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We derive an effective Hamiltonian for Ga1−xMnxAs in the dilute limit, where Ga1−xMnxAs can be described
in terms of spin F=3/2 holes hopping between the Mn sites and coupled to the local Mn spins. We determine
the parameters of our model from microscopic calculations using both a variational method and an exact
diagonalization within the so-called spherical approximation. Our approach treats the extremely large Coulomb
interaction in a nonperturbative way and captures the effects of strong spin-orbit coupling and Mn positional
disorder. We study the effective Hamiltonian in a mean-field and variational calculation, including the effects
of interactions between the holes at both zero and finite temperature. We study the resulting magnetic proper-
ties, such as the magnetization and spin-disorder manifest in the generically noncollinear magnetic state. We
find a well-formed impurity band fairly well separated from the valence band up to xactive�0.015 for which
finite-size scaling studies of the participation ratios indicate a localization transition, even in the presence of
strong on-site interactions, where xactive�xnom is the fraction of magnetically active Mn. We study the local-
ization transition as a function of hole concentration, Mn positional disorder, and interaction strength between
the holes.
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I. INTRODUCTION

Recently there has been a surge of interest in the more
than 30 year old field of diluted magnetic semiconductors1

that has been largely motivated by the potential application
of these materials in spin-based computation2–5 devices. In
particular, the discovery of ferromagnetism in low-
temperature molecular beam epitaxy �MBE� grown
Ga1−xMnxAs has generated renewed interest.6 In this material
Curie temperatures as high as Tc�160 K have been
observed.7

In this paper we focus on one of the most studied mag-
netic semiconductors, Ga1−xMnxAs, though most of our cal-
culations carry over to other p-doped III-V magnetic semi-
conductors. In Ga1−xMnxAs substitutional Mn2+ play a
fundamental role: They provide local spin S=5/2 moments
and they dope holes into the lattice.8 Since the Mn2+ ions are
negatively charged compared to Ga3+, in the very dilute limit
they bind these holes forming an acceptor level with a bind-
ing energy Eb�112 meV.8 As the Mn concentration in-
creases, these acceptor states start to overlap and form an
impurity band, which for even larger Mn concentrations
merges with the valence band. Though the actual concentra-
tion at which the impurity band disappears is not known,
according to optical conductivity measurements,9,10 and
ellipsometry11 this impurity band seems to persist up to
nominal Mn concentrations as high as xnom�0.05. Angle re-
solved photoemission �ARPES� data,12–14 scanning tunneling
microscope �STM� results,15–17 hot-electron
photoluminescence,18 and the fact that even “metallic”
samples feature a resistivity upturn at low temperature19 sug-
gest that for smaller concentrations �and maybe even for
relatively large nominal concentrations� one may be able to

describe Ga1−xMnxAs in terms of an impurity band.20–23 Al-
though optical conductivity results9,10 and ellipsometry
results11 are suggestive of the presence of an impurity band
in moderately doped samples,9,10 an interpretation based-on-
band to band transitions is also possible for the optical
conductivity.24 We remark, however, that these materials are
extremely dirty25—the mean-free path is estimated to be of
the order of the Fermi wavelength—and, therefore, it is not
clear if the latter approach is appropriate. Also, ARPES data
indicate that the chemical potential of “insulating” samples
lies inside the gap,12 contradicting a band theory-based inter-
pretation of the optical conductivity data.

A detailed understanding of an impurity band model be-
gins with the knowledge of a single Mn acceptor state.26 The
physics of the isolated Mn2++hole system is well
understood.8 In the absence of the Mn2+ core spin, the
ground state of the bound hole at the acceptor level is four-
fold degenerate and well described in terms of a F=3/2
state. For most purposes, only the fourfold degenerate F
=3/2 acceptor levels need be considered in the dilute limit
even in the presence of the Mn2+ core spin. As evidenced by
infrared spectroscopy,8 the effect of the S=5/2 Mn core spin
on the holes is well described by a simple exchange
Hamiltonian1

Hexch = GS� · F� , �1�

with G�5 meV.8

The bound-hole �acceptor� states within the F=3/2 mul-
tiplet are not Hydrodgenic due to a significant d-wave com-
ponent of the bound state wave function.21,27–29 This d-wave
character ultimately comes from the spin-orbit coupling in
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GaAs and has recently been confirmed in the beautiful STM
experiments of Yakunin et al.30 The anistropy of the orbital
structure of the wave function leads to directionally depen-
dent hopping of holes between Mn ions, a splitting of the
F=3/2 level degeneracy, and is expected to strongly influ-
ence the magnetic and transport properties of dilute
GaMnAs.21 Here we study these effects, in detail.

One of the main results of this paper is thus the effective
Hamiltonian describing strongly interacting holes hopping
from Mn to Mn. The holes are coupled to the Mn spins via
the exchange interaction �1�, where

Heff = H0
eff + Hint. �2�

The first part of this Hamiltonian, H0
eff, describes the hopping

of the holes from Mn to Mn, and the interactions of the Mn
acceptor site with the Mn core spin,

H0
eff = �

�i,j�
ci,�

† tij
��cj,� + �

i

ci,�
† �Ki

�� + Ei�
���ci,�

+ G �
i,�,�

S� i · �ci,�
† F� ��ci,�� . �3�

To determine the parameters of �3� we shall use the spherical
approximation.28 This approach neglects the cubic symmetry
of the lattice, but approximates the band structure rather well
around the top of the valence band at the � point, which is
most relevant at the low-hole concentrations of interest in the
present paper. The term Hint accounts for the on-site interac-
tions of holes with each other, and in the spherical approxi-
mation,

Hint =
UN

2 �
i

:N̂i
2: +

UF

2 �
i

:F�̂ 2
i: . �4�

The operator ci,�
† in the above expressions creates a hole at

the acceptor level �F=3/2 ,Fz=�� at site i, N̂i=��ci,�
† ci,�, F�̂ i

=��,�ci,�
† F� ��ci,�, and : … : denotes normal ordering. Here

F� �� is the �� element of the spin-3
2 matrix. The Hubbard

interaction strength UN and the Hunds rule coupling UF in
Eq. �4� can be obtained by evaluating exchange integrals,
and we find UN�2600 K and UF�−51 K.

The presence of nearby Mn sites has three important ef-
fects on the F=3/2 acceptor state at any particular Mn site:
�i� The Coulomb potential of the neighboring Mn2+ ions in-
duces a random �from the random relative positions of the
Mn� shift E of the fourfold degenerate states. �ii� Because of
the large spin-orbit coupling in GaAs, the neighboring atoms
also generate an anisotropy K and split the fourfold degen-
eracy of the F=3/2 state into two Kramers degenerate dou-
blets. �iii� Finally, the presence of the neighboring ions allow
these F=3/2 spin objects to hop between the Mn sites. How-
ever, this hopping t does not conserve the spin F because of
the spin-orbit coupling.

To determine the parameters of �3�, we performed varia-
tional calculations for a dimer of Mn ions taken to lie along
the z axis where Fz is good quantum number. Once the pa-
rameters of the dimer is in hand and the positions of all the
Mn are known, the parameters of the Hamiltonian �3� are
obtained by simple spin-3

2 rotations.

To illustrate the power of the approach, and to better un-
derstand the physical results we obtain from it, consider the
simplest case of 2 Mn impurities and 1 hole. Diagonalizing
Eq. �3� for different orientations of S�1 and S�2 with the pa-
rameters �given later in Fig. 4� shows that the magnetization
has an easy axis anisotropy �see Fig. 1�. This easy axis an-
isotropy immediately leads to frustration among noncollinear
Mn positions.

We study the Hamiltonian Heff=H0
eff+Hint in detail using

mean field theory when UN=UF=0 and also with a varia-
tional approach when UN, UF�0. We study the interplay of
disorder and directionally dependent hopping parameters in-
duced by spin-orbit coupling. We calculate the temperature
dependence of the magnetization, magnetic anisotropies, the
spin-distribution functions measuring the degree of noncol-
linearity among the spins, the �impurity band� density of
states, and the dependence of the localization transition on
the various parameters of our model. Our main results are the
following: Qualitatively similar to our earlier results in the
metallic regime,31,32 we find that the interplay of disorder
and spin-orbit coupling results in �i� magnetization curves
that exhibit linear behavior over a significant temperature
range and �ii� a broad spin-distribution function, implying
highly noncollinear magnetic states that result from spin-
orbit-induced magnetic anisotropies �iii� within our mean
field and variational calculation we find a well-developed
impurity band separated from the valence band for active Mn
concentration up to xactive�0.015 with a localization transi-
tion fairly robust to interactions.

In this paper all Mn concentrations x are the active Mn
concentrations, i.e., x=xactive where active Mn are defined to
be those Mn that contribute to the ferromagnetism of the
material. Interstitial defects with a Mn sitting next to a sub-
stitutional Mn may result in a local singlet formation,33

thereby rendering the two Mn magnetically inactive since
they do not contribute to the ferromagnetism of the material.
Thus, the active Mn concentration is typically less than the
nominal Mn concentration.

The interstitial Mn also compensate holes7,34 reducing the
number of itinerant holes. In this paper we use the hole frac-
tion f , to relate the hole to the Mn concentration as Nh

FIG. 1. Spin-orientation dependence of the ground-state energy
of one hole on a Mn dimer parallel to the z axis for a spatial
separation of z0=14 Å. The Hamiltonian �3� is diagonalized exactly
with the parameters shown in Fig. 4. As the spins are rotated by an
angle � away from the z axis the energy increases and reaches a
maximum at �=90° before again decreasing. This indicates the
magnetic anisotropy is easy axis.
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= fNMn where Nh is the number of holes and NMn is the
number of active Mn. Although the precise value of f is not
known, typically, f =0.1–0.3. We thus include the effects of
various compensating defects,25,32,35–38 such as interstitial
Mn and As antisites indirectly through the parameter f .

The outline of this paper is the following. In Sec. II we
describe the variational calculation used to obtain an esti-
mate of the bound state acceptor wave function around a
single Mn ion. In Sec. III we use the variationally obtained
wave functions to derive and compute the effective param-
eters of the Hamiltonian, Eqs. �3� and �4�, which we then
study in detail in Sec. IV using mean-field and variational
approaches. Finally, in Sec. V we discuss the main conclu-
sions of our work. Technical details of our calculations and
various lengthy analytical expressions are relegated to the
appendices.

II. VARIATIONAL CALCULATION OF THE
BALDERESCHI-LIPARI WAVE FUNCTIONS

In order to study GaMnAs in the dilute limit, we proceed
stepwise by first obtaining bound state �acceptor� wave func-
tions in the single substitutional Mn impurity limit and then
using these wave functions to obtain effective parameters of
two-ion and N-ion Hamiltonians, details of which are given
in Sec. III. We start from the spherical Hamiltonian28,31,32

H0
ion =

	

2m�p2 − ��

,�

J
�p
�� −
e2

�r
+ Vcc�r� , �5�

where the central cell correction39,40

Vcc = − V0e−�r/r0�2
�6�

is used to reproduce the experimentally obtained binding en-
ergies, and therefore reasonable acceptor wave functions.
This affects the parameters �given later in Fig. 4� of the
effective Hamiltonian �3�. Here r0 is a short distance cutoff
for the central cell correction and V0 its size. The primary
role of the central cell correction �6� is to take into account
atomic interactions in the close vicinity of the Mn ion. In Eq.
�5� 	�7.65 is a mass renormalization parameter, m is the
free electron mass, ��0.77 is the strength of the spherical
spin-orbit coupling in the j=3/2 band of GaAs,28 and �
�10 is the dielectric constant of GaAs. The spin-orbit term
in Eq. �5� couples the momentum tensor of the holes p
�

= p
p�−�
�p2 /3 to their quadrupolar momentum, J
�

= �j
j�+ j�j
� /2−�
�j�j+1� /3. This effective Hamiltonian
gives a relatively accurate value of the hole energy in the
vicinity of the top of the valence band, but is not very reli-
able for holes with higher energy, since then other states not
included in the derivation of �5� will be mixed into the
acceptor-state wave functions. The Hamiltonian �3� also does
not distinguish between different crystalline directions. We
will discuss the implications of these features and other
shortcomings of the spherical approximation in the conclud-
ing section, Sec. V.

To proceed with the calculation, we note that Eq. �5� can
be made dimensionless by measuring distance in units of the
effective Bohr radius, aeff=2�	 /e2m=40 Å, and taking the

corresponding effective Rydberg, Reff=e4m /22�2	
=15.7 meV, as the energy scale. In our calculations we have
used r0=2.8 Å and V0=3.0 eV. These values are very close
to the numbers used for the central cell corrections in Refs.
39 and 40.

With the central cell correction, we obtain the correct
binding energy of 112 meV.8 However, due to the central
cell correction �6�, aeff is no longer a measure of the spatial
extent of the wave function as it would be for a purely Cou-
lomb potential. Instead, the characteristic length scale is
	10 Å, as can be seen in Fig. 2.

When ��0 in Eq. �5�, the ground state of a hole bound to
an acceptor is no longer a state of zero orbital angular mo-
mentum, L=0, since the “spin-orbit” term will mix in a d
wave, L=2, component.28 The ground-state wave function is,
therefore, no longer hydrogenic and, hence, not spherically
symmetric.21,27,30 This feature will lead directly to the ap-
pearance of spin-dependent hopping terms in Eq. �3�.

Within the spherical approximation, the total angular mo-

mentum F� =L� + j� is a constant of the motion and for ��0
and the ground state has F=3/2. The wave function for the
ground state can then be written as a sum of an s-wave
component f0 and a d-wave component g0

�Fz
�r�� = f0�r��L = 0, j = 3

2 ,F = 3
2 ,Fz�

+ g0�r��L = 2, j = 3
2 ,F = 3

2 ,Fz� . �7�

By acting with the Hamiltonian, Eq. �5�, on Eq. �7� one
obtains the following set of differential equations to be
solved for f0�r� and g0�r�:

FIG. 2. �Color online� Radial wave functions obtained from a
variational calculation for �=0.767, the relevant value for
GaMnAs. For r�15 Å, the typical Mn–Mn distance at x=0.01,
g0�r�� f0�r�. The radial wave functions obey the normalization con-
dition 
0

�drr2�f0�r�2+g0�r�2�=1. From Eq. �7� this means the
d-wave component of the wave function is important for typical Mn
concentrations at x=0.01. It is thus expected that the nonhydrogenic
nature of the wave function will strongly affect the magnetic and
transport properties of dilute GaMnAs, a result supported by our
numerical calculations presented in Sec. IV.
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−
1

r

d2

dr2r −
2

r
+ Ṽcc �� d2

dr2 −
1

r

d

dr
�

�� d2

dr2 −
1

r

d

dr
� −

1

r

d2

dr2r +
6

r2 −
2

r
+ Ṽcc

�� f0�r�
g0�r�

�

= E0� f0�r�
g0�r�

� , �8�

where Ṽcc�2maeff
2 /2	Vcc. �Note the form of the matrix ap-

pearing in Eq. �8� is slightly different from that in Ref. 28.
Our form may be obtained from the form of Baldereschi and
Lipari by a simple integration by parts. The two forms are
completely equivalent.� In order to solve Eq. �8� we follow
the variational approach of Ref. 28 by expanding f0 and g0 as

f0�r� = �
i=1

N

Aif i�r� , �9�

g0�r� = �
i=1

N

Bigi�r� , �10�

where the Ai and Bi are variational parameters to be deter-
mined and the f i�r� and gi�r� are normalized but not orthogo-
nal basis functions

f i�r� =
2�2
i

3/4

�4 �/2
e−
ir

2
, �11�

gi�r� = r
4�2
i

5/4

�3�4 �/2
e−
ir

2
, �12�

with 
i=gi−1
. In our computations we have taken N=21,

=1�10−2, and 
N=5�105 as in Ref. 28, and we also veri-
fied that refining the basis set resulted in no further improve-
ment.

To obtain the ground-state wave function, we minimize
the expectation value of the Hamiltonian on the left-hand
side of Eq. �8�. Using the coefficients Ai and Bi as variational
parameters this involves the solution of a simple 2N�2N
eigenvalue problem. One must, however, also take into ac-
count during this calculation that the states f i and gi are not
orthogonal.

The nonorthogonality of the basis set can be taken into
account through the computation of the overlap matrices,
Sij

f =
0
�dr r2f i�r� f j�r� and Sij

g =
0
�dr r2gi�r� gj�r�, and the

transformation of the original problem to a corresponding
new orthonormal basis following rather standard atomic
physics procedures. The radial functions f0�r� and g0�r� ob-
tained in this way are shown in Fig. 2. Note that while the
s-wave component f0 dominates at short distances, the
d-wave component g0 becomes appreciable for r�10 Å.
This d-wave component is ultimately responsible for the
strong anisotropy of the hopping and effective spin-spin in-
teraction.

Using the radial wave functions plotted in Fig. 2 one can
compute the expectation value of the local spin density,
�j��r��, around a Mn impurity. Replacing the Mn spin for a

moment with a classical spin pointing downward along the z
axis, a bound hole on the acceptor level will occupy the state
Fz=3/2, provided that the coupling between the Mn spin and
the hole is antiferromagnetic. The spin direction �polariza-
tion� of this bound hole around the impurity is shown in Fig.
3. Note that the polarization direction depends on distance
and can change sign. Note also that in the absence of spin-
orbit coupling, �=0, the spin polarization of the hole would
be just pointing along the z direction, and display RKKY
oscillations at larger distances �not shown in the figure�. De-
tailed expressions for the acceptor-state spin density are
given in Appendix A.

III. COMPUTING THE TWO-ION AND N-ION
HAMILTONIAN

Using the variational wave function obtained in Sec. II
Eq. �7�, we now compute the effective parameters of the
two-ion hopping Hamiltonian, Eq. �15�, which will, in turn,
allow us to find the parameters of the N-ion Hamiltonian, Eq.
�3�, by using spin-3

2 rotations. We assume that we have two
impurities separated by a distance R. We take the quantiza-
tion axis, z, to be along the line joining the two impurities
�ions�. Neglecting again the effect of the core Mn spin �for
the time being�, the full Hamiltonian within the spherical
approximation can be written as

H0
2-ion =

	

2m�p2 − ��

,�

J
�p
�� + V1�r�� + V2�r�� , �13�

where

Vi�r�� = −
e2

��r� − r�i�
+ Vcc��r� − r�i�� , �14�

with r�1 and r�2 the locations of the two impurities.
Having computed the single Mn hole states, we carried

out a variational calculation to construct the molecular orbit-
als for a pair of Mn ions in the approximation where we
considered only linear combinations of the single impurity
ground state wave functions.21,41 For a pair of Mn spins the
full SU�2� symmetry of the single-impurity model is broken.
However, the Hamiltonian �13� still possesses a cylindrical

FIG. 3. Polarization of a bound hole in the state �F=3/2 ,Fz

=3/2� in Ga1−xMnxAs around a Mn ion �dark arrow pointing down-
ward represents the Mn S= 5

2 spin�. Only the direction of the polar-
ization is indicated. The magnitude falls off on a scale 	10 Å, as
indicated by Fig. 2.
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symmetry, corresponding to the conservation of Fz. As a con-
sequence, the various Fz subspaces decouple, and our task
reduces to the construction and diagonalization of 2�2 ma-
trices. Furthermore, time reversal symmetry implies that the
two states with Fz= ±1/2 and the two states with Fz= ±3/2
remain degenerate. As a consequence, we find that the two
fourfold degenerate F=3/2 acceptor states of the two Mn
impurities are split into four Kramers degenerate doublets.
�Details of this calculation are given in Appendix B.� Since
for typical Mn distances these orbitals are well separated
from the rest of the spectrum, we shall be satisfied by pro-
viding a description of only these eight lowest-lying states of
the “molecule.” This can be achieved by using the following
effective Hamiltonian:

HMn-Mn
eff = �

�

t��R��c1,�
† c2,� + H.c.�

+ �
i=1,2

�

�K�R���2 −
5

4
� + E�R� + E0�ci,�

† ci,�,

�15�

where R= �r�1−r�2�, t� describes the hopping of Fz=� holes, K
is the splitting of the F=3/2 manifold of states generated by
the presence of the other Mn impurity, and E denotes the
energy shift of the acceptor state �at one ion due to the pres-
ence of the other ion� with respect to the binding energy of
an isolated acceptor, E0�112 meV. By time-reversal sym-
metry, the hopping parameters satisfy t3/2= t−3/2 and t1/2
= t−1/2. All parameters depend only on the distance R between
the two Mn sites �see Fig. 4�. The most obvious effect of the
spin-orbit coupling is that the hoppings t3/2 and t1/2 substan-
tially differ from each other; holes that have their spin
aligned with the Mn–Mn bond are more mobile. As we men-
tioned in the introduction, this leads to an easy axis magnetic
anisotropy in the effective spin-spin interactions and to non-
collinear magnetism. As indicated by the arrow in Fig. 4, at
the typical Mn–Mn distance for x=0.01, K and t1/2 can be
entirely neglected compared to E and t3/2. Therefore, in many
cases it is enough to keep only the latter two terms in the
effective Hamiltonian.

Thus far, we have neglected the interaction between the
core Mn spins S and the acceptor state. It is known from
experiments,8 that the spectrum of an isolated Mn impurity
can be very well described by a simple exchange Hamil-

tonian, Hexch=GS� ·F� . Furthermore, the separation
	100 meV of the acceptor state from other excited states is
much smaller than the experimentally found exchange cou-
pling G�5 meV. We can therefore safely treat the exchange
field of the Mn spin as a perturbation. We remark at this
point that the Mn ions are, to a very good approximation, in
a d5 state, and valence fluctuations on the d levels seem to be
rather small, as evidenced by an experimentally observed g
factor close to 2.8 In this spirit, we take into account the
effect of Mn core spins through the following simple term:

Hexch
2-ion = G �

i=1,2
�
�,�

S� i · �ci,�
† F� ��ci,�� . �16�

Note that in this expression we neglected interactions be-
tween the core spins and the hole spin on a neighboring Mn

acceptor level. This approximation is certainly justified in the
extreme dilute limit, and the above Hamiltonian does give a
reasonable value for the Curie temperature at the concentra-
tions we consider. However, additional terms may be impor-
tant for a quantitative description of GaMnAs.26

Finally, let us discuss the hole-hole interaction term, Eq.
�4�. Again, the on site interaction can be greatly simplified
due to the presence of SU�2� symmetry within the spherical
approximation. Since holes are fermions, two holes can be
placed to the four lowest lying acceptor states in six different
ways. These six states correspond to a fivefold degenerate
total spin F=F1+F2=2 two-hole state and an F=0 singlet
state. The interaction term can be thus written as

Hint = UDPD + USPS, �17�

where we introduced the four Fermion operators PD and PS
that project to the F=2 and F=0 two-hole subspaces, respec-
tively. With a little algebra we can rewrite these expressions
in the form Eq. �4�, and we can express the Hubbard inter-
action UN and the Hund’s rule coupling UF in terms of
simple Coulomb integrals �see Appendix C for details�.

In the more general case, with three or more impurities,
we need to know how to generalize the Hamiltonian �15� to
the situation where the impurities do not lie along the z-axis.
We can derive the parameters of Eq. �3� from the results of
Appendix B by applying appropriate rotations.

This can be achieved as follows. Assume that we have
two Mn impurities at positions r�1 and r�2. It is trivial to write
the hopping part of the Hamiltonian if we quantize the spin
of the holes along the unit vector n�
= �sin���cos��� , sin���sin��� , cos���� connecting r�1 and r�2.

Denoting the eigenvalues of F� ·n� by �̃, we can write the
hopping part of the Hamiltonian in the simple form

HMn-Mn
hop = �

�̃

t�̃�R��c1,�̃
† c2,�̃ + H.c.� , �18�

where ci,�̃
† creates a hole at site i with F� ·n� = �̃, and R denotes

the separation between the two ions. We need to reexpress
this Hamiltonian in terms of operators that create holes with
F quantized along the z axis. This can be simply achieved by

FIG. 4. �Color online� Parameters of the two-impurity Hamil-
tonian Eq. �15� omryobtained from the variational study of two Mn
ions. The arrow indicates the typical MnuMn distance, dtyp, for
x=0.01 Mn concentration.
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noticing that these two sets of operators are related by a
unitary transformation

c�̃
† = �

�

�Û�n����,�̃c�
†, �19�

where Û is just the usual spin-3
2 rotation matrix

Û�n�� = ei�Fzei�Fy . �20�

Making use of this transformation we can rewrite the hop-
ping term in this standard basis as

HMn-Mn
hop = �

�,��

�t12
���c1,�

† c2,�� + H.c.� , �21�

where the hopping matrix is simply given by

t12
��� = �

�̃

�Û�n�����̃t�̃�R��Û†�n����̃��. �22�

It is much simpler to generalize the spin splitting term 	K,
which can trivially be written as

HMn-Mn
anis = �

i=1,2
K�R�ci,�

† ��n� · F� ����
2 −

5

4
�����ci,��.

Finally, the energy shift term is manifestly invariant with
respect to the spin-quantization axis,

HMn-Mn
shift = E�R� �

i=1,2
�

�

ci,�
† ci,�. �23�

For a finite number of ions the above perturbations add up
in a tight-binding approach, leading to the effective Hamil-
tonian �3� with

Ki
�� = �

j�i

K�Rij���n� ij · F� �2 − 5
4���, �24�

tij
��� = �

�̃

�Û�n� ij����̃t�̃�Rij��Û†�n� ij���̃��, �25�

and

Ei = E0 + �
j�i

E�Rij� . �26�

We remark here that for large distances E�R� scales as 1 /R
and therefore, strictly speaking, the latter sum is not conver-
gent. This unphysical result of our approach, which does not
take into account screening, can be remedied in our calcula-
tion by introducing an exponential cutoff of the order of the
Fermi wavelength in Eq. �26�.

This completes the derivation of the parameters of the
general Hamiltonian �3�, aside from the on-site interaction
described in Appendix C.

IV. MEAN-FIELD AND VARIATIONAL STUDY OF THE
EFFECTIVE HAMILTONIAN

In this section we study the effective Hamiltonian �3� in a
mean-field theory42 and within a variational calculation when
the interaction �4� is also included.38,43 Throughout this sec-

tion we shall treat the Mn core spins as classical variables.
Our main goal is to study the interplay of disorder in the Mn
positions and spin-orbit coupling of the GaAs host on the
magnetic properties of dilute GaMnAs. Because of spin-orbit
effects in the GaAs host, the effective Mn spin-spin interac-
tions are expected to be anisotropic,31,44 and these anisotro-
pies are expected to be greater for smaller concentrations of
Mn ions and holes.21,32

A. Computational methods

Most of our calculations have been performed in the ab-
sence of the interaction term Hint, where we used a simple
mean-field treatment of the spins.22 In this approximation,
one has to solve a set of equations self-consistently.

The first one of these equations just expresses the fact that
polarization of the impurity spin Si is generated by the effec-

tive field G�F� i� generated, in turn, by the polarization of the
hole spins

�S� i� = S

� i


i
�coth�
i� −

1


i
�, 
� i =

G

T
S�F� i� . �27�

The second equation gives the effective Hamiltonian of the
holes that must be used to compute the thermodynamical

average �F� i�,

H0
eff → H0

MF = �
�i,j�

ci,�
† tij

��cj,� + �
i

ci,�
† �Ki

�� + Ei�
���ci,�

+ G �
i,�,�

�S� i� · �ci,�
† F� ��ci,�� . �28�

Here the last term simply expresses that a nonzero average of

�S� i� acts as a local field on the holes and tries to polarize
them. Note that the latter Hamiltonian is quadratic. There-
fore, once it is diagonalized and its eigenfunctions are con-
structed, we can construct the corresponding density matrix

and compute the finite temperature expectation values �F� i� in
a relatively straightforward way, and thus solve the above
equations iteratively.

Although the Hubbard coupling U�UN in Eq. �4� is
rather large, at small hole fractions two holes overlap with a
small probability, and therefore this interaction term is not
expected to play a crucial role.22 To verify these expecta-
tions, we carried out calculations for the interacting Hamil-
tonian with UN�0 at T=0 temperature. The Hund’s rule
coupling UF being rather small, we neglected this interaction
term throughout these computations.

A full Hartree-Fock treatment of U�UN is cumbersome:
it requires the self-consistent determination 18 effective
fields at each site, and we typically experienced serious con-
vergence problems while trying to determine these fields.
However, the essential effects of the interaction term �4� can
be captured by a simpler approach that retains the variational
character of Hartree-Fock theory. In such a variational ap-

proach, we replace the interacting Hamiltonian H�S� i� by a
noninteracting Hamiltonian

Hvar��i,h� i,S� i� � H0
eff��S� i�� − �

i

�iN̂i + �
i

h� i · F� i, �29�
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where the variational parameters h� i and �i are numerically
determined by minimizing �for fixed �Si�� the expectation
value of the full Hamiltonian ��var�H��var�var, Eqs. �3� and
�4�, using the ground state �var of Hvar.

A T=0 minimization with respect to the spins S� i leads to
the condition that the spins must be aligned anti-parallel to

the expectation values of the corresponding F� i in this varia-
tional ground state. Therefore, after finding the expectation

values �F� i� in the variational ground state for a given spin

configuration �S� i�, we generate a new spin configuration by

aligning all spins antiparallel to the �F� i�’s. This procedure is

then iterated with the new values of S� i to obtain a self-
consistent variational solution that includes the effect of in-
teractions. In practice, even this restricted approximation is
very time consuming because the minimization of the varia-

tional energy at fixed S� i is computationally expensive. The
procedure outlined above could therefore be carried out for
only very small sample sizes. Below, we therefore present
results obtained through a restricted variational approach that
only uses the variational parameters �i at each site. For sat-
isfactory convergence of the variational energy minimization
step, we slowly crank up UN from 0 to its final value in steps
of 10 K.

In our calculations we considered samples of fixed size
L=10 alat and L=13 alat where alat is the length of the edge
of the FCC unit cell. The effective Hamiltonian �3� and �4� is
only expected to be valid in the very dilute limit of
Ga1−xMnxAs, so we considered only active Mn concentra-
tions x=0.005, 0.01, and 0.015. The validity of our approach
can be checked post-facto by noting that the high-energy tail
of the impurity band has fairly small overlap with the va-
lence band density of states for these concentrations �as seen
later in Figs. 8–10�. Compensation effects have been taken
into account through the hole fraction parameter f . Although
this parameter is not precisely known for low-concentration
samples, we used the values f =0.1–0.3, typically assumed in
the literature.

In order to control the amount of disorder, we introduced
a screened Coulomb repulsion between the Mn ions and let
them relax using zero-temperature Monte Carlo �MC� simu-
lations as described in Ref. 32. A MC time of 1 �N� means
that there has been one �N� spin rearrangement�s� per spin.
We found that the Mn ions relax to their long time configu-
ration approximately exponentially fast with a characteristic
relaxation time tMC

relax�2.5, and that for long times the Mn
ions form a regular BCC lattice with some point defects.
Such calculations are not meant to model real defect
correlations25,38 in GaMnAs, but rather to help understand
how the disorder in the material affects its physical proper-
ties, especially when random ion positions are important as
they are for small x and small carrier concentrations.32

Once the Mn positions are fixed in a given instance, the
mean-field equations derived from �3� are solved
self-consistently.42 We usually start the iterative procedure
from a configuration where all Mn spins are aligned in one
direction. We used periodic boundary conditions and imple-
mented a short-distance cutoff in the hopping parameters of

Eq. �3�, which corresponds to about eight neighbors for each
Mn. The use of this cutoff is justified by the observation that
our molecular orbital calculations are only appropriate for
“nearest-neighbor” ion pairs, and in reality, holes can not hop
directly over the first “shell” of ions.

B. Results

1. Magnetization

Similar to the metallic case within the spherical
approximation,31 we find a ferromagnetic state with a largely

reduced magnetization, ���� i���0.4 for L=10alat �see Figs. 5
and 6�. We find that this reduction is largely due to spin-orbit

coupling, and that cos��i�=�� i ·n� , �where n� is the direction of
the ground state magnetization vector� has a broad distribu-
tion, P�cos����, quantitatively similar to earlier results ob-
tained in the metallic case using the four-band spherical ap-
proximation in the completely disordered case31 �see Fig. 7�.
The interaction Hamiltonian �4� appears to have a negligible
effect on the spin distribution. Also, relaxing the Mn impu-
rities to form a regular BCC lattice as described above ap-
pears to have little impact on the spin distribution. We
checked that this result is valid at least for f =0.1−0.3. This
is qualitatively different from the metallic case which
showed a significant sharpening of the distribution function
as the Mn positions became more ordered, and a correspond-
ing increase of the saturation magnetization to an almost
fully polarized state.32

The magnetization for U=0 is shown in Figs. 5 and 6.
The curves indicate that the system never reaches the fully
polarized state, even for long Monte Carlo times. However,
as the disorder is reduced the saturation magnetization in-
creases from �20–25% to 40–50%. The magnetization
curves exhibit linear behavior over a large temperature
range, qualitatively similar to experiments on disordered
samples.

Unfortunately, since the numerical calculations are rather
demanding, we could not perform a proper finite size scaling
analysis. Therefore, although our calculations suggest that
the ground state of our model is ferromagnetic, we cannot
exclude the possibility of a paramagnetic or spin glass state
for these small concentrations.

2. Density of states

We compute the DOS from the Hamiltonian �3� and in the
interacting case Hvar. The results are shown in Figs. 8–10.
Figure 8 shows the dependence of the DOS on doping x for
fixed MC time and UN=UF=0. The total number of states is
proportional to x. The overall shape is fairly independent of
x, over the range of x considered here, which shows a peak
near the binding energy, Eb�−1100 K, of the isolated Mn
+hole system and a half-width of 0.1–0.25 eV. The impurity
band slightly overlaps the valence band DOS. However,
comparison with the valence hole density of states suggests
that at concentrations x�0.015 a well-formed impurity band
may still be present, and it might persist to higher concen-
trations. Indeed, this scenario seems to be supported by many
experiments.9–16
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Figure 9 shows the dependence of the DOS on MC time
for fixed x. For tMC=0 the Mn ions are completely random
while for tMC=10 the Mn ions form a nearly perfect BCC
lattice with a few point defects. The main effect of disorder,
mostly due to the random Coulomb shift of Ei in Eq. �26�, is
to broaden the impurity band DOS. In the ordered case, the
width of the impurity band is determined by the value of the
dominant hopping parameter, t3/2 at the typical Mn separa-
tions.

Figure 10 shows the effects of the interactions on the
DOS. Within the variational calculation, the absolute scale of
the quasiparticle energies is not given. However, as shown in
Fig. 10, the overall shape of the single particle density of
states and the energy-dependent participation ratio are almost
identical to what we found in our calculations performed for
the noninteracting model.

In order to gain information on transport properties of the
holes, we turn to an analysis of another quantity, the partici-
pation ratio, from which finite size scaling will be able to tell
us which states of the impurity band are localized and which
states are delocalized in the impurity band.

3. Participation ratios

The participation ratio, PR= ��i��
��i
�2�2�−1, measures
the degree to which wave functions are localized. �The wave
functions �i
 are simply the coefficients that occur in the
transformation ci
→�i
 diagonalizing the self-consistently
solved mean-field Hamiltonian �28� and are normalized to
one, �i,
��i
�2=1.� If states are completely delocalized, the
single-particle wave function �i
 will be spread equally over
all sites making the PR system-size dependent because the
wave function must be normalized to unity. Thus, the PR

grows with system size for delocalized states while it re-
mains O�1� in the thermodynamic limit for localized states.

Figure 8 shows the dependence of the PR on x and system
size L for fixed disorder. Larger samples have larger values
of the PR for delocalized states, whereas for localized states
the PR is L independent. The energy joining the two regimes

FIG. 5. �Color online� Magnetization as a function of tempera-
ture, Mn concentration x, and Monte Carlo time tMC for different
hole fractions f . Fully polarized states have a magnetization of 1.
Here L=10alat, U=0, and 100 samples are averaged over. Top: Hole
fraction f =0.1. Bottom: Hole fraction f =0.3. In both cases, as the
Monte Carlo time increases, for fixed x, the saturation magnetiza-
tion at zero temperature increases. For both values of f the curves
remain linear over a fairly wide temperature range, much the same
as for experimentally measured curves for unannealed GaMnAs.
The saturation magnetization never reaches more than 	60% of the
fully saturated value. This is consistent with the wide spin distribu-
tion shown in Fig. 7 and indicates that the ferromagnetism is
noncollinear.

FIG. 6. �Color online� Magnetization as a function of tempera-
ture, hole fraction f , and Monte Carlo time tMC for different Mn
concentrations x. Fully polarized states have a magnetization of 1.
Here L=10alat, U=0 and 100 samples are averaged over. Compare
to Fig. 5. Top: Mn concentration x=0.005. Middle: Mn concentra-
tion x=0.01. Bottom: Mn concentration x=0.015. The general trend
is the same as in Fig. 5: Longer Monte Carlo times lead to larger
zero temperature magnetizations. The saturation magnetization is
roughly independent of Mn concentration x.

FIG. 7. �Color online� Top: The dependence of the spin distri-
bution function, P�cos����, on the on-site interaction, U=UN, and
the Monte Carlo time for L=10alat, x=0.01, and f =0.30. We aver-
aged over 10 samples. Here � is the angle an individual spin makes
with the net magnetization direction, as described in the text. Even
with interactions and at large Monte Carlo times �small disorder�
the spin distribution function remains broad. This is consistent with
the strong reduction of the saturation magnetization �	60% � ob-
served in our calculations, independent of Monte Carlo time. Bot-
tom: Dependence of the spin distribution on the hole fraction f , U
=0, obtained after averaging over 100 samples.
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is the mobility edge. It is impossible to determine the precise
position of the mobility edge from our numerics, but in both
cases, the Fermi energy apparently lies in the region of de-
localized states, indicating a localization transition in the im-
purity band itself.

Figure 9 shows the dependence of the PR on disorder. For
small disorder, nearly all states become delocalized and simi-
lar to the the disordered case the localization transition oc-
curs in the impurity band.

Figure 10 shows the dependence of the PR on the on-site
interactions in Eq. �4�. The behavior of the PR ratio roughly
follows that of the DOS shown in Fig. 10; there is little shape
change with the interactions, and the result looks very simi-
lar to the noninteracting case. Thus, the relation between the
mobility edge and the Fermi energy remains essentially un-
changed implying that the localization transition is robust to
reasonable on-site interactions.

To summarize the result of this section, we find that the
chemical potential lies deep �	0.5–0.7 eV� inside the gap.
From the PR data, it appears that the chemical potential is in
the vicinity of the mobility edge, a regime where our model
is probably more reliable. This suggests that the localization
phase transition in Ga1−xMnxAs could happen inside the im-
purity band and that the ferromagnetic phase for smaller Mn
concentrations is governed by localized hole
states.21,22,25,40,45–47

V. CONCLUSIONS

Starting with a single Mn acceptor state in GaMnAs, we
derived an effective Hamiltonian for Ga1−xMnxAs valid in

the dilute limit, where Ga1−xMnxAs can be described in terms
of spin F=3/2 holes hopping between the Mn sites and
coupled to the local Mn spins. We estimated the parameters
of this model from microscopic calculations using both a
variational approach and an exact diagonalization for a pair
of Mn ions within the spherical approximation. Our approach
treats the extremely large Coulomb interaction in a nonper-
turbative way, and captures the effects of strong spin-orbit
coupling, and disorder. We find that because of the large
spin-orbit coupling of GaAs, the hopping matrix elements of
the holes depend on their spin direction.

We studied the above effective Hamiltonianon using
mean-field and variational methods, also including the ef-
fects of interactions between the holes. We find that the spin-

FIG. 8. �Color online� Top: The dependence of the density of
states on doping x for L=10alat, f =0.50, and tMC=0. Data is the
average of 50 sample realizations. The DOS is normalized to the
volume of a unit cell, so the total number of states is proportional to
x. The half-width of the impurity band ranges from 1000–2500 K
and is centered around −1100 K, the binding energy of a hole at an
isolated Mn. The shape of the density of states changes little with
the Mn concentration, x, over the range of values shown. The value
of the Fermi energy is �−5000 K. For comparison, the valence
band density of states is also shown. Bottom: The dependence of
the participation ratio on doping x. Data is averaged over 50
samples. Larger samples have larger values of the PR for delocal-
ized states, while for localized states the PR is independent of sys-
tem size for fixed x, tMC=0. The energy value that separates
L-dependent PRs from L-independent PRs is the mobility edge.
This depends on x and is larger for larger x. For the disordered
samples here, the mobility edge is not too sharp and lies in the tail
of the density of states.

FIG. 9. �Color online� Top: The dependence of the density of
states on Monte Carlo time for U=0, x=0.01, f =0.30, and L
=10alat. Data is the average of 50 sample realizations. MC time
tMC=0 means that the Mn positions are completely random; for
tMC=10 the Mn ions form a nearly BCC lattice with a few point
defects. The main effect of disorder is thus to broaden the impurity
band. The width of the impurity band is proportional to the value of
the dominant hopping parameter, t3/2, at typical Mn separations as
can be seen from Fig. 4. Bottom: The dependence of the PR on the
MC time for x=0.01 and f =0.30. Data is averaged over 50 samples.
The mobility edge also moves up to higher energy values for more
ordered Mn configurations and nearly all states become delocalized.

FIG. 10. �Color online� Top: The dependence of the density of
states on the on-site interactions, U=2600 K, for x=0.01, f =0.30,
and tMC. The effect of interactions on the DOS is minimal: The
overall shape remains largely unchanged by the interactions. Bot-
tom: The dependence of the PR on the on-site interactions, U, for
x=0.01, f =0.30, L=10alat, and tMC=0. Data is averaged over 10
samples. The behavior of the participation ratio follows roughly that
of the density of states shown in top; there is little shape change
compared to the noninteracting case.
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dependent hopping generates frustration and is ultimately re-
sponsible for the formation of a non-collinear magnetic state
for small active Mn concentrations. The existence of such
noncollinear ground states is indeed supported by experi-
ments, where a substantial increase in the remanent magne-
tization is found upon the application of a relatively small
magnetic field in some unannealed samples.48

Our calculations also support the existence of an impurity
band, and a metal-insulator phase transition inside this impu-
rity band for these small concentrations of active Mn ions, in
agreement with angle resolved photoemission �ARPES�
data,12–14 scanning tunneling microscope �STM� results,15,16

hot-electron photoluminescence,18 and optical conductivity
measurements.9,10

The main advantage of our approach is that it provides a
clear description of the most important physical ingredients
needed to describe dilute Ga1−xMnxAs, while it treats the
extremely large Coulomb potential of charged substitutional
Mn ions nonperturbatively. Although the resulting effective
Hamiltonian given by Eqs. �3� and �4� is relatively simple, it
captures many of the physical properties of Ga1−xMnxAs, and
can serve as a starting point for field theoretical computa-
tions of other physical quantities of interest, such as optical
conductivity, spin-wave relaxation rate, conductivity, or
�anomalous� Hall resistance.

Though the parameters of our effective Hamiltonian have
been determined from microscopic model calculations, they
are only approximate: although the spherical approximation
used is able to reproduce the spectrum of a single acceptor
rather well, it certainly overestimates the effect of spin-orbit
coupling and the width of the impurity band. A direct com-
parison of the parameters in Fig. 4 with those obtained from
a more accurate six-band model calculation shows some im-
portant quantitative differences.49 This comparison reveals
that while for Mn–Mn separations r�13 Å the effective
Hamiltonian �3� is indeed a good approximation in form, the
hopping parameters are smaller by a factor of two compared
to the ones obtained from the six band model variational
calculation. Moreover, for r�13 Å, the six-band model
gives t3/2� t1/2, suggesting that spin anisotropy is much
smaller than that obtained from the spherical model. Further-
more, for shorter Mn separations the effective model turns
out to be a rather poor approximation.49

In summary, based on microscopic calculations, we con-
structed a many-body Hamiltonian that is appropriate for de-
scribing Ga1−xMnxAs in the very dilute limit, and estimated
its parameters. We find that the hopping of the carriers is
strongly correlated with their spin. This spin-dependent hop-
ping is crucial for capturing spin-orbit coupling induced ran-
dom anisotropy terms or the lifetime of the magnon excita-
tions. Our calculations support the presence of an impurity
band for xactive�0.015 active Mn concentration.
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APPENDIX A: EXPRESSIONS FOR ANGULAR
DEPENDENCE OF INDUCED HOLE POLARIZATION

With the wave functions �7� in hand, we can calculate the
average hole spin density around an isolated Mn impurity,
�j��r ,� ,���, which reflects the partial d-wave character of the
Baldereschi-Lipari wave functions. As an example, consider
�jz�r ,� ,���Fz=3/2. Using the angular momentum addition
rules we can express the orbital parts of the wave functions
in Eq. �7� as

�L = 0, j = 3
2 ,F = 3

2 ,Fz = 3
2� → Y0

0� 3
2� , �A1�

�L = 2, j = 3
2 ,F = 3

2 ,Fz = 3
2� → �2

5Y2
2�− 1

2� − �2
5Y2

1� 1
2�

+ �1
5Y2

0� 3
2� , �A2�

where the Yl
m denote the spherical functions, and the “ket”

terms stand for the spin part of the j=3/2 wave function.
Thus the full wave function reads

�Fz=3/2 = � f0�r�Y0
0��,�� +

g0�r�
�5

Y2
0��,����3

2
�

− g0�r��2

5
Y2

1��,���1

2
� + g0�r��2

5
Y2

2��,��

��−
1

2
� . �A3�

Likewise, the wave function for Fz=−3/2 and Fz= ±1/2 are
given as

�Fz=−3/2 = � f0�r�Y0
0��,�� +

g0�r�
�5

Y2
0��,����−

3

2
�

+ g0�r��2

5
Y2

−2��,���1

2
� − g0�r��2

5
Y2

−1��,��

��−
1

2
� . �A4�

�Fz=1/2 = � f0�r�Y0
0��,�� −

g0�r�
�5

Y2
0��,����1

2
�

+ g0�r��2

5
Y2

−1��,���3

2
� + g0�r��2

5
Y2

2��,��

��−
3

2
� . �A5�

FIETE et al. PHYSICAL REVIEW B 72, 045212 �2005�

045212-10



�Fz=−1/2 = � f0�r�Y0
0��,�� −

g0�r�
�5

Y2
0��,����−

1

2
�

+ g0�r��2

5
Y2

1��,���−
3

2
� + g0�r��2

5
Y2

−2��,��

��3

2
� . �A6�

Taking the expectation value of j� � jz in these state gives,
along with the perpendicular component of the spin, j�

�cos���jx+sin���jy,

�j��r���Fz=±3/2 = ±
3

8�
�f0�r�2 + f0�r�g0�r��3 cos2��� − 1�

+ g0�r�2 cos4���� , �A7�

�j��r���Fz=±3/2 = ±
3

4�
�� f0�r� +

g0�r�
2

�3 cos2��� − 1��g0�r�

+ g0�r�2 sin2����sin���cos��� , �A8�

�j��r���Fz=±1/2 = ±
1

8�
� f0�r�2 − f0�r�g0�r��3 cos2��� − 1�

+
g0�r�2

8
�5 + 12 cos�2�� − 9 cos�4���� ,

�A9�

�j��r���Fz=±1/2 = ±
3

4�
�� f0�r� −

g0�r�
2

�3 cos2���

− 1��g0�r��sin���cos��� . �A10�

APPENDIX B: TWO-ION PROBLEM

Here we derive the parameters of the effective Hamil-
tonian �15� using the molecular orbitals for a pair of Mn
ions.41 Since the exchange interaction with the Mn core is
much less than the binding energy of the holes, and the on-
site interaction energy, we neglect its effect on the param-
eters of the effective Hamiltonian �15�. The local field cre-
ated by the Mn core spin on the holes is later treated self-
consistently in a mean field and variational calculation
described in Sec. IV.

We solve the problem in the eight-dimensional subspace
spanned by the F=3/2 acceptor states centered on each im-
purity obtained through the variational calculations of Sec.
II. As we discussed in the main text, within the spherical
approximation used throughout this paper, Fz is conserved if
the two impurities are aligned along the z axis. In this case
the sectors of different Fz decouple. Furthermore, because of
time reversal symmetry, the overlap matrices S �see Sec. II�
and Hamiltonian matrix elements are identical for Fz
= ±3/2 and for Fz= ±1/2. In the Fz= ±3/2 sector these are
given by

S�3/2� = � 1 a+

a+ 1
� �B1�

and

H�3/2� = � E0 + e1 e3 + a+E0

e3 + a+E0 E0 + e1
� , �B2�

whereas for the Fz= ±1/2 subspace we have

S�1/2� = � 1 a−

a− 1
� �B3�

H�1/2� = � E0 + e2 e4 + a−E0

e4 + a−E0 E0 + e2
� . �B4�

The two columns of these matrices correspond to the two Mn
sites, and the constants a±, and e1 , . . . ,e4 denote various ma-
trix elements between the wave function of a hole at site 1
and a hole at site 2. The explicit formulas for these quantities
are given below. E0 is the ground-state energy of the single
bound hole as determined in Sec. II. Using Eq. �7�, expand-
ing the angular parts in spherical harmonics and then rewrit-
ing the expressions in cylindrical coordinates, we have r
=��2+z2, with � the radial coordinate. To simplify our ex-
pressions, we introduce the notations f0� f0(r�� ,z�) �like-

wise for g0�, z̃�z−z0, r̃���2+ �z−z0�2, and f̃0= f0�r̃� �and
likewise for g̃0�g0�r̃��, with z0 the distance between the two
impurities and express the above matrix elements as

a± = �
0

�

�d��
−�

�

dz�1

2
� f0 ±

g0

2
�3

z2

r2 − 1��� f̃0 ±
g̃0

2
�3

z̃0
2

r̃2

− 1�� +
3

2
g0g̃0

�2

r2r̃2�zz̃ +
1

4
�2�� , �B5�

e1,2 = �
0

�

�d��
−�

�

dzV2�r̃��1

2
� f0 ±

g0

2
�3

z2

r2 − 1��2

+
3

2
g0

2�2

r4 �z2 +
1

4
�2�� , �B6�

e3,4 = �
0

�

�d��
−�

�

dzV2�r̃��1

2
� f0 ±

g0

2
�3

z2

r2 − 1��
�� f̃0 ±

g̃0

2
�3

z̃0
2

r̃2 − 1�� +
3

2
g0g̃0

�2

r2r̃2�zz̃ +
1

4
�2�� ,

�B7�

where V2�V1�r̃� is given by Eq. �14�. It should be kept in
mind that a±, the hole binding energy E0 and the four ei all
depend on the spherical spin-orbit strength �, and must be
evaluated numerically. These parameters are shown in Figs.
11 and 12. Having these parameters at hand, we can simply
determine the effective parameters t1/2, t3/2, K, and E in Eq.
�15� by equating the spectrum of the two Mn ions with that
of the effective Hamiltonian Eq. �15�. In this way we obtain
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t3/2 =
a+e1 − e3

a+
2 − 1

, �B8�

t1/2 =
a−e2 − e4

a−
2 − 1

, �B9�

K =
1

2
�a+e3 − e1

a+
2 − 1

−
a−e4 − e2

a−
2 − 1

� , �B10�

E =
1

2
�a+e3 − e1

a+
2 − 1

+
a−e4 − e2

a−
2 − 1

� . �B11�

These parameters have been plotted in Fig. 4. The spectrum
of the Mn–Mn pair has as a function of distance has been
plotted in Fig. 13.

APPENDIX C: DERIVATION AND EVALUATION OF ON-
SITE INTERACTIONS UN AND UF

In the dilute limit it is important to include the effects of
interactions between holes. Here we only consider the on-site
interaction of the holes which dominate all other interactions
due to the localized nature of the molecular orbitals.

In second quantized form the interaction between two
holes is

Ĥon-site =
1

2 �
f1,f2,f3,f4

Uf1,f2,f3,f4
cf1

† cf2

† cf3
cf4

, �C1�

where Uf1,f2,f3,f4
denotes the usual Coulomb integral

Uf1,f2,f3,f4
= �

�,�
� d3r�� d3r��� f1

* �r�,��� f4
�r�,��

�
e2

��r� − r���
� f2

* �r��,��� f3
�r��,�� , �C2�

and where we have again restricted ourselves to the same
F=3/2 subspace, and correspondingly the eigenvalues of the
z-component of Fz, f i, may take on the values ±3/2 and
±1/2. Here � ,� are the eigenvalues of jz. The wave func-
tions � f i

�r� ,�� have been determined previously with the
variational calculation outlined in Sec II. �See Eq. �7� and
Eq. �A3� for an illustration of how the angular dependence of
� f i

�r� ,�� is obtained. A simple projection of �j=3/2 , jz=�
=1/2� into Eq. �A3� picks out �3/2�r� ,1 /2�
=−g0�r��2

5Y2
1�� ,��, for example.�

Fortunately, we do not have to compute all these matrix
elements if we rewrite Eq. �C1� in terms of two-hole scatter-
ing processes and exploit rotational symmetry. Two holes can
only take an F=0 or an F=2 configuration within the
ground-state multiplet because of the Pauli principle. One
can verify by direct evaluation that the F=Fz=2 two-hole
state is created by the following operator from the vacuum:

D̂2 = c1/2
† c3/2

† , �C3�

whereas the F=2 states of lower Fz can be produced by
applying the lowering operator. The corresponding operators
read

D̂1 = c−1/2
† c3/2

† , �C4�

D̂0 =
1
�2

�c−3/2
† c3/2

† + c−1/2
† c1/2

† � , �C5�

D̂−1 = c−3/2
† c1/2

† , �C6�

FIG. 11. �Color online� Wave function overlaps for the two
states on site 1 and site 2. The overlaps are computed from Eq.
�B5�.

FIG. 12. �Color online� Interaction overlaps for the interactions
defined in the text, Eqs. �B6� and �B7�.

FIG. 13. �Color online� The eight lowest-lying states of the
Mn–Mn pair as a function of Mn separation. Each state is twofold
degenerate. At large distances the energies converge to the binding
energy of a single hole on a single Mn ion, −1120 K.
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D̂−2 = c−3/2
† c−1/2

† . �C7�

Likewise for the sole F=0 operator we get,

Ŝ0 =
1
�2

�c−1/2
† c1/2

† − c−3/2
† c3/2

† � . �C8�

Since these operators transform as F=0 and F=2 tensor
operators under SU�2� rotations, the interaction Hamiltonian
must have the form

Ĥon-site = UD�
m

D̂m
† D̂m + USŜ0

†Ŝ0. �C9�

We can, however, use instead of the decomposition above the
following two SU�2� invariants too:

Ĥint =
UN

2
:N̂2: +

UF

2
:F� 2:, �C10�

where : … : denotes normal ordering and N̂=� fcf
†cf, and F�̂

=� f ,f�cf
†F� f ,f�cf� denote the number of holes and their total

spin operator. It is easy to determine the relation of the con-
stants UF and UN to UD and US if one rewrites Eq. �C10�
using the identities

:N̂2: = N̂2 − N̂ ,

:F� 2: = F� 2 − 15
4 N̂ , �C11�

and compares the action of Eq. �C9� and Eq. �C10� on the
N=2 and F=0,2 states. This simple algebra gives

UN =
5UD − US

4
, �C12�

UF =
UD − US

3
. �C13�

By comparing the matrix elements of Eq. �C9� to the ma-
trix elements of Eq. �C1�, we can evaluate UD and US in
terms of the Uf1,f2;f4,f3

�Uf1,f2,f3,f4
, which, in turn, allow us to

evaluate the UN and UF of Eq. �C10�. Carrying out this cal-
culation, one obtains

UD = 2�U3/2,1/2;3/2,1/2 − U3/2,1/2;1/2,3/2� �C14�

US = 4�U1/2,−�1/2�;1/2,−�1/2� − U1/2,−�1/2�;−�1/2�,1/2� − UD,

�C15�

and, therefore,

UN = 3�U3/2,1/2;3/2,1/2 − U3/2,1/2;1/2,3/2� − U1/2,−�1/2�;1/2,−�1/2�

+ U1/2,−�1/2�;−�1/2�,1/2 �C16�

UF =
4

3
�U3/2,1/2;3/2,1/2 − U3/2,1/2;1/2,3/2 − U1/2,−�1/2�;1/2,−�1/2�

+ U1/2,−�1/2�;−�1/2�,1/2� . �C17�

To obtain a numerical value of UN and UF we must de-
termine the matrix elements U3/2,1/2;3/2,1/2, U3/2,1/2;1/2,3/2,
U1/2,−1/2;1/2,−1/2 and U1/2,−1/2;−1/2,1/2 by evaluating the integrals
in Eq. �C2�. These integrals depend on the radial wave func-
tions that we evaluated variationally in Sec. II and are mate-
rial �parameter� specific. In order to evaluate the integrals in
Eq. �C2� the ��,f i

�r�� must be decomposed into spherical har-
monics. Various products of spherical harmonics appear in
the integrand. The integrals can be evaluated by making use
of the important formula

1

�r� − r���
=

4�

r�
�
l=0

�

�
m=−l

l � r�

r�
�l �− 1�m

2l + 1
Yl

m*���Yl
m���� ,

�C18�

where � ���� is the angle of r� �r���. Here r� �r�� is the
greater �lesser� of r and r�. With this formula, most of the
integrals vanish and the few remaining integrals yield

U3/2,1/2;3/2,1/2 =
e2

�aeff
�I1 − I2� , �C19�

U3/2,1/2;1/2,3/2 =
e2

�aeff
2I2, �C20�

U1/2,−�1/2�;1/2,−�1/2� =
e2

�aeff
�I1 + I2� , �C21�

U1/2,−�1/2�;−�1/2�,1/2 = 0, �C22�

where the prefactor gives the energy scale of the interaction,

e2

�aeff
= 31.6 meV, �C23�

and I1 and I2 denote the following integrals:

I1 = �
0

�

r2dr�
0

�

r�2dr�
1

r�

�f0
2�r� + g0

2�r�� �f0
2�r�� + g0

2�r��� ,

�C24�

I2 = �
0

�

r2dr�
0

�

r�2dr�
4

25

r�
2

r�
3 f0�r�g0�r�f0�r��g0�r�� .

�C25�

Evaluating these integrals one obtains UN=2570 K and UF
=−51 K.
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