function vanishes
represents within the present theory our estimate for the lo-
cation of the transition to radial Wigner-like ordering in a
parabolic QD containing six spin-polarized electrons.

Finally, the angular dependence of the electron-pair cor-
relations in the ground state is illustrated in Fig. 11 at the
radial distance rmax corresponding to the location of the ab-
solute maximum in the probability density. The function that
is being plotted at various values of � is g���
=ghom(2rmax sin�� /2� ;n ,
) evaluated at n=n�rmax� and 

=
�rmax�, with � being the angle between r and r� as shown
in the bottom panel of Fig. 5. Of course, the mapping be-
tween g��� and the PDF of the homogeneous 2D EG is a
consequence of the ASDA. Even at �=12 the angular order-
ing of the electronic system in the QD is seen from Fig. 11 to
be still very much liquidlike. Starting in the ferromagnetic
state from an electron at �=0 on a circle at r=rmax, we find
an enhanced probability of having a first neighbor on each
side of it and two additional structures further out on the
circle, but there is no evidence for an ordered fivefold ring of

FIG. 8. Probability density �in units of �0
−1� as a function of r /�0

for a QD with N=6 electrons at varying �: profiles for the para-
magnetic state �top� and for the ferromagnetic state �bottom�. The
inset shows the height � of the minimum �in units of �0

−1� as a
function of �.

FIG. 9. Spin-summed PDF g�r ,0� as a function of r /�0 for a QD
with N=6 electrons in its ground state at various �. The curves for
�=1.89 and 3.54 refer to the paramagnetic state, while those for
�=10 and 12 refer to the ferromagnetic state. The inset shows
rs

ASDA�r ,0�.

FIG. 10. Total conditioned probability density 2�r P�r �r�=0� as
a function of r /�0 for the ground state of a QD with N=6 electrons.
The curves for �=1.89 and 3.54 refer to the paramagnetic state,
while those for �=10 and 12 refer to the ferromagnetic state.

FIG. 11. Azimuthal plot of the spin-summed PDF as a function
of the angle � defined in Fig. 5, for the ground state of a QD with
N=6 electrons. The reference electron is located at �=0. The curves
for �=1.89 and 3.54 refer to the paramagnetic state, while those for
�=10 and 12 refer to the ferromagnetic state. The inset shows the
preferred first-neighbor distance d��� along the circle at r=rmax, in
units of aB

�.
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electrons. Indeed, the positions of the peak structures in g���
are far from corresponding to regular pentagonal angles as
would be appropriate for an angularly ordered �1,5� structure.

As a final remark we notice that, while the angular dis-
tance �p��� from the first-neighbor peaks in Fig. 11 decreases
with increasing �, the preferred first-neighbor distance d���
=2rmax���sin
�p��� /2� along the circle at rmax is increasing
with �. This is shown in the inset of Fig. 11 and is due to the
increase in rmax with increasing Coulomb repulsions.

V. SUMMARY AND CONCLUSIONS

In summary, the main original parts of this work have
concerned the theory of the short-range order that may be
met in electron assemblies confined inside 2D parabolic
quantum dots in a weak-to-intermediate range of coupling
strength. We have proposed a very practical scheme for the
calculation of the pair distribution functions in these inhomo-
geneous electron systems and examined in great detail its
predictions in two specific cases. For a partially spin-
polarized system of nine electrons we have seen that the
theory is able to quantitatively account for the available dif-
fusion Monte Carlo data on spin-averaged two-body correla-
tions. We have added to this a panoramic view of the charge-

charge correlations, that waits to be tested in further Monte
Carlo studies.

The second problem that we have examined in detail has
been the state of spatial short-range order in the paramag-
netic and ferromagnetic states of a system of six electrons as
a function of the coupling strength parameter. Naturally
enough, by being based on a density-functional approach that
takes input from the homogeneous 2D electron gas, our pre-
dictions parallel to some extent the well-known phase behav-
ior of this macroscopic system. On increasing the coupling
strength the ground state of the quantum dot first changes
from paramagnetic to ferromagnetic and then acquires radial
order in coexistence with orientational liquidlike short-range
order, over the range of coupling strength that we have con-
sidered. It would be important, we feel, to re-examine these
correlation properties in the quantum dot with six electrons
by exact-diagonalization methods. One could test in this way
to what extent the predictions that take their start from the
macroscopic electron gas are in accord with those that are
based on a few-electrons atomic viewpoint.
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APPENDIX: SOME COMMENTS ON BROKEN
SYMMETRY STATES

An approximate treatment of a strongly correlated many-
body problem can in principle lead to states with spontane-
ously broken rotational symmetry �see, for instance, the re-
view of Reimann and Manninen6 and the discussion given by
Ring and Schuck31�. A well studied example in the area of
QD’s is the self-consistent spin-and-space unrestricted HF
treatment of the one-body density, which has been shown8 to
break the rotational symmetry at relatively low values of the
coupling strength.

As an illustrative example we show in Fig. 12 the HF
one-body density for a QD with N=6 electrons at �=3.18 in
both the paramagnetic and the ferromagnetic case, in full
agreement with the findings of Ref. 8. The state of order that
these pictures suggest for the six-electron system is very dif-
ferent from the results that we have found from our calcula-
tions of the electron-pair correlations, as reported in Figs.
8–11.
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FIG. 12. Rotationally broken HF one-body density �in units of
�0

−2� for a QD with N=6 electrons at �=3.18, in the paramagnetic
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