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Spin of valence-band holes in wurtzite semiconductors
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Spin polarization properties of a ballistic hole in wurtzite semiconductors are analyzed using the concept of
spin surface. It is shown that, in general, the spin surface in a three-dimensional spin space has the shape of
spheroid whose minor/major axis and orientation depend on a relative strength of the spin-orbit and crystal-
field interactions as well as on the hole wave vector direction and length. Analytical expressions for the spin
surfaces of heavy-mass, light-mass, and split-off bands were found for two experimentally important cases,
when the hole wave vector is parallel and perpendicular to the hexagonal axis. For an arbitrary direction of the
wave vector the numerical results are presented which show that the spin surface remains the spheroid in this
case as well. However, the surface transforms to a line or sphere at small and large wave vectors. The
properties of the spin surfaces are illustrated for valence band parameters of GaN, where the crystal field

dominates in the band-edge splitting.
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I. INTRODUCTION

Electron and hole spin properties in wide-band-gap semi-
conductors such as GaN, GaP, or ZnO are of great interest
due to their potential application in spintronics, where the
spin of a free carrier provides a new functionality in micro-
and nanoelectronic devices.! In particular, high Curie tem-
perature of the wide-gap semiconductors doped with mag-
netic impurities, the so-called ferromagnetic semi-
conductors,>> makes these materials especially attractive as
spin injectors, spin-polarized light emitters, optical switches,
and modulators that can function at room temperature. The
possibility to control the spin of the free charge carrier in-
jected from a ferromagnetic semiconductor by external elec-
tric field, due Rashba*® or interband tunneling®® mecha-
nisms, makes them also perspective materials for the spin
transistor.>!°

The physical properties of spin usually are described by
the polarization vector, which is defined as an average spin,
P=(x|o|x)/2, of a particle in a state |x)."! Here o is the
vectorial operator made up of three Pauli matrices. When |x)
describes one of spin eigenstates, either up or down spin
along the quantization axis z, then P reduces to a simple
form: P:(Px,Py,PZ):(O,O, i%) If the spinor is in a super-
position state, then, in general, all three Cartesian compo-
nents of P will not be equal to zero. For nonrelativistic con-
duction band electrons in semiconductors the modulus of P
is [P|=3. By this reason only the direction of P will matter in
the description of electron polarization properties.'! In the
case of valence band holes, as shown in Refs. 12 and 13, the
information about spin direction is not complete. Due to
strong spin-orbit interaction between valence subbands, |P| is
not conserved. It depends on the hole wave vector k as well
as on the band, where the hole has been excited, properties.
In the case of the valence bands, the properties of the spin, as
well as those of the total angular momentum, are better rep-
resented by spin surface which describes all possible P’s in a
three-dimensional spin space. For example, in Refs. 12 and
13 it was found that the spin surface of a heavy-mass hole in
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the elementary and A;Bs semiconductors is cigar-shaped
with the symmetry axis being parallel to the hole wave vec-
tor. The origin of deviation from spherical shape comes from
the noncommutativity of the spin (as well as of the total
angular momentum) operator and valence band Hamiltonian.
The first investigations®~® have shown that the concept of the
spin surface is very useful in determining the initial condi-
tions in the time-dependent Schrodinger equation and in ex-
plaining hole spin properties in an ultrafast spin switching
dynamics in high electric fields. Also the concept of the spin
surface can explain the anisotropy of spin injection from fer-
romagnetic semiconductors.'?

In this paper the spin properties of holes in the wurtzite-
type semiconductors, where apart from spin-orbit also
crystal-field interaction comes into play, are considered. Due
to the very complicated valence band structure of these semi-
conductors, the spin surfaces can be found by numerical
methods only, if the hole propagates in an arbitrary direction.
The paper shows that in spite of this complication, it appears
possible to find analytical solutions in two important practi-
cal situations, namely, when the wave vector of a ballistic
hole is either parallel or perpendicular to the crystal hexago-
nal axis. In the next section the properties of the wurtzite
Hamiltonian in the standard basis are reviewed at first and
the corresponding spin matrices are presented. In the subse-
quent section a unitary transformation matrix that connects
basis wave functions in the standard and energy representa-
tion, where the parametrization of the wave function can be
done easily, is constructed. The knowledge of the transfor-
mation matrix will allow us to find spin surfaces for all—
heavy-mass, light-mass, and crystal-field split-off—energy
bands of wurtzite-type semiconductors.

II. HAMILTONIAN AND SPIN MATRICES

In wide-gap wurtzites the structure of the uppermost va-
lence bands is determined by two competing mechanisms,
the crystal-field interaction and spin-orbit interaction.!-1
The hexagonal component of the crystal field in the wurtzites

©2005 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.72.045220

A. DARGYS

is relatively large; as a result, all three valence bands—
heavy-hole (HH), light-hole (LH), and crystal-field split-off
(CH)—are separated by respective energy gaps. Incorpora-
tion of the hole wave vector usually is done by the k-p
perturbation theory!” or the invariant method.'* Using the
spherical harmonic representation given by the basis func-
tions Y o>

|Y>= (|Y11T>’ Y11l>7 Y10T>7 Yl()l)? Y1—1T>’ Y1—1l>)T’ (1)

where up and down arrows indicate the hole spin state, one
obtains the following effective-mass Hamiltonian matrix
for a wurtzite-type valence band at the finite wave
vector k,14-16:18

F 0 -H 0 K 0
0 G A -H 0 K
. |-H A 0o I o
H=l'o —w 0 » a1 @
K o0 II. A G 0
0 K 0 II 0 F

The components of (2) in the atomic units (e=fi=my=1) are
given by

F=A+ A+ N+ 6,
G=A-A)+\+0,
N=[A K + Ay (K + K2)]2,
0=[Ask} + Ay(k; + K))/2,
K =As(k, +ik,)*2,
H=(iAgk/2 = A7) (k, + ik,),
Il = (iAgkJ2 + Aq) (k, + ik,),

A=An2. 3)

In the Hamiltonian (2), k, was chosen to be parallel to ¢ axis,
i.e., to the crystallographic (0001) axis having the sixfold
symmetry. The band parameter A; determines the spin split-
ting. If A;=0, one can show that all bands become doubly
(spin) degenerate. The eigenvalues of (2) and (3) give the
dependence of band energies on the wave vector k. Figure 1
shows HH, LH, and CH bands, when the wave vector is
either perpendicular or parallel to the ¢ axis. The parameters
of GaN (see Table I) were used in these and all subsequent
numerical calculations. When A,=0, a characteristic feature
to be noted in Fig. 1(a) is the intersection of LH and CH
bands at k’s that correspond to thermal hole energies. Very
strong nonparabolicity of the bands is observed at these en-
ergies if A;# 0. Thus, the coefficient A, takes into account
the hole spin interaction that is relatively weak at all wave
vectors except the region of LH and CH band crossing. Fig-
ure 1(a) also shows that at the crossing point
(k,~0.028 A~1=0.28 nm™"') the lifting of band degeneracy is
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FIG. 1. (Color online) Valence band of wurtzite GaN when the
hole wave vector k is (a) perpendicular and (b) parallel to ¢ axis.
The points, which represent doubly degenerate bands, were calcu-
lated with the approximate formulas (9). The curves in (a) and (b)
were calculated with the exact Hamiltonian (2). In (b) all energies
are spin degenerate, while in (a) the spin degeneracy is lifted, how-
ever, the splitting of the HH band (solid curve) and of the next two
bands (represented by upper dashed curve) are too small to be seen
in the plot. In the approximate model represented by points in (a)
the LH and CH bands intersect, while in the exact model the band
crossing is absent. All energies were shifted down, so that at k=0
the band edge of the HH band is at zero energy.

different for different bands. The valence band structure is
determined by both the crystal-field and spin-orbit interac-
tions. However, as we shall see, the deformation of spin sur-
faces comes from the spin-orbit interaction only.

In Ref. 18 it was shown that the Hamiltonian (2) can be
block diagonalized, even when A, # 0, if new basis functions
(in the following referred to as v basis) are chosen:

) =a’ Y1) —alY,L 1),
o) = BIY 1 1) = B1Y 1),
o3y == B Y101+ BV 10L),
v =’ [Y 1) +alY 1),

TABLE I. The effective-mass parameters for the valence band
of wurtzite GaN: A;’s are in units of meV, A;’s are in atomic units
(or in units of #%/mg) except for A; which is in units of eV A~!
(Ref. 18).

Al Az Aq Al A2 A3 A4 A5 A6 A7

21.2 3.61 3.61 =721 -0.440 6.66 -3.46 -3.40 -4.9 0.0937
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|Us> = ,3|Y1—1T> + ﬁ*|Y1 1),

lve) == B1Y101) + BlY 101, (4)

where a=exp(=i3¢/2)\2 and B=exp(=i/2)\2. The angle
in the exponents is defined as ¢p=tan™'(k,/k,), where k, and
k, are the wave vector components perpendicular to the ¢
axis. In (4), some of the terms have opposite sign to that used
in Ref. 18. In the following it will be convenient to perform
the transformation of all operators, including the Hamil-
tonian (2), to basis (4) using the following unitary matrix:
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@& 0 0 00 a
0 -8 0 080
0=0*0—3300 )
o 0 0 0 0 «a
0 B 0 080
0 0 B BO0O

Then in the new, block-diagonalized Hamiltonian IQU’L

=UHU" the upper 3 X3 block I:IU assumes the following
form:

e+2(A+A,) Ask? — (24, + iAgk, )k,
.
fiy= Ak e+2(A,—A) — (A, + iAgk )k, + 24, |, (6)
— QA= iAgk )k, — (24, — iAgk )k, + 24, — Aok} + Ak

where 8:(A2+A4)kt2+(Al+A3)k§ and k?:k§+k§. The lower
block I:IL can be obtained from I:IU, if the sign of k, is

changed to the opposite. At k=0, from H v and H 1, one finds
that the energies at the band edges of CH, LH, and HH bands
are expressed through A,’s only:

Ecpo=35[(81 = Ay) = V8A5+ (A, - Ay)7],
—_—
Eryo= %[(Al - D)+ V8A;+ (A - Az)z],

Eyno=A4;+A4,. (7)

The parameter A; determines the contribution of the crystal-
field interaction, while A, and A5 are responsible for spin-
orbit interaction. In GaN, as Table I shows, A;>A,,A; and
one has that Ecyy=0, Eygo=~Erpo=A,. Thus, in GaN the
heavy- and light-hole bands in the vicinity of k=0 are nearly
degenerate, while the crystal-field band is detached by en-
ergy =~A,. In the next section the eigenvectors of the Hamil-

tonians H v and H 1 will be used to find the approximations to
the unitary matrix that connects the v basis with the energy
basis.

Due to the small contribution of the spin splitting (coef-
ficient A7) as compared to other splitting mechanisms, in the
analytical calculations A; will be neglected. Thus, one can
assume that the hole is in one pair of the doubly degenerate
energy bands (or nearly degenerate bands in case of numeri-
cal simulations), the wave function of which may be param-
etrized by a pair of variables. To calculate the hole spin sur-
face when the hole with a given wave vector k is propagating
in HH, LH, or CH degenerate bands, one must know 6 X 6
spin matrices S; (where i=x,y or z) in one of the represen-
tations, i.e., in the energy, Y, or v basis. The simplest form
for S; is obtained in the Y basis, since the components of the
hole spin in this basis can be expressed through pure spin

states. The spin matrices in this basis are expressed as a
direct product of 3 X 3 unit matrix /533 and Pauli matrices o;:

S;=Iy3 ® al2. (8)

Expression (8) shows that 6 X 6 hole spin matrices are block
diagonal [see also the Appendix, where it is explicitly shown
that the spin-orbit interaction is responsible for the noncom-
mutativity of spin matrices (8) and Hamiltonian (2)]. In the
following, the matrix (8) will be used to find spin surfaces
when HH, LH, and CH band wave functions have been pa-
rametrized and transformed to a Y basis.

II1. UNITARY TRANSFORMATION MATRICES

The simplest form of spin parametrized wave functions is
in the energy representation, since band energies in this rep-
resentation are degenerate or nearly degenerate as Fig. 1
shows. The transformation matrix that connects energy rep-
resentation with Y representation (1) will be calculated from

the eigenvectors of H v and H 1 blocks. This can be done by a
symbolic algebra package such as Mathematica. However, in
this way calculated eigenvectors have been found too com-
plicated to be of any practical use. By this reason below two
special cases—when the wave vector is either perpendicular
or parallel to the hexagonal ¢ axis—will be considered.

A. k1 c case

In this case k,=0 and the transformation matrix is a func-
tion of the transverse wave vector, k,= \e"k)zc+k§, only. As men-
tioned, we shall also assume that all bands are doubly degen-
erate, i.e., A;=0. However, even under these simplifying
conditions the eigenvalues and eigenvectors of H v, are still
expressed through cubic roots and are rather complicated.
The cubic roots reduce to quadratic if the band coefficient A4
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is equated to zero. Thus, under the assumption that k,=0,
A;=0, and A;=0, the bands have the following dispersion
laws in the directions perpendicular to the ¢ axis:

ECHL = A2k12/2,
Epy, =[(A, + ADK> +2A, 5172,

Enui =[(A, + ADk? + 24, + 5112, (9)

where s=v’A§kf+4A§. The squares, diamonds, and stars in
Fig. 1(a) show the dispersion curves described by Egs. (9). It
is seen that for GaN, except for the region where LH and CH
bands cross, the points lie very close to curves calculated
numerically with the initial Hamiltonian (2). At k,=0, the

idl2
0 O - I~
W
idl2
(=) 3ign ¢
te 2}’(+) 0
ihl2
() 3idl2 l¢_ 0
2/
T, = ipl2
0 0
\2
ibl2
_ (D) g3idn e’ 0
25+
il2
A4 32 e_(_) 0
2r
where
r(i) = \’M7
_): (sizAz)/(zASktzr(I)) (12)

Since s and ¢ are functions of the transverse wave vector, the
transformation matrix (11) depends on k,, too. This produces
the deformation of spin surfaces. This property was found in
zinc-blende semiconductors, too.!%13

B. k||c case

Now the hole moves along the ¢ axis (k,=0). In this case
no approx1mat10ns are needed to find the eigenvectors. Both

Hamiltonians, H v and H 1, give the same dispersion laws:

Eyp = %(Al + AN+ A+ A,

ECH” = Al-‘(ZAlkf +u-— W),

PHYSICAL REVIEW B 72, 045220 (2005)

band edges of the HH and LH bands with respect to the CH
band are now, respectively, A;+A, and A;—A,. Thus, the
crystal-field and spin-orbit splitting in this approximation are
described by two parameters, A1 and A2

Using the eigenvectors of HU and HL, now it is easy to
find the unitary transformation matrix 7', that transforms the
initial Hamiltonian (2) to a diagonal form:

Hgiop = T HT| ={Ecu..Evn-Euni-Ecui EinsEnn . )
(10)

The energies in the last expression show the order of the
valence bands (9) in the resulting diagonalized Hamiltonian

H jjog- The required unitary transformation matrix is

—ig/2
0 0
2
—ipl2
0 ‘;T [5) =302
K
omid2 '
0 = - POR
2r”
—ig2 ) (11)
"5 O O
\
—ipl2
0 ‘;T _ [P
R
omid2 .
0 = () g=3ig12
2r”
|
Epy= QA +u+w), (13)
where
u =A3k§ + ZAI - 2A2,
w= Vm. (14)

The dispersions (13) are exact and, therefore, they will coin-
cide with those calculated numerically in Fig. 1(b) using the
initial Hamiltonian (2). The unitary transformation matrix 7
that diagonalizes the Hamiltonian to form I:Idiag=T”I:IT|T
={Ecu, Evui» Enm» Ecrys Evp» Exr} nOw s
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wmw A48y umw
0 -5,0 50 @ o 0
u+w 4Ny 4A; u+w
0 =5 5 @ om0
L 0 0 0 0 L
\2 \2
Ty= ;
u-w 4Ny 4A; u-w
0 — = = 0
w0 O O 20
u+w 4Ny 4A; u+w
0 20 s+ & 2™ 0
L 0 0 0 0 L
\E \5
(15)
where

I
0 ® = Vu(u +w) +32A2,

sE=\uxw)?+ 32A§. (16)

Since the dispersion laws (13) are exact the transformation
matrix (15) is exact, too.

IV. SPIN SURFACES

The spin surface describes all possible locations of the
end of average spin vector (S),=((Sy),.(S,),.(S.),), when
the wave function |f,(K)) of the doubly degenerate nth band,
HH, LH, or SH, is parametrized. The average hole spin is

(S), = (f,(K)|S|f,(K)), (17)

where the components S, ,, . of the spin operator S are given
by Eq. (8). The expression for |f,(k)) has very complicated
form if one tries to represent it through the energy gaps and
conduction-valence band masses of the considered
semiconductor.'®2! However, the parametrized form of
|f,.(k)) is very simple in the energy representation, where the
spinor is represented as a plane wave propagating in the nth
energy band and having the wave vector k. The polarization
of the hole described by this spinor may be pointing to arbi-
trary direction and is determined by concrete values of the
parameters in the spinor. The respective spinors |i,) in the
energy representation can be related to the Y representation
given by (1), if unitary transformation matrix 7 between the
two representations is known:

fu(K)) = T(K)[1,). (18)

The needed transformation matrices for holes perpendicular
and parallel to ¢ axis wave vector k are given, respectively,
by Egs. (11) and (15).

A. k Lc case

CH band. In the energy representation the spinor of the
CH band that conforms with the band order in the Hamil-
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tonian (10) is assumed to have the following parametrized
form:

|, = (cos 6,0,0,sin 6'?,0,0). (19)

After the transformation of (19) to the Y representation,
() ey =T (K)|#)c ., the spin polarization (17) is found
to be

(Shenr =ASINen =- %(COS 26 cos ¢
—sin 26 sin ¢ sin ¢,cos 26 sin ¢
+ sin 26 sin ¢ cos ¢,sin 26 cos ),  (20)

where ¢=tan"'(k,/k,) is the azimuthal angle of the trans-
verse wave vector. The square of (S)cy, is independent of
the parameters 6 and ¢ as well as of the azimuthal angle ¢

and equals L. Thus, for the CH band the spin surface is the

4
sphere of radius % and all directions of the spin are equiva-
lent under the approximations used: A;=0 and A;=0. The
azimuthal angle ¢ in Eq. (20) can be set to zero, since all
transverse wave vectors are equivalent. If one wants to pre-
serve the initial direction of the spin polarization given by
Eq. (20), the values of the parameters 6 and ¢ must be
shifted by a constant value.

The numerical calculations using valence band parameters
of GaN show that the true spin surface of the CH band
slightly deviates from the spherical shape. Analysis shows
that it has a form of the ellipsoid of rotation (spheroid) rather
than that of the sphere. The points in Fig. 2(a) show the
dependence of the minor and major axes of the CH spheroid
as functions of k,. The largest deviation is observed in the
vicinity of crossing of the CH and LH bands, where the
spectrum also suffers the largest deviation as seen in Fig.
1(a). At smaller wave vectors the agreement between exact
and approximate calculations is much better. At large wave
vectors, k,>0.4 nm~', the spin surface is very close to
sphere.

LH band. The parametrized form of the light-mass
spinor is

[, = (0,cos 6,0,0,sin e',0). (21)

The average Cartesian components of the hole spin now have
a more complex form:

(S = <f|S|f>LHL
B (ASktz(cos 26 cos ¢+ sin 26 sin ¢ sin ¢)
- 2VAK + 42 ’
Asktz(cos 26 sin ¢ — sin 26 sin ¢ cos ¢)
2VA2! + 4A2
sin 26 cos ¢
e

b}

(22)

As the parameters 6 and ¢ are varied, the end of the average
spin (22) in the spin space draws the spheroid, whose rota-
tion axis is parallel to ¢ axis. In the limiting case of small
wave vectors, k,— 0, the spin surface reduces to a line per-
pendicular to k, and parallel to ¢ axis: (S(k,=0)) .
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FIG. 2. Dependence of the minor (min) and major (max) axes of
the spin spheroids of (a) crystal-field split-off hole, (b) light-hole,
and (c) heavy-hole bands on the magnitude of transverse wave vec-
tor. Points: exact calculations. Lines: approximations by formulas
(20) and (22). The vertical dashed line shows the wave vector (k;
=0.28 nm™!) at which LH and CH band crossing takes place.

=%(0,0,sin 26 cos ¢). Thus, at small wave vectors k, the
light-hole spin will be perpendicular to the hole propagation
direction. In the opposite limit, when k, is large, the spin
surface (22) reduces to a sphere of radius % At the interme-
diate k, values the spin surface is spheroid. From Eq. (22) it
follows that the distance from the center to any point on the
spheroid surface is

1 A2 + 4A2 sin?2 6 cos?
\/ 5% 2 <P, (23)

Shiny| ==
|< >LHL| 2 Agk?+4A%

from which one finds that the major axis (6=m/4,¢=0) of
the spheroid is %, while the minor axis (6=0) is %(1
+(2A,/A5k?)?)™12. At the CH and LH band crossing, &,
~(.28 nm™!, this formula gives that the minor axis is =0.47
for parameters of GaN, i.e., the spin surface is close to a
sphere. The exact calculations give that the deviation from
the spherical shape at the band crossing point, in fact, is
larger [see points in Fig. 2(b)]. However, numerical and ana-
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FIG. 3. Heavy-hole spin surface represented by geodesic lines at
the transverse wave vector k,=0.113 nm™' and ¢=/8. The rota-
tion axis of the spheroid is parallel to (S.) component.

lytical calculations give that at large wave vectors the spin
surface is close to a sphere and at small wave vectors it can
be approximated by line parallel to ¢ axis.

HH band. The parametrized form of the heavy-mass band
wave function is

|)un . = (0,0,cos 6,0,0,sin fe'®). (24)

Analytical calculations with (24) have shown that the overall
shape of the heavy-hole spin surface is similar to that of the
light hole, Eq. (22). Comparison with the exact numerical
calculations gives that the formula (22) now approximates
the spin surface fairly well, Fig. 2(c). Figure 3 illustrates the
full form of the heavy-hole spin surface at the small magni-
tude of the wave vector, k,=0.113 nm~!. It is an ellipsoid of
rotation with the major axis parallel to (S.). Here it should be
remembered that the shape of the spin surface is invariant to
a particular form of the parametrization of the spinor used to
vizualize the surface. Different parametrization schemes will
give different sets of the geodesic lines that run over the spin
surface and different locations of poles where the geodesic
lines meet. In Fig. 3 the poles meet on the sides of the spher-
oid rather than on the (S,) axis as one would expect. To have
the poles on the (S.) axis a different parametrization scheme
should be selected. If the azimuthal direction ¢ of the trans-
verse wave vector K, is changed, the pattern of the geodesic
lines in Fig. 3 will rotate around the (S,) axis, however the
shape of the spin surface, as it should be, will remain invari-
ant. Therefore, it is safe to set ¢»=0 in the geodesic line
formula (22). From what has been said one can conclude that
the spin surface represents an intrinsic property of the hole
spin and that the parametrization and geodesic lines only
make it visible.

B. k]|c case

HH band. The simplest expression for the spin surface in
this case is for heavy-mass holes. Using the parametrized
form of the wave function |i)yy, which coincides with
|91 1 one finds that the spin surface is represented by the
line
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(S)im = 5(0,0,5in 26 cos ). (25)

Since the transformation matrix (15) is exact, the formula
(25) is exact, too. Thus, the heavy hole polarization is always
parallel to k, and lies in the range from —% to %, i.e., in this
case independent of 6 and ¢ values one has (S)pyllk.lc. A
similar property was found for heavy-mass holes in elemen-
tary and A;Bs compounds.'? As explained in Ref. 12, this
property may be responsible for the high anisotropy of the
spin injection efficiency from ferromagnetic to pure semi-
conductor.

CH band. For the crystal-field split-off band the calcula-
tions give the following spin polarization,

(S)en = (16A§ cos 26,16A3 sin 20sin ¢,

2w(u—w)
[(u—-w)*+ 32A§][w(u -w)+ 32A%]
2w(—u+w)

sin 26 cos go) s

(26)

where the functions u and w were defined by Egs. (14). In
the limit k,— 0, the components of (26) reduce to

2A3c0s26  2A3sin20sin @
(S(k,=0))cn = - , ,
S=A1+A)+0) S(-A+A,+6)
(A, = A,)sin 26 cos <p)
268 ’

where 6=1/(A;-A,)?+8A3. For parameters of GaN Eq. (27)
gives

(S(k.=0))cpy =— (0.466 cos 26,0.466 sin 26 sin ¢,
0.432 sin 26 cos ¢).

(27)

Thus, at small wave vectors the spin surface appears to be
close to a sphere. However, in the opposite limit, when &,
— o, the spin components describe a line-shaped surface:
(S(kz=°°)>cHH=—%(0,0,Sin 26 cos ).

LH band. The parametrized wave function [y
=(0,cos 0,0,0,sin #e'?,0) gives the following average spin:

(S)rm = — 16A3 cos 26,— 16A3 sin 26

2fu(u+w) + 32A§](
Xsin @,u(u +w)sin 26 cos @). (28)

In the above expression it was assumed that ¢=0. In the
limit of small wave vectors, k,— 0, Eq. (28) reduces to

2A% cos 26
C8AZH (A —A)(A —A+ D)
2A3 sin 26 sin ¢
T 8AZH (A - A)(A —Ay+ D)
(A, - A,)sin 26 cos <p>
26 '

(S(k,=0)) = <

(29)

For GaN parameters Eq. (29) gives a cigar-shaped spin sur-
face:
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GaN, LH
(Sy) 025 1
0_~
-0.25.

039>

FIG. 4. Spin surface of the light-hole band at the wave vector
magnitude |k|=0.6 nm™!. The line shows the direction of k which
makes an angle of 36° with the ¢ axis.

(S(k,=0)) = (- 0.034 cos 26,
—0.034 sin 26 sin ¢,0.432 sin 26 cos ).

At large wave vectors, k,— %, Eq. (28) reduces to a formula
for the line-shaped spin surface:

(S(k, = ))pzg = (0,0,5in 260 cos ¢). (30)

Thus, for light holes the spin surface is strongly elongated
along the ¢ axis for all wave vector magnitudes.

C. Arbitrary direction

For an arbitrary direction of k the spin surfaces can be
calculated by numerical methods only. In this paper the
transformation matrix at a fixed value of k was constructed
from numerical eigenvectors of the initial Hamiltonian (2)
using the singular value decomposition.”? Since the decom-
position is meaningful for positive eigenvalues only, before
the decomposition the spectrum of the Hamiltonian was
shifted accordingly and its sign was changed to opposite.
Figure 4 shows the spin surface of the light hole when the
wave vector makes 36° with the hexagonal axis. A charac-
teristic feature is that the rotation axis of the spheroid now
makes an angle with the wave vector shown by the straight
line in the figure. A closer inspection will reveal that the
rotation axis is slightly off from the (S_) axis. To be sure that
the spin surface indeed remains an ellipsoid of rotation, in
Fig. 5 there is plotted the dependence of the radius |(S), | on
the counting number of the points through which the geode-
sic lines were drawn in Fig. 4. The parameter 6 changes
fastest and ¢ changes slowest. The variation of 6 at fixed ¢
generates all geodesic lines that go through two poles on the
surface. From the regularities in Fig. 5 it should be clear that
the maximum and minimum values of [(S), 4 correspond to
the major and minor axes of the spheroid. Of course, differ-
ent parametrization schemes will result in different geodesic
line patterns drawn in Figs. 4 and 5; however, the overall
shape of the spin surface will remain invariant. Figure 6
shows the dependence of the minor and major axes of the LH
spin surface on the angle between the wave vector,
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FIG. 5. Dependence of the spheroid radius in Fig. 4 on the point
number # in the trajectory running over the surface, or equivalently
on the parameter # and ¢ values, at [k|=0.6 nm~!. The parameter ¢
varies fastest while ¢ varies slowest. The largest and smallest val-
ues of [{S) | give, respectively, minor and major axes of the
spheroid.

|k|=0.6 nm~!, and the quantization axis. The extreme values,
0° and 90°, correspond to the parallel and perpendicular
wave vectors considered earlier. It is seen that independent of
the direction of k the major axis is always equal to % while
the minor axis increases with angle. Exactly the same behav-
ior was observed for HH band spin surface.

V. DISCUSSION AND CONCLUSIONS

The numerical and analytical calculations show that in
wurtzite-type semiconductors the spin surfaces, in general,
are spheroids for all three valence bands. In the limit of large
and small wave vector k the surface of a particular band may
be spherical or reduce to a line. The nonsphericity of sur-
faces is associated with a spin-orbit interaction and noncom-
mutativity of the wurtzite Hamiltonian with the spin matrix
(Appendix). If band parameters A, and A5, which are respon-
sible for the spin-orbit interaction, are equated to zero, then
similar calculations give that the spin surfaces of all three
valence bands are represented by spheres.

In GaN the spin surface of the CH band was found to be
spherical, or close to spherical. This property comes from the
large crystal-field interaction in this material. The largest de-
viation from the sphericity was found in the vicinity of the
crossing point of the CH and LH bands. Since the crystal-

0.5¢ | IO =R I
max g = = "

=] n
2 04 -
jus}
%1 0.3 min ™
g GaN
502 . .
= HH and LH

0.1 -

n
0 20 40 60 80 100

Angle (deg)

FIG. 6. Minor (min) and major (max) axes of the heavy- and
light-hole spin surfaces as a function of the angle between the hole
wave vector k and the hexagonal ¢ axis. [k|=0.6 nm™.
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field splitting is determined by parameter A, the spin surface
will be more symmetrical the stronger the inequality
A, >A,, Aj is satisfied.

The shape of spin surfaces in heavy- and light-mass bands
is determined by parameters A, and Aj;. At small k’s the
surfaces are cigar- and or even line-shaped. For larger wave
vectors (beyond LH and SH band crossing) they transform to
a sphere. However, there is one exception from this rule: the
spin of the heavy-mass hole that propagates along the ¢ axis,
as follows from numerical and exact calculations, is line
shaped for all magnitudes of k, The exact formulas
(25)—(27) in this case can serve as a reference in a numerical
simulation. In the opposite case, when k L ¢, due to band
crossing, only approximate calculations are possible. Strong
disturbance of spin surfaces is observed in the region of band
crossing due to the mixing of four energy bands. The distor-
tion mainly comes from interaction of LH and SH spin sur-
faces, the shapes of which at k=0 are different as seen in
Figs. 2(a) and 2(b). However, far away from the crossing
point both surfaces regain the spherical shape.

When k L ¢ the degeneracy of heavy, light, and crystal-
field holes, in general, is lifted. The resulting small energy
difference OFE,=E, —E,,, where n=HH, LH, or CH, is
known as spin splitting. A linear combination of spin eigen-
states [see, for example, Egs. (21) and (24)] used in con-
structing the spin surface gives small and slow oscillations of
the hole energy and level population with the cyclic fre-
quency OE,/h and, as a consequence, a synchronous preces-
sion of the spin on the spin surface. This situation is very
similar to that observed in EPR and NMR experiments,”?
where the superposition of two spin-split eigenstates of the
electron or nucleus immersed in a dc magnetic field is
achieved by applying an additional pulse of ac magnetic field
in the perpendicular direction. Due to superposition, the spin
precession in the latter case occurs around a dc magnetic
field on the spherical spin surface synchronously with the
energy oscillations. The angle of precession depends on the
strength of mixing of up and down spin states. In our case
the splitting of the HH, LH, or SH band is equivalent to
some effective dc magnetic field which, however, has a local
character, since the magnitude of the splitting JE, depends
on the hole wave vector k. The knowledge of the properties
of spin surfaces allows one to determine the effective mag-
netic field in spintronic devices. More importantly, since the
spin surface represents all possible spin polarizations of the
ballistic hole, one can easily visualize the trajectories of the
polarization vector on the spin surface under coherent con-
trol of the superposition of the spin states. Thus, with the
help of the spin surface one can find a correspondence be-
tween the dynamics of the hole spin in the Hilbert space and
that in the physical space. Recently, the spin surfaces were
used in solving a difficult problem of hole spin relaxation
due to phonon-induced intravalence and intervalence transi-
tions in p-type semiconductors.”?* The shape of the spin sur-
face, in general, may depend on spin splitting strength JF,,,
especially when OE,, is large. In Ref. 12 it was found that in
A3Bs compounds the pure (i.e., without influence of band
crossing) spin splitting SE,, has negligible effect on the shape
of the spin surface.

In Ref. 25 the 14-fold anisotropy of electrical spin injec-
tion efficiency between spin directions perpendicular and
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parallel to hole current flow has been observed in
ferromagnet-semiconductor heterostructures Ga;_ Mn,As/
GaAs with x=0.045 or 0.035. The experimentally detected
anisotropy can be easily explained!? with the help of a non-
spherical (cigar-shaped) spin surface that is characteristic of
heavy holes in A3;B5; compounds. When the injected spin is
parallel to the heavy-hole wave vector, the injected hole can
propagate freely in GaAs; however, when the spin is perpen-
dicular to k the hole cannot propagate, since the orthogonal
configuration of the spin and wave vector is forbidden. By
the same reasoning the spin injection anisotropy into GaN
and similar compounds is expected, too, because, as follows
from this paper, the spin surfaces in this material in general
case are not spherical.

In conclusion, using parametrized spinors that represent
individual valence band branches, the paper shows that, in
general, the hole spin surfaces in the wurtzite-type semicon-
ductors are spheroids. At small and large wave vectors the
surfaces may reduce to a sphere or a line; as a consequence,
the anisotropy of spin injection in these materials is pre-
dicted.

APPENDIX: SPIN AND HAMILTONIAN COMMUTATION
RELATIONS

In the basis (1), the Cartesian components i=x,y,z of the
spin matrix S are

g 0 0
S,:% 0 g 0], (A1)
0 0 o
where o;’s are Pauli matrices
01 0 —i 1 0
“F{IO] %:L 0] @:L 4}'
(A2)

The square of the matrix S is diagonal,
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22,2, 2_3
ST =S8 +8,+8;=1, (A3)

therefore the operator §> commutes with the Hamiltonian
(2). However, the individual components of S do not com-
mute with the Hamiltonian. The respective commutators are

0 An2 -A; 0 0 0
“AN2 0 0 Ay 0 0
1l A, 0 0 0 -A; 0
[H’S"]zﬁ 0 A, 0 0 0 Ay |
0 0 Ay 0 0 —AnN2
0 0 0 =-Ay Ap2 O
) (A4)
0 -AN2 A, 0 0 0
“AN2 0 0 -Ay 0 0
S A, 0 0 0 A, 0
SRR I Ay 0 0 0 -A; [
0 0 A; 0 0 ApN2
0 0 0 —-A; A2 O
) (AS5)
0 0 0 0 00
0 0 A, 0 0 0
1=z 00 Y0 e
¢ 0 0 0 0 A0
0 0 0 -A; 0 0
0O 0 0 0 00

The commutators are independent of the hole wave vector.
They are equal to zero when the spin-orbit interaction is
absent: A,=A3=0.

*Electronic address: dargys @pfi.lt
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