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We define for quantum many-body systems a quasiadiabatic continuation of quantum states. The continua-
tion is valid when the Hamiltonian has a gap, or else has a sufficiently small low-energy density of states, and
thus is away from a quantum phase transition. This continuation takes local operators into local operators,
while approximately preserving the ground-state expectation values. We apply this continuation to the problem
of gauge theories coupled to matter, and propose the distinction of perimeter law versus “zero law” to identify
confinement. We also apply the continuation to local bosonic models with emergent gauge theories. We show
that local gauge invariance is topological and cannot be broken by any local perturbations in the bosonic
models in either continuous or discrete gauge groups. We show that the ground-state degeneracy in emergent
discrete gauge theories is a robust property of the bosonic model, and we argue that the robustness of local
gauge invariance in the continuous case protects the gapless gauge boson.
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I. INTRODUCTION

Traditionally, gauge theory was described as a theory of a
vector field a� that has a local gauge symmetry. In a La-
grangian framework, this means L�a�+����=L�a��. This
gauge symmetry was believed to be the defining property of
a gauge theory. It was believed that the gauge symmetry
protects the gapless gauge boson for continuous gauge
groups and the topological ground-state degeneracy on com-
pact space for discrete gauge groups. Even the slightest
gauge symmetry breaking, such as a gauge potential term
�a��2 in the Lagrangian, gives a finite mass to the gauge
boson or lifts the topological degeneracy. In this case we can
no longer regard the theory as a gauge theory at low ener-
gies.

However, the above standard picture for gauge symmetry
protecting gapless gauge bosons and ground-state degen-
eracy is very formal, since the gauge symmetry is not really
a symmetry. Within the Hamiltonian formulation of gauge
theories, the gauge transformation is simply a transformation
between different labels that label the same physical state. It
is a do-nothing transformation. It is very different from the
usual symmetry transformation that transforms a physical
state to a different physical state. Therefore, it is not clear
what is the essence of gauge theory and gauge symmetry.

In last 15 years, it was shown, with increasing rigor, that
deconfined gauge theories can emerge from certain local
bosonic lattice models.1–16 If the emergent gauge theory has
a continuous gauge group, the local bosonic model will have
gapless excitations that behave just like gauge
bosons.8,11,14–16 If the emergent gauge theory has a discrete
gauge group or has a Chern-Simons term, the local bosonic
model will have degenerate ground states on compact
space.4,17,18,34 This raises a physical question: What protects
the gapless gauge bosons and the ground-state degeneracy?
According to the standard picture for gauge theory, those
properties are protected by gauge symmetry, but from the

point of view of the local bosonic model, what is this “gauge
symmetry”? How does gauge symmetry emerge at low
energies?

A close examination of those local bosonic models with
emergent gauge theory reveals that the emergence of gauge
theory is intimately connected to string condensation.11,13

The gauge symmetry is related to the integrity of the strings.
If the strings are unbreakable, one can show that the low-
energy states are gauge invariant. However, in general, the
strings in the boson model are not perfectly well defined.
Strings may break up momentarily and rejoin. One may
wonder if this means that the gauge symmetry becomes ap-
proximate. We know that a theory that loses its gauge sym-
metry even slightly no longer behaves like a gauge theory at
low energies. This seems to suggest that breakable strings
will give gauge bosons a mass gap or lift the ground-state
degeneracy.

On the other hand, it was believed that the gaplessness of
the gauge bosons and the degeneracy of the ground states in
those bosonic models are topological and are robust against
any local perturbations.4,17,18 A formal argument goes as the
follows �see, for example, Ref. 19, p. 393 and p. 435�. We
first derive the low-energy effective gauge theory of the
bosonic model. We then argue that any generic perturbation
of the bosonic model cannot generate any terms that break
the gauge symmetry in the low energy effective gauge
theory. Therefore, all the properties protected by the gauge
symmetry are robust against arbitrary perturbations of the
bosonic model.

We see that to understand why gauge symmetry remains
exact even for a generic boson model with virtually break-
able strings is vital in our understanding why the degeneracy
of the ground states is protected even when the original bo-
son model has no symmetry, and why the gaplessness of the
gauge bosons is protected even when the original boson
model has only translation symmetry. We would like to ad-
dress some of these issues in this paper.
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In the next section, we start by introducing some bosonic
models with emergent gauge theories, and raise the question
of the ability of topological order and gauge symmetry to
survive local perturbations of the Hamiltonian, as well as
proposing the zero law to identify deconfined gauge theories.
We then introduce in the following section a quasiadiabatic
continuation which enables us to identify appropriately
dressed operators for the perturbed Hamiltonian, such that
the dressed operator has almost the same ground-state expec-
tation value for the perturbed Hamiltonian as the original
operator had for the original Hamiltonian. The final section
illustrates the application of the continuation via a series of
examples, beginning with local models without emergent
gauge structure, such as quantum Ising models, and then
going on to emergent gauge theories. Many of these systems
are theories for which the unperturbed Hamiltonian has a
ground-state degeneracy and then a gap to the rest of the
spectrum, with no local operators connecting the degenerate
ground states. We are then able to show that, so long as the
gap to the rest of the spectrum remains open, the splitting
between the low-energy states of the perturbed Hamiltonian
remains exponentially small. This is illustrated in the case of
the ferromagnetic quantum Ising model; in the case of the
fractional quantum Hall effect where we are able to extend
results on the insensitivity of the topological degeneracy to
disorder;17,18 and in the case of an emergent Z2 gauge theory.
The case of gapless theories is also discussed; it will turn out
that gauge symmetry is much more robust in compact than in
noncompact theories.

II. SIMPLE LOCAL BOSONIC MODELS WITH
EMERGENT GAUGE THEORIES

To make the above discussion more concrete, in this sec-
tion we are going to discuss two simple bosonic models that
have emergent Z2 and U�1� gauge theories respectively.

A. A bosonic model with emergent Z2 gauge theory

The first bosonic model is a spin-1 /2 model on a
d-dimensional cubic lattice.20–22 The spins live on the links
labeled by i. The Hamiltonian is given by

H0 = U�
I

�1 − WI� − g�
p
� �

edges of p
�i

x� �1�

where I labels the vertices and p the squares of the lattice,
and WI is given by

WI = �
legs of I

�i
z. �2�

The legs of a vertex are the links that connect to the vertex
and the edges of a square are the four links around the
square. �x,y,z are the Pauli matrices.

When U is very large, the low-energy sector of the model
is formed by closed-string states. What are the closed-string
states? First, the state with all spins up is defined as the
no-string state. A closed-string state is a state where the
down spins form closed loops �see Fig. 1�. We note that the
closed-string states are the states that satisfy

WI�closed strings�= �closed strings�, Since 	WI ,H0
=0, the
closed-string states and the open-string states33 do not mix.
This allows us to plot the spectrum of H0 separately for
closed-string states and open-string states in Fig. 2.

When g�0, the ground state ��0� of the model is the
equal-weight superposition of all closed-string states. Such a
state is called a closed-string condensed state since the
closed-string creation operator S�Cclosed� has a nonzero ex-
pectation value23

��0�S�Cclosed���0� = 1 �3�

regardless of the size of the string Cclosed. Here a string cre-
ation operator that creates a string C is given by

S�C� = �
i on C

�i
x.

We can show Eq. �3� to be true by noting that

	S�Cclosed�,H0
 = 0. �4�

What is the physical character of the closed-string con-
densed state? It is believed that the closed-string condensed
state contain a new kind of order—topological order—which
cannot be characterized by symmetry breaking and long-
range order.13,17 So we need a new way to characterize such
an order. One way to characterize the topological order is
through the robust ground-state degeneracy on a torus.4,18

FIG. 1. �Color online� A closed-string state. The up spins are
represented by open dots and the down spin by filled dots.

FIG. 2. The energy levels of N spin-1 /2 spins described by
H0.
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The closed-string condensed state in our spin-1 /2 model is
characterized by a fourfold ground-state degeneracy.

To show the fourfold ground-state degeneracy, we would
like to first point out that the S�Cclosed� are not the only
closed-string operators that commute with the Hamiltonian.
We can define dual string operators that also commute with
the Hamiltonian.22

While strings are formed by segments that connect
nearest-neighbor vertices, dual strings are formed by seg-
ments that connect the centers of nearest-neighbor squares

�see Fig. 3�. A dual string operator S̃�C̃� for a dual string C̃ is
defined as

S̃�C̃� = �
i cross C̃

�i
z. �5�

One can check that

	S̃�C̃closed�,H0
 = 0, �6�

which implies that the dual closed strings also condense,

��0�S̃�C̃closed���0� = 1. �7�

Now we are ready to show that the ground states of H0 on

a torus have at least fourfold degeneracy. Let Cx and Cy �C̃x

and C̃y� be the closed �dual� strings that wrap around the
torus once in the x and y directions. We find that the four

large-string operators (S�Cx� ,S�Cy� , S̃�C̃x� , S̃�C̃y�) commute
with each other except

�S�Cx�, S̃�C̃y� = 0, �S̃�C̃x�,S�Cy� = 0. �8�

The above algebra has only one four-dimensional irreducible
representation. Since the large-closed-string operators

(S�Cx� ,S�Cy� , S̃�C̃x� , S̃�C̃y�) act within the degenerate
ground-states, the ground state degeneracy must be a mul-
tiple of 4.

When U=�, the model becomes the Z2 gauge theory.20

One way to see this is to note that the only states with finite
energies are closed-string states and closed-string states are
gauge-invariant states under local Z2 gauge transformations.
The local Z2 gauge transformations are generated by the uni-
tary operators WI in Eq. �2�:

WI�closed strings� = �closed strings� for any I . �9�

A generic Z2 gauge transformation is given by

�
I

�WI�nI�closed strings� = �closed strings� . �10�

In the gauge theory language the closed-string operator
S�Cclosed� turns out to be the Wilson-loop operator,20,24 which
is gauge invariant,

WIS�Cclosed�WI
† = S�Cclosed� .

Equation �3� implies that the expectation values of the Wil-
son loop satisfy the perimeter law

��0�S�Cclosed���0� � e−��Cclosed� �11�

with zero coefficient �=0. Here �Cclosed� is the length of the
string Cclosed. In this case we will call Eq. �3� the zero law.

The perimeter law indicates that the Z2 gauge theory is in
the deconfined phase. The Z2 deconfined phase has four
nearly degenerate ground states on the torus, which is con-
sistent with our previous direct calculation on the spin
model. The energy separation between the four nearly degen-
erate ground states is of order e−L/	 where L is the linear size
of the torus and 	 a finite length scale.

Now let us add a term

H1 = − J1�
i

�i
z

to our spin model Hamiltonian H0 and assume U is finite.
S�Cx� and S�Cy� no longer commute with the modified
Hamiltonian H0+H1. So it is not clear if H0+H1 still has four
degenerate ground states on a torus.

To understand the properties of the modified spin system
H0+H1, we note that H0+H1 still does not mix the closed-
string and open-string states. So if U
g, J1, the low-lying
states are still closed-string states. One can check that if we
restrict H0+H1 to the closed-string subspace, the system is
identical to a pure lattice Z2 gauge theory. A pure Z2 gauge
theory has two phases in d+1 dimensions if d�1: a decon-
fined phase where the expectation value of the Wilson loop
satisfies the perimeter law, and a confined phase where the
expectation value of the Wilson loop satisfies the area law:

��0�S�Cclosed���0� � e−�A�Cclosed�, �12�

where A�Cclosed� is the area enclosed by the loop Cclosed and
��0. So we expect that our spin model H0+H1 also has two
phases. If �J1�� �g�, the ground state of the spin model is
filled with large closed strings which correspond to the Z2
deconfined phase. If J1
 �g�, the ground state of the spin
model hardly has any strings �i.e., almost all spins point up�
which corresponds to the deconfined phase.

Base on this picture, we guess that when �J1�� �g�, the
ground states of H0+H1 are �nearly� fourfold degenerate,
while when �J1�
 �g� the ground state is not degenerate. But
the result for �J1�� �g� clearly is just a guess. Can we provide
a more rigorous proof?

The situation gets even more complicated if we add an-
other term

FIG. 3. �Color online� A dual closed string.
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H2 = − J2�
i

�i
x.

Such a term can mix the closed-string and open-string states.
The low-energy sector of H0+H1+H2 is not formed by
simple closed-string states, although the mixing with the
open-string states may be small for small J2 �see Fig. 4�. It
appears that H2 breaks the Z2 gauge symmetry since the low-
energy states no longer satisfy Eq. �9�.

Also when J2�0 and U�, the expectation value of a
closed string operators satisfies the perimeter law in both the
�J1�� �g� and J1
 �g� limits, which gives no sign of two
phases. All of those facts suggest that the fourfold ground-
state degeneracy is lifted by a finite J2.

But this suggestion is incorrect. Reference 4 argues that
any local perturbations of H0 cannot break the Z2 gauge sym-
metry. As a result, H0+H1+H2 will have four nearly degen-
erate ground states as long as J1 and J2 are not too large.
Such a phase contains a nontrivial topological order. How-
ever, Ref. 4 only provides a formal argument. A more rigor-
ous understanding is needed.

Certainly, large J1 and J2 will polarize the spins and lift
the ground-state degeneracy. Such a phase has a trivial topo-
logical order. This suggests the phase diagram in Fig. 5. We
note that the two phases in Fig. 5 have the same symmetry
and are distinguished only by topological orders.

From the phase diagram, we see that when J2�0 the pe-
rimeter and area laws of the closed-string operators �or Wil-
son loop� cannot determine if the ground state is topologi-
cally ordered or not. Thus for a generic bosonic model, the
perimeter and area laws of the closed-string operators are not
the proper way to test if the ground state has closed-string
condensation �or nontrivial topological order�.

In Sec. IV, we will show that the topological phase is
characterized by dressed closed-string operators which sat-
isfy the zero law. The trivial phase does not contain any such
closed-string operator. The closed-string operators in the
trivial phase all satisfy the perimeter law. So it is the zero
and perimeter laws that distinguish topological and trivial
�deconfined and confined� phases, instead of the perimeter
and area laws.

For J1=J2=0, the system has an exact fourfold degen-
eracy of the ground state on the torus, followed by a gap of

order g to the next lowest state. The closed-string operators
satisfy the zero law. In Sec. IV we will show that, for small
but nonzero J1 and J2, a deformed or dressed closed-string
operator can still satisfy the zero law. The zero law of the
dressed string operator allows us to show the fourfold degen-
eracy of the ground states in the small-J1,2 limit. More pre-
cisely, we assume that the gap, from the four lowest states to
the rest of the spectrum, remains open, and then we show the
fourfold ground-state degeneracy up to an exponentially
small splitting. We will also show that, in the small-J1,2 limit,
the low-energy sector of the model is still formed by Z2
gauge-invariant states. However, for J2�0, the gauge invari-
ance is under a deformed Z2 gauge transformation. So in this
sense, none of the small perturbations in the spin model can
break the gauge symmetry in the low-energy effective gauge
theory.

B. A bosonic model with emergent U(1) gauge theory

In our second bosonic model, we consider rotors on the
links of a d-dimensional cubic lattice. A rotor can be viewed
as a particle moving on a circle. The position of the particle
is given by an angle �, and the angular momentum of the
particle by Lz=−i��. The Hamiltonian of the rotor model is
given by

Hrotor = U�
I

QI
2 − g�

p
�Bp + H.c.� + J1�

i
�Li

z�2

+ J2�
i

�Li
+ + Li

−� ,

Bp = L1
+L2

−L3
+L4

−, QI = �− �I �
legs of I

Li
z, �13�

where I labels the vertices, i labels the links, and p labels the
squares of the cubic lattice. 1,2,3,4 label the four links that
form the edges of the square p. L+=ei� is the raising operator
of Lz, L−= �L+�†, and �−�I=1 for the even vertices and −1 for
the odd vertices.

FIG. 4. The energy levels of N spin-1 /2 spins described by
H0+H1+H2, assuming �J1� , �J2�� �g��U�N�g�.

FIG. 5. A likely quantum phase diagram for the spin-1 /2 system
H0+H1+H2. The deconfined phase is characterized by four nearly
degenerate ground states on a torus with energy splitting of order
e−L/	 where L is the linear size of the torus and 	 a length scale. The
confined phase is characterized by a nondegenerate ground state on
the torus. In general, the confined phase and the deconfined phase
are distinguished by the zero law and the perimeter law of certain
loop operators.

M. B. HASTINGS AND X.-G. WEN PHYSICAL REVIEW B 72, 045141 �2005�

045141-4



When g=J1=J2=0 and U�0, the ground states are
highly degenerate and form a low-energy subspace. One of
the ground states is the state with Li

z=0 for every rotor. Other
ground states can be constructed from the first ground state
by drawing a loop in the cubic lattice, and then alternately
increasing or decreasing Lz by 1 along the loop �see Fig. 6�.
The sum �legs of ILi

z vanishes on every vertex for such a
closed-string state. Such a process can be repeated to con-
struct all of the degenerate ground states. We see that the
degenerate ground states are formed by loops, or more pre-
cisely string nets, since loops can overlap and form branched
strings.

The J1 term gives the strings in the degenerate ground
states a fine energy and represents string tension. The Bp
operator creates a small loop of closed string or deforms the
existing strings. Thus the g term generates string “hopping”
or string fluctuations.

The J1,2 and g terms lift the degeneracy of the ground
states. In the U
J1
max��g� , �J2�� limit, the true ground
state correspond to a state with almost no strings �i.e., a state
with Li

z=0 on every link�. The excitations above such a state
have finite energy gaps. In the U
 �g�
J1,2�0 limit, the
true ground state is a superposition of many large closed
strings.11,19 Such a state is a string-net condensed state.

When J2=0, the Hamiltonian Hrotor does not mix the
closed-string and open-string states. When restricted to the
closed-string subspace, Hrotor is identical to the Hamiltonian
of lattice U�1� gauge theory. The closed-string states can be
viewed as gauge-invariant states since they are invariant un-
der local U�1� gauge transformations

ei�QI�closed string� = �closed string� for any I . �14�

A general U�1� gauge transformation is generated by
exp�i�I�IQI�.

In the limit �J1�
 �g�, the lattice U�1� gauge theory is in
the strong-coupling limit and is in a confined phase. In the
limit �J1�� �g�, the lattice U�1� gauge theory is in the weak-
coupling limit and has gapless U�1� gauge bosons as its only
low-lying excitations if d�2. So when J2=0 and when U


 �g�
 �J1�, the rotor model Hrotor contains emergent gapless
U�1� gauge bosons.11,14–16,19

When J2�0, Hrotor mixes the closed-string and open-
string states. The low-energy states are no longer pure
closed-string states and are not invariant under the local U�1�
gauge transformation �14�. It appears that a nonzero J2 will
break the U�1� gauge symmetry. We may conclude that even
a small J2 will give the U�1� gauge boson a gap and the rotor
model Hrotor ceases to have emergent U�1� gauge bosons at
low energies. In the Sec. IV, we will show that this line of
argument is incorrect. For a small J2 �or any other small
perturbation to Hrotor�, we can define deformed local U�1�
gauge transformations so that the low-energy states of Hrotor
are invariant under the deformed local U�1� gauge transfor-
mations. Thus the local U�1� gauge symmetry cannot be bro-
ken by any small perturbations if U
 �J1,2� , �g�. Thus far, we
will prove these results for U�1� theories; we do not prove,
but strongly conjecture, that the stability of the U�1� gauge
symmetry protects the gaplessness of the gauge boson. As a
result, no translation-invariant perturbation can give the gap-
less U�1� gauge boson a mass gap. The gaplessness of the
emergent U�1� gauge boson is topologically stable.

III. QUASIADIABATIC CONTINUATION

In this section we define the quasiadiabatic continuation.
We consider a family of Hamiltonians Hs, depending on a
continuous parameter s, where we wish to define a continu-
ation from s=0 to 1. We denote eigenstates of Hs by �a,s,
where a state �a,0 evolves into a state �a,s under an adia-
batic evolution of Hs. In the event of a level crossing as a
function of s, any arbitrary continuation of the states through
the level crossing is allowed.

Let us begin with some motivation and discussion. We
define the unitary operator V�s�=�a��a,s���a,0�. Then, for
any operator O, we could define a corresponding dressed
operator by Oadiab�s�=V�s�OV�s�† so that Oadiab�s� would
have exactly the same expectation value in state �a,s as O
does in state �a,0. Using such a definition of dressed opera-
tors, we can show that the dressed string operators and the
dressed gauge transformations will have the same properties
in the deformed model as the bare string operators and the
bare gauge transformations in the exactly soluble model.
However, this definition of a dressed operator would not suf-
fice for our purposes at all. In particular, we do not have any
reason to believe that the resulting Oadiab�s� would still be a
local operator.

Indeed, even if O only involves operators on a few sites,
in general, the continued Oadiab�s� will contain operators on
every site of the system. However, in this section, we will
show that, under certain conditions, we can continue O into
an local operator that acts only on a finite number of sites.

To state the result more precisely, let us first assume that
Hs has a gap �E separating a low-energy sector and a high-
energy sector for all 0s1. For any operator O that acts
on a set of sites SO, we will construct an approximate dressed
operator O�s� that only acts on sites within a distance l from
the sites SO. Then, there is a unitary matrix Q0�s� that acts
only within the low-energy sector of Hs, such that

FIG. 6. �Color online� The empty dots represent rotors with Lz

=0—the no-string states. A closed string is formed by a loop con-
necting neighboring vertices. A closed-string state is obtained by
alternately increasing or decreasing Lz by 1 along the closed string.
The filled dots represent rotors with Lz= ±1. The arrows on the
links all point from even vertices to odd vertices.
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��low,s�Q0�s�†O�s�Q0�s� − Oadiab�s���low,s�  NSO,l
e−l/	

�15�

in the large-l limit for a certain fixed length scale 	, where
NSO,l

is the number of sites within distance l of a site in SO.
This number grows only as a power of l so is easily over-
whelmed by the exponential. The state ��low,s� is any state in
the low-energy sector of Hs.

If Hs has no gap between the low-energy and high-energy
sectors, we will define a density of states ��E� in the high-
energy sector. If ��E� is bounded by ��E�E�−1, then the
bound in Eq. �15� is weakened to

��low,s�Q0�s�†O�s�Q0�s� − Oadiab�s���low,s�  NSO,l
l1−�/2.

�16�

For a local operator O, NSO,l
grows as ld, where d is the

dimension of the lattice, and so if d+1−� /20 then the
error decays for large l. For a stringlike operator NSO,l

is
proportional to ld−1�O�, where �O� is the length of the
strength, for l �O�, and is proportional to ld for l� �O�. �A
more rigorous statement of the results will be given later.�

The key in obtaining the above result is to adopt a differ-

ent definition of the dressed operator by O�s�= Ṽ�s�OṼ�s�†,

where the unitary operator Ṽ�s� is defined following Eq. �17�.
Physically, the definition of V corresponds to adiabatically
changing the Hamiltonian from H0 to Hs, while the defini-

tion �17� of Ṽ�s� corresponds to a quasiadiabatic change of

the Hamiltonian. So Ṽ�s� can be viewed as an approximation

of V�s�. The operator Ṽ�s� will be chosen to achieve the goal
of defining dressed operators O�s� that have approximately
the same ground-state expectation values in the perturbed
Hamiltonian Hs as the original operators did in the unper-
turbed Hamiltonian, while preserving the locality of the
operators.

The locality of the operators is very important. Suppose,
for example, that the ground state of H0 has long-range cor-
relations. That is, there exist two local operators O1, O2
which are correlated even though the two operators are far
separated from each other in space. For example, if this is a
spin system with long-range spin correlations these may be
spin operators acting on two different sites which are far
separated from each other. Then, however, the operators
O1�s�, O2�s� will also be correlated in the ground state of Hs,
and since the operators remain local under the continuation
this implies the existence of long-range correlations in the
ground state of Hs.

The major result will be an explicit definition of Ṽ�s� in
terms of derivatives of the Hamiltonian which accomplishes
these goals. In order to show that ground-state expectation
values remain approximately unchanged under the continua-
tion, we will make some assumptions on the existence of a
gap, though some extensions to gapless systems with suffi-
ciently small low-energy density of states will be discussed.
The dressed operators remain local under this evolution: lo-
cal operators are spread out over a length scale of order the
correlation length in a gapped system, while stringlike opera-

tors are spread out over a length scale which grows only
logarithmically with the string length. Detailed proofs will be
given in the Appendix.

The importance of the low-energy density of states in
what follows can be understood physically by analogy to
another continuation that should be much more familiar,
namely, Fermi liquid theory. As discussed by Anderson,25 the
correct way to think of Fermi liquid theory is to think of
starting with a noninteracting system and turning the inter-
actions on slowly, but not infinitely slowly; that is, physically
exactly the same procedure we imagine here. Anderson’s dis-
cussion of how fast the interactions need to be turned on is
based on considerations of the quasiparticle states, and cor-
responds very closely to our two criteria: maintaining both
the expectation values and the locality of the operators. To
show that this is possible, the analysis in the Fermi liquid
case relies on the low density of particle-hole excitations
near the Fermi surface. Here, we rely on something similar,
namely, a low density of states at low energy. Our continua-
tion is very general, and thus valid for a much wider range of
systems than Fermi systems, but this generality can in some
cases limit what we can prove on specific systems.

A. Definition of system

We consider a family of Hamiltonians Hs which obey the
finite-range conditions26,27 Hs=�iHs

i , where letters i , j , . . . la-
bel different lattice sites of the system; each Hs

i acts only on
sites j with d�i , j��R where R is the interaction range and
d�i , j� is some metric on the lattice; and �Hs

i��J for some
constant J for all i ,s. We further assume that ��sHs

i��K for
some constant K for all i ,s. It is possible to slightly weaken
the finite-range conditions and consider exponentially decay-
ing interactions as well.26

To define the concept of “density of states,” let us focus
on a state �low,s that we continue. We will consider a �low,s
which is a ground state of Hs, but in general we could con-
tinue any eigenstate of Hs. The state �a,s has energy Ea
�0 compared to �low,s if a is not in the low-energy sector.
We assume that, for 0�s�1, the density of states of the
local operator us

i =�sHs
i is bounded as follows. We assume

that there is a D�E� such that �a�high,�Ea��E���a,s�us
i ��low,s��2

�D�E��us
i�, where �¯� denotes the operator norm. The sum

is restricted to states �a in the high-energy sector. Note that
D�E��1 for all E. We define �ED�E�=��E� to be the density
of states at energy E produced by operator us

i .
There are a number of systems for which this density of

states bound is relevant. For a discrete gauge theory, there
will be a set of topological excitations below a gap. These
topological excitations form the low energy sector, and thus
D�E� vanishes below the gap. For a transverse-field Ising
system, Hi=J��i,j��i

z� j
z+B�i

y, in the ferromagnetic phase,
there will again be two almost degenerate states below a
finite gap. At B=0, these states correspond to symmetric and
antisymmetric combinations of all spins up or all spins
down.

The bound D�E� implies a locality bound.27 Suppose
some operator O acts only on some set of sites, SO. We
define the distance between a site j and the operator O to be

M. B. HASTINGS AND X.-G. WEN PHYSICAL REVIEW B 72, 045141 �2005�

045141-6



equal to d�j ,O�=mini�SO
	d�i , j�
, with the minimum taken

over sites i�SO, and we define the distance between two
operators O1 ,O2 to be d�O1 ,O2�=mini�SO1

,j�SO2
	d�i , j�
.

Suppose the system has a unique ground state. Then if the
system is gapped, so that D�E�=0 for E��E, the connected
expectation value ��Ous

i�s− �O�s�us
i�s� is exponentially decay-

ing in l, where �·�s denotes the ground-state expectation
value with Hamiltonian Hs. On the other hand, if D�E�
�E�, then ��Ous

i�s− �O�s�us
i�s� is bounded by some constant

times d�i ,O�−�/2.

B. Definition of quasiadiabatic continuation

We introduce the unitary operator

Ṽ�s� = S� exp�− �
0

s

ds��
0

�

d� e−��/tq�2/2	ũs�
+ �i�� − H.c.
� ,

�17�

where the symbol S� denotes that the exponential is
S�-ordered, in analogy to the usual time-ordered or path-
ordered exponentials. We define us=�sHs=�ius

i , and define
ũs

+�i�� following Ref. 27: for any operator A

Ã�t� � A�t�exp	− �t/tq�2/2
 , �18�

Ã±�±i�� =
1

2�
� dt Ã�t�

1

±it + �
. �19�

The time tq will be chosen later. For comparison with previ-
ous work,27,28 tq is what was previously called �q /�E; in this
work, we also consider the possibility of gapless theories
where there is no scale �E. The time evolution of operators
is defined by A�t�=exp	iHs�t
A exp	−iHs�t
. The Hermitian

conjugate in Eq. �17� of ũs
+�i�� is ũs

−�−i��, and Ṽ�s� is a
unitary operator.

At tq=�, the operator Ṽ�s� becomes equal to V�s�
= ��a�a,s���low,s�. To see this, note that at tq=�, we have

Ã+�i��=A+�i��, where A+�i�� is the positive-energy part of A
taken at imaginary time i�. That is, in a basis of eigenstates
of Hs with energies Ea ,Eb, we have matrix elements
A+�i��ab=Aab��Ea−Eb�exp	−��Ea−Eb�
, where ��x� is
the step function. Then, −�0

�d�	u+�i��−u−�−i��
=−�Ea

−Eb�−1�sHs, which gives the result of linear perturbation
theory for the adiabatic evolution of quantum states with a
change in the Hamiltonian. We instead keep tq finite to define
a “quasiadiabatic” evolution, which will transform local op-
erators into local operators. To show that keeping tq finite
maintains the locality we will rely on finite-group-velocity
results, while we will use the gap to show that we get only a
small error in the ground-state expectation values by taking a
finite tq; detailed proofs of this are in the Appendix, while the
physical discussion is given in the next section. We will re-
late the time tq to the scale l by Eq. �21� below.

C. Results

For any operator O, we define O�s�= Ṽ�s�OṼ�s�†, where
O�s� has been “smeared out” over a scale l given by Eq. �21�

below. For a gapped theory, we only need to take a length l
of order the correlation length 	 to get a small error in Eq.

�15�. To understand how this works, define Q�s�= Ṽ�s�V�s�†.
Then, for a state ��low,s� in a low-energy subspace,
��low,s�O�s���low,s�= ��low,0�Q�s�OQ†�s���low,0�. If we can
show that Q�s� has nearly vanishing matrix elements be-
tween the low-energy and high-energy states, we can bound
the difference in expectation values in Eq. �15�. The gap
between the states in the low-energy subspace and the high-
energy subspace enables us to show this; for a given gap �E,
if we perform the quasiadiabatic continuation sufficiently
slowly, we can show that �loosely speaking� the matrix ele-
ments of Q�s� between the low-energy and high-energy
states almost vanishes and Q�s� almost acts within the low-
energy subspace as a unitary operator.

However, there is one complication: in a macroscopic sys-
tem, Q�s� produces excitations throughout the sample. Thus,
for infinitesimal s, Q�s�=1+s�ie

i+¯, where the anti-
Hermitian operator ei creates local excitations near site i. The
probability that Q�s� produces some excitation acting on the
ground state diverges with the system size. Strictly speaking,
the matrix elements of Q�s� between the low-energy and
high-energy states are not small. However, the terms ei in Q
with i sufficiently far from O can be commuted through O
and do not affect the final expectation value. We will show
that the error from the terms ei with i near O is exponentially
small in l divided by the correlation length. The proof in the
Appendix follows this argument, using a triangle inequality
to make the bound precise.

If D�E� is not gapped, but has a power-law behavior,
D�E��E� for small �, then in a d-dimensional system we
can still find a local O�s� if � /2�d+1 according to Eq. �16�.
This requirement on the exponent can be physically under-
stood as follows: if we keep tq finite so that O�s� is spread
out over a length scale l under the quasiadiabatic evolution,
then we have to worry about any error in Q�s� on the length
scale l. The correlation function of us with O decays as l−�/2,
and this also is how the error terms decay, while the space-
time volume at scale l is of order ld+1. Thus, this requirement
can be understood in terms of the relevance or irrelevance of
us at large scales in the given correlation function.

This physical description is based on two technical re-
sults. First, we claim that O�s� is local up to a scale l. Spe-
cifically, we claim that for any operator Oj which acts only
on site j,

�	Oj,O�s�
� � X1�Oj��O� � max„exp	− d�j,O�/	C
,

exp�− 	d�j,O�/lq
2/2… , �20�

for some constant X1 of order unity and constant lq of order
tq /c1, where c1 is a characteristic inverse velocity of the sys-
tem. The length 	C is a microscopic length of order the in-
teraction range of the Hamiltonian and is defined later. Equa-
tion �20� implies that, while O�s� does involve sites more
than a distance lq from SO, the commutator becomes expo-
nentially small once d�j ,O� becomes larger than lq. To relate
lq and l, we ask for the commutator to be smaller than the
error in Eq. �16� or Eq. �15� once d�j ,O� becomes larger than
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l. For a gapless theory, we only need to take d�j ,O� logarith-
mically larger than lq before the exponential decay becomes
much smaller than ld+1−�/2; in this case, l is of order lq. For a
gapped theory, we need that exp	−�l / lq�2
�exp	−l /	
, so
that

l � lq
2/	 � tq

2�E/c1. �21�

The correlation length 	 is at most of order 1 / �c1�E�.
If one prefers to have an operator which involves only

sites within a distance l of SO, and exactly commutes with
sites more than a distance l from SO, one may define an
operator Otrunc�s� such that

�Otrunc�s� − O�s�� � X2 �
j,d�i,j��l

max„exp	− d�j,O�/	C
,

exp�− 	d�j,O�/lq
2/2… , �22�

for some constant X2 of order unity. In order for the error in
Eq. �22� to be of order the error in Eq. �16� or Eq. �15�, we
need to pick l as above: l� lq

2 /	 in the gapped case, up to
logarithmic corrections.

Second, we claim that O�s� has almost the same expecta-
tion value as Oadiab�s�, up to the unitary matrix Q0. Specifi-
cally, we show that for 0�s�1

���low,s�Q0�s�†O�s�Q0�s� − Oadiab��low,s��

� 2�O�	c2�s� + c3�s�
 , �23�

where c2�s� and c3�s� are given by Eqs. �A9� and �A2� in the
Appendix. One may verify from the calculation in the Ap-
pendix that the error term c2�s�+c3�s� gives the error de-
scribed above in Eqs. �15� and �16�. Note that if O
=O1O2¯On, then O�s�=O1�s�O2�s�¯On�s�, so the expec-
tation values of products of operators are also approximately
preserved under this quasiadiabatic evolution. Thus,
���low,s�Q0�s�†O1�s�O2�s�¯Q0�s�−O1,adiabO2,adiab¯ ��low,s��
�2�O1��O2�¯ 	c2�s�+c3�s�
, where here the c2�s� ,c3�s� are
the error terms appropriate for the product operator O1O2¯.

IV. EXAMPLES

We illustrate the quasiadiabatic continuation by a series of
examples. We start with local operators, considering a sys-
tem with Z2 �Ising� symmetry, a fractional quantum Hall sys-
tem, and then a system with U�1� symmetry. We then repeat
the process in the case of nonlocal, string operators.

A. Local Ising model

The first and simplest example is a quantum Ising ferro-
magnet in a transverse field. Let the Hamiltonian be H
=J��i,j��i

z� j
z+B�i�i

y where each site has a spin 1/2 and the
ferromagnetic interaction J couples nearest-neighbor spins
on the lattice.

For B=0, the system has two exact ground states, one
state which we denote �↑ with all spins up and one state �↓
with all spins down. The gap to the lowest excited state
above these two states is 2Jq where q is the coordination
number of the lattice; this state has one flipped spin. We

define symmetric and antisymmetric combinations �S,A
= �1/�2���↑±�↓�. The states �S,A are eigenvectors of the
operator �i�i

y, with eigenvalues ±1. This operator, which
flips the spin on every site, commutes with the Hamiltonian
for all B.

We now consider the quasiadiabatic continuation with
Hs=J��i,j��i

z� j
z+sB�i�i

y. At s=0, this has the exact ground
states �S,A. For sB small enough, the two lowest eigenstates
of Hs are adiabatic continuations of �S,A. Hence, the matrix
element of the operator �sHs=B�i�i

y between these two
states vanishes for all B, since �sHs commutes with �i�i

y and
these two states are eigenstates of �i�i

y with different eigen-
values.

Above these two states, there is a gap to the rest of the
spectrum. It is known that for small enough B, the gap will
remain open for all s with 0�s�1. Thus, we can perform
the continuation. The vanishing of the matrix elements of
�sHs between the two low-energy states implies that Q0�s� is
equal to the identity matrix. We consider the continuation of
the operator �i

z. The ground state for B=0 may be taken to be
�S. For B=0, we have ��S��i1

z �i2
z
¯�in

z ��S�=1 for n even
and −1 for n odd. The quasiadiabatic continuation �i

z

→�i
z�s� spreads out the �i

z operators over a distance l. Cer-
tainly l is less than the linear size of the system. Then
��S,s��i1

z �s��i2
z �s�¯�in

z �s���S,s�, again equal to 1 or −1, up to
some error, depending on whether n is even or odd. Here,
�S,s=V�s��S. The error is exponentially small in l /	. We
conjecture that the operators �i1

z �s� correspond to block spin
operators: they are equal to plus or minus 1 depending on
whether the average spin over a correlation volume is posi-
tive or negative.

If we instead consider the Hamiltonian Hs=J��i,j��i
z� j

z

+sB�i�i
z, the operator �sHs will have nonvanishing matrix

elements between the states �S,A, and thus we must start
with states �↑ ,�↓ to perform the continuation if we want to
have Q0�s� be equal to the identity. In this case, �i

z�s�=�i
z

and ��↑,s��i1
z �s��i2

z �s�¯�in
z �s���↑,s�= �+1�n, where we have

assumed that the sign of B is such that �↑,s is the ground
state, rather than �↓,s. For the opposite sign of B, the corre-
lation function is instead �−1�n.

The two cases, depending on the different ways to add the
magnetic field transverse or parallel to the z axis, lead to
different ground-state correlation functions. In the second
case, the correlation function of the continued operator is not
a very interesting result; the unit operator would have the
same correlation function. However, in the first case, the
ability to find a continuation of the operator with the given
correlation functions is a much more interesting result. There
are long-range correlations in the operator, since
��S,s��i1

z �s��i2
z �s���S,s�− ��S,s��i1

z �s���S,s���S,s��i2
z �s���S,s� is

nonvanishing even when sites i1 , i2 are far from each other,
and in particular even when the distance between i1 , i2 is
much larger than l. This implies27 the presence of another
state close in energy to the ground state when the magnetic
field is added in the transverse direction.

However, we would like to show the ground-state degen-
eracy in another way, based directly on continuing the states
�S,A. This way will be very valuable for more complicated
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systems such as the quantum Hall system. We will consider a
more general class of Hamiltonians Hs: we consider arbitrary
Hamiltonians which are sums of local terms, and which com-
mute with �i�i

y. We show that, under the assumption that the
gap between the two lowest states and the rest of the spec-
trum remains open, the energy difference between the con-
tinuation of the two lowest states is exponentially small. As
long as that gap remains open, it is possible to adiabatically
continue these two states, giving states �S,s=V�s��S and
�A,s=V�s��A as eigenstates of Hs. Here, we rely on the fact
that Hs commutes with �i�i

y and thus has vanishing matrix
elements between the states.

To compute the difference in energies for given
s, we compute ��A,s�Hs��A,s�− ��S,s�Hs��S,s�
= ��A�V�s�†HsV�s���A�− ��S�V�s�†HsV�s���S�. Thus,
V�s�†HsV�s� defines the continuation of the operator Hs from

s back to 0 and Ṽ�s�†HsṼ�s� defines a quasiadiabatic continu-
ation from s back to 0: ��S,s�Hs��S,s� is approximately equal

to ��S�Ṽ�s�†HsṼ�s���S�. The error in this continuation is ex-
ponentially small in l /	. The operator Hs is a sum of local

operators, while the operator Ṽ�s�†HsṼ�s� is a sum of terms
spread out over length scale l. The only operators O such that
��A�O��A�− ��S�O��S��0 are operators which flip every
spin in the system and thus have nonvanishing matrix ele-
ments between �↑ and �↓. Thus all local operators have
vanishing matrix elements between the two states �↑
and �↓. In particular, if the length scale l is smaller

than the system size L, then ��A�Ṽ�s�†HsṼ�s���A�
= ��S�Ṽ�s�†HsṼ�s���S�. Thus we can pick l just smaller then
the system size to show that ��A�V�s�†HsV�s���A�
− ��S�V�s�†HsV�s���S� is of order �Hs�exp�−L /	�
�Ldexp�−L /	�. Here, the bound for this system is not a very
tight bound: one expects the level splitting to be exponen-
tially small in �L /	�d instead.

The key steps in this argument were that �1� matrix ele-
ments of operators which commute with �i�i

y vanish be-
tween �S and �A; and �2� all local operators have the same
expectation values in state �A as in state �S.

B. Quantum Hall effect

We now turn to the case of the fractional quantum Hall
effect. Consider a system with no disorder on a torus at fill-
ing factor p /q, with p and q coprime. The magnetic transla-
tion group implies at least a q-fold degeneracy of the ground
state.18 Assume that in the absence of disorder there is a
q-fold degenerate ground state, with a gap to the rest of the
spectrum. Now, consider adding disorder to the system,
defining Hs=H0+s�dx dy U�x ,y��†�x ,y���x ,y�, where
U�x ,y� is a disorder potential and H0 is the clean Hamil-
tonian. Wen and Niu argued18 that to first order in sU�x ,y�
the splitting between the q-fold degenerate states was expo-
nentially small. We will use the continuation to show that the
splitting is exponentially small for nonvanishing disorder
strength under the sole assumptions that the gap to the rest of
the spectrum remains open and that at s=0 all local operators
have the same expectation value up to exponentially small

terms in the q lowest states and that at s=0 all local operators
have exponentially small matrix elements between the q low-
est states. We note that since these last statements involve
only s=0 they can be checked in specific model systems
without disorder, and in fact were checked in Ref. 18 when
they showed the exponentially small splitting of the q lowest
states in linear perturbation theory.

Suppose, then that for 0�s�1 there are q states, �n,s for
n=0, . . . ,q−1, and a gap to the rest of the spectrum. We wish
to show that these states are close in energy. Thus, we com-
pute ��m,s�Hs��m,s�− ��n,s�Hs��n,s�, for some m ,n
=0, . . . ,q−1. As above, V�s�†HsV�s� defines the continuation

of the operator Hs from s back to 0, and Ṽ�s�†HsṼ�s� defines
a quasiadiabatic continuation from s back to 0.

However, unlike the case of the quantum Ising model,
we do not have any symmetries to make matrix elements
of Hs and �sHs vanish between the low-lying states.
Thus, we do not have any control on the
matrix Q0�s�. Then, ��m,s�Hs��m,s� is equal to

��m,0�Q0�s�†Ṽ�s�†HsṼ�s�Q0�s���m,0�, up to an error of order
�Hs�exp�−l /	�. Since we are continuing from nonzero s to
s=0, now the matrix Q0 acts within the low-energy sector of
H0.

However, this matrix Q0�s� causes no problem. As before,

for lL, Ṽ�s�†HsṼ�s� is a local operator, and then
under the assumptions above, the expectation value

��m,0�Q0�s�†Ṽ�s�†HsṼ�s�Q0�s���m,0� is independent of
Q0�s�, up to exponentially small corrections, thus giving the
desired result.

C. Local rotor model

The next example is a system with a continuous symme-
try. We take the Hamiltonian Hs=k�s�−1�i�i

2+k�s���i,j�zizj,
where zi is a continuous complex field with �zi�=1, and �i is
a momentum with 	zi ,�i
= izi. The parameter k�s� is an
s-dependent stiffness of the field z.

We pick a quasiadiabatic continuation using k�s�
=k0�k1 /k0�s, so k�0�=k0 and k�1�=k1; thus �sHs=ln�k1 /k0�
�	−k�s�−1�i�i

2+k�s���i,j�zizj
. We choose the initial k0 to be
large compared to the final k1. We assume that we k1 is
sufficiently large that the system is still in a phase with gap-
less excitations and algebraic correlations. In this phase, we
can compute the density of states by writing z=exp�i�� for
some � with a Gaussian action for �. At low energy, the
system acquires relativistic invariance, and thus in d dimen-
sions the density of single particle states at energy E is of
order Ed−1. The matrix element of � between the ground
state and such a single-particle state is of order E−1/2, and
thus the integrated density of states created by � is D�E�
�Ed−1. The integrated density of states below energy E cre-
ated by �sHs instead is KD�E�� ln�k0 /k1�E2d+2. Then, � /2
=d+1 and we are in a marginal case: the error in the con-
tinuation is of order log�L / l�.

D. Emergent discrete gauge theories

We now turn from these theories with local operators to
emergent gauge theories. We consider the Hamiltonian of the
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emergent Z2 gauge theory in the introduction.
For J1=J2=0, we have 4 exactly degenerate ground states

on a torus, and a gap to the rest of the spectrum. For nonzero
J1 ,J2, the deformed Hamiltonian is still local Hs=�iHs

i ,
where Hs

i is a local operator defined near the site i. We can
use the same reasoning used in fractional quantum Hall
states to show that Hs still has four exactly degenerate
ground states on a torus. However, here we will use a slightly
different approach. Continuing Hs from s back to 0, we find
that

��m,s�Hs
i ��n,s� = ��m,0�V†�s�Hs

iV�s���n,0� ,

where ��n,s�, n=1, . . . ,4, are the four low-lying states of Hs.
Due to the energy gap separating the four low-lying states
from the rest of the states, the operator V†�s�Hs

iV�s� is almost
a local operator. More precisely, up to an error of order e−l/	

and a unitary rotation Q0�s� between the four low-lying
states ��n,0�, V†�s�Hs

iV�s� can be replaced by a truncated
operator Hi which only acts on sites within a distance l from
the site i. Thus we have

��m,s�Hs
i ��n,s� = ��m,0�Q0�s�†HiQ0�s���n,0� + O�e−l/	� .

Since Q0�s���n,0� are the ground states of the exactly soluble
model �1�, they from a irreducible representation of the alge-
bra of the large-closed-string operators �8�. We can choose
the length l over which the operators are smeared to be one-
quarter of the linear size L of the system. In this case Hi will
be local enough that we can choose the positions large-
closed-string operators to avoid any overlap between Hi and
the closed-string operators. So Hi commutes with the closed-
string operators. As a result, Hi must be proportional to the
identity operator within the irreducible representation. This
way, we have shown that ��m,s�Hs

i ��n,s���mn up to an error
e−L/4	, which implies that ��m,s�Hs��n,s���mn up to an error
L2e−L/4	. So the energy splitting between the four low-lying
states is less than L2e−L/4	 for the deformed Hamiltonian Hs.

We can also continue any closed-string or dual closed-
string operators S�Cclosed� and obtain

��m,0�S�Cclosed���n,0� = ��m,s�V�s�S�Cclosed�V†�s���n,s� .

Then there exist dressed closed-string operators Sdre�Cclosed�
that have a width l such that

��m,s�Q0�s�†Sdre�Cclosed�Q0�s���n,s�

= ��m,s�V�s�S�Cclosed�V†�s���n,s� + O�e−l/	� .

Here Q0�s� is a unitary rotation between the four low-lying
states ��n,s� and Q0�s� is independent of the closed-string
operators. This implies that the dressed string and dual string
operators Sdre�Cclosed� have the same algebra among the low-
energy states of the perturbed Hamiltonian as the original
operators S�Cclosed� do for the original Hamiltonian 	up to an
error exp�−l /	�
.

The above also implies that the expectation of the dressed
closed-string operators in the ground state of the perturbed
Hamiltonian satisfies the zero law �3�, up to an error of order

�S�exp�−l /	�, where �S� is the string length. We see that the
error is exponentially small for long strings since l can be
chosen to be a fraction of �S�.

Our final task is to show the invariance of certain states
under a deformed gauge transformation for J2�0. First con-
sider J1 ,J2=0. The Hamiltonian has the four ground states
which are invariant under the local gauge transformation WI
given by Eq. �2�. We can create gauge-invariant excited
states by acting on the four ground states by open dual string
operators. Following Eq. �5�, we define an open dual string

operator as S̃�C̃�=�i cross C̃�i
z, where now the dual string C̃ is

open, with two end points. The states created by acting with

S̃�C̃� are still invariant under the local Z2 gauge transforma-

tions, since 	S̃�C̃� ,WI
=0. They are excited states which in-
troduce Z2 gauge flux at the end points of the open string. By
acting on the ground state with the open dual strings, we can
create all gauge-invariant states, and for U
g, these are the
lowest-energy excited states. Continuing to nonzero J1 at
J2=0 still leaves these states invariant under the local Z2
gauge transformation. Continuing to nonzero J2 breaks the
local Z2 gauge invariance. However, these states are invari-
ant under the deformed local Z2 gauge transformation WI�s�.
To see this, we use the continuation to show that
��low,s�WI�s���low,s�=1, up to exponentially small error in
l /	. Since WI�s� is unitary, this implies the gauge invariance
of the ground state under the deformed gauge transformation
up to exponentially small error. The gauge invariance, up to
the same small error, of the states created by acting on the

ground state with operators S̃�C̃ ,s�= Ṽ�s�S̃�C̃ ,s�Ṽ�s�† then

follows from the exact commutator 	S̃�C̃ ,s� ,WI�s�
=0. The
size of the deformed gauge group is, however, much smaller
than the original: if the linear system size is L, there are
�L / l�d different local gauge transformations rather than Ld as
is the case at J2=0.

E. Emergent continuous gauge theories

Our final problem is the theory with the U�1� gauge sym-
metry, Eq. �13�. The absence of a gap makes it much more
difficult to obtain results on this system. We will obtain only
one result, the existence of a deformed U�1� gauge invari-
ance of the system.

We consider some gauge transformation acting on a site,
WI,�=ei�QI. When J2=0, the ground state has an exact gauge
invariance: ��0�WI,���0�=1. If we continue to nonzero J2,
the ground state breaks the gauge invariance. However, we
claim that the expectation value of the continued operator
��0,s�WI,��s���0,s� is still close to unity. Unlike the Z2 case,
this does not follow simply from the results derived previ-
ously as there is no gap, and the low-energy density of states
is too high to use the results for gapless systems. However, it
is still possible to show this result. We only very briefly
sketch the argument, leaving a more detailed presentation for
future work. The idea is as follows: at J2=0, the system has
gauge-noninvariant states at an energy of order U above the
ground state. Under the continuation, at finite tq, the operator

Ṽ�s� will take the ground state at s=0 into some state which
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is a mix of ground and excited states. That is, the expectation
value ��0,s�WI,��s���0,s�= ��0�Q�s�†WI,�Q�s���0�, where the

unitary matrix Q�s�= Ṽ�s�†V�s� mixes the ground state with
the excited states. However, since all the low-lying excited
states at J2=0 are gauge invariant, it is no longer necessary
to show that Q�s�†WI,�Q�s� is close to WI,�; it suffices to
show that we do not mix in the states which are not gauge
invariant under WI,� and all such states are at energy of order
U above the ground state. At infinitesimal s, the mixing into
such states is exponentially small, since the energy U acts
like a gap; however, one has some mixing into the low-lying
gauge-invariant states. As s increases, one mixes into pro-
gressively higher-energy states, until eventually one begins
to excite the gauge-noninvariant states. However, if tq is suf-
ficiently big �roughly of order U−1� the mixing into the
gauge-noninvariant states can be bounded at s=1, thus ob-
taining the desired result.

Now consider the excited states. At J2=0, the gauge-
invariant excited states of the system can be obtained by
acting on the ground state with operators of the form O

=�ie
i�iLi

z
, where the phase �i is some arbitrary function of

the leg. These operators commute with WI,� and therefore at
nonzero J2 the continued operators commute with the con-
tinued gauge transformation: 	O�s� ,WI,��s�
=0. Therefore,
there are a class of excited states for nonzero J2, namely, the
excited states created by acting on the ground state with the
operators O�s�, which are also gauge invariant under the de-
formed gauge transformation, up to the same error.

As in the Z2 case, the size of the deformed gauge group is
much smaller than the original gauge group. The original
gauge group had Ld different generators, while the deformed
group has only �L / l�d such generators. A more careful analy-
sis should be able to then use this deformed gauge invariance
to show that the gapless photon is protected. This is also a
job for the future.

The compactness of the gauge group was important
here. Consider a noncompact U�1� theory, with Lagrangian
�1/2����A�−��A��2+ �� /2����A��2+MA�A�. The term in �
is a gauge-fixing term and M is a term that breaks the gauge
symmetry. With this quadratic action, it is easy to verify that
a nonzero M opens a gap. Why does the continuation not
work here? The reason is that this theory has no gap to the
gauge-noninvariant states, unlike the compact cases before,
despite the gauge-fixing term. The gauge-fixing term does
not open a gap to the gauge-noninvariant states in this case;
instead it adds gapless longitudinal and scalar photons to the
theory. To say it differently, in a compact theory, the charge
is quantized and the open-string states have a minimum pos-
sible energy because they necessarily terminate in an end
with a charge that is a multiple of the charge quantum. In a
noncompact theory, the charge may be arbitrarily small. So
the energy cost is also arbitrarily small.

V. DISCUSSION

The standard wisdom is that as long as gaps remain open,
a system does not have a quantum phase transition and thus
the long-distance structure of correlation functions remains

the same. We have shown a precise form of this statement.
We have found that, by appropriately dressing operators, the
long-distance structure can in fact be preserved to a much
greater degree than one might have expected. In particular,
we have shown the presence of the zero law �3� for gauge
theories in the deconfined phase, and we propose this as a
test of confinement. Further, we have considered the stability
of topological order under perturbations of the Hamiltonian,
and shown that the order is robust unless the gap to the rest
of the spectrum �local excitations� closes.

Topologically ordered states are described by emergent
gauge theories at low-energies. The topological order is
closely tied to the emergent gauge invariance of the low-
energy gauge theories. From the point of view of the low-
energy gauge theory, our result shows that the emergent low-
energy gauge invariance is topological. It cannot be broken
by any local perturbations in the parent bosonic model. We
hope this result will shed light on the true meaning of gauge
invariance and gauge theory.

The continuation is also useful for systems without emer-
gent local gauge structure, and may have a wider applicabil-
ity. For example, an outstanding question is to prove that in
some neighborhood of the Affleck-Kennedy-Lieb-Tasala
AKLT point,29,30 a spin-1 chain remains gapped.31 The con-
tinuation might be useful in doing this, or at least in showing,
under the assumption of the existence of a gap, the persis-
tence of string order32 throughout the Haldane phase.
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APPENDIX: PROOF OF LOCALITY AND
APPROXIMATION RESULTS

1. Locality result

To show Eq. �20�, we use the finite-group-velocity result,
proven in Refs. 26 and 28. This result uses the finite-range
conditions on the Hamiltonian above to bound the commu-
tator �	A�t� ,B�0�
�, where A�t�=exp�iHst�A exp�−iHst�. One
can show that this commutator is exponentially small for
times t less than c1l where l is the distance between A and B
and c1 is some characteristic inverse velocity which depends
on J, R, and the lattice structure. The specific bound is that
�	A�t� ,B�0�
�� �A��B�� jg(t ,d�A , j�), where the sum ranges
over sites j which appear in operator B and where the func-
tion g has the property that for �t��c1l, g�c1l , l� is exponen-
tially decaying in l for large l with decay length 	C for some
constant 	C which is of order R. Recall that d�A , j� is the
minimum over sites i acted on by A of the distance d�i , j�.

Before giving the proof of Eq. �20�, we give a physical
description. The finite group velocity result has a very simple
interpretation. Consider a local operator A. Under time evo-
lution, we get an operator A�t� which spreads out over space
as time passes. The finite-group-velocity result implies that
for finite t the operator A is still local up to some length t /c1
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�here c1
−1 is some characteristic velocity of the system� in the

following sense: the commutator of A�t� with any operator B
is exponentially small if B is at least distance t /c1 from A�0�.
This applies in particular for A=us. Thus, in the definition
�17� of U, the operators us�

+ �i�� are local in the same sense:
Eq. �19� gives ũs�

+ �i�� as an integral over t of us��t� and for
t
 tq the integral is cut off exponentially, while for t� tq the
us��t� are local up to length of order tq /c1. Then, we define

O�s� by the unitary transformation Ṽ�s�. We view this unitary
transformation as defining a fictitious time evolution with
time parameter s and Hamiltonian given by the exponent of
Eq. �17�. We have just established that this exponent is local
and we can then apply the finite-group-velocity result to this
evolution to show that O�s� is also local. The rest of this
subsection consists of a few precise error bounds following
these statements.

We compute the commutator 	ũs
i+�i�� ,Oj
 where Oj is

some operator which acts only on site j, and where ũs
i+�i�� is

defined following Eq. �19� taking A=us
i . We separate the in-

tegral over times t into times with tc1l, where l=d�i , j�
−R, and times with �t��c1l. For the first set of times, we
have �2��−1��t��c1ldt�it+���	us�t� ,Oj
�� �2��−1�us

i��O�exp�
−l /	C�. For the second set of times, we have �2��−1�dt�it
+���	us�t� ,Oj
���−1�us

i��O���2�tq /c1l�exp	−�c1l / tq�2 /2
.
Thus, for large l, we find �	ũs

i+�i�� ,Oj
� is exponentially de-
caying in d�i , j� with decay length 	C. Note that exp�−l /	C�
�exp	−�c1l / tq�2 /2
 for l�2�tq /c1�2 /	C.

Now, here is the trick. We regard Eq. �17� as defining the
“time” evolution of states, where the parameter s� is an
effective time parameter and D= i�0

�d� exp	−�� / tq�2 /2

�	d̃s�

+ �i��−H.c.
 is some effective s�-dependent “Hamil-

tonian,” so that Ṽ�s�=S� exp	−i�0
sds�D
. We write D=�iD

i,
where Di=�0

�d� exp	−�� / tq�2 /2
	ũs�
i+�i��−H.c.
. Then,

�	Di ,Oj
�� �Oj�F(d�i , j�), where the function F�l� is expo-
nentially decaying as exp	−l /	C
 for large l and decaying as
��2�tq /c1l�exp	−�c1l / tq�2 /2
 for small l.

This exponential decay is in fact good enough to prove
the finite-group-velocity result26 using D as an effective
Hamiltonian; it is not necessary that Di act only on sites
within some finite range, but an exponential decay also suf-
fices. Following Ref. 28, define Gi by the differential equa-
tions, for s�0, �sGi�s�=� jGj�s�F(d�i , j�) with initial condi-
tions Gi�0�=2 if i�SO and Gi�0�=0 otherwise. Then, one
can show that �	O�s� ,Oj
�� �O��Oj�Gj�s�. Solving the equa-
tions for Gj, one arrives at the bound �20�.

One can define the operator Otrunc by setting Ṽtrunc�s�
=S� exp	−i�0

sds�Trj,d�O,j��l�D�
, where the trace is the trace
of operator D over sites j with d�O , j�� l. Then, set

Otrunc�s�= Ṽtrunc�s�OṼtrunc�s�†, getting Eq. �22�.

2. Approximation result

The idea behind the proof of the approximation result is
that, for any site i, the difference between ũs

i+�i�� and us
i+�i��

can be made small by taking large enough tq. Here, us
i+ is the

positive energy part of us and ũs
i+ is defined following Eq.

�19� with A=us
i . The difference between these two is closely

related to ei, as given below. Equation �17� involves sum-
ming over all sites i, but sites i which are sufficiently far
from O will turn out to have little effect on defining O�s�.
Thus, the task in this subsection is to figure out how much
difference there is between ũs

i+�i�� and us
i+�i��, and then sum

that error over sites near enough to O, giving the difference
between the quasiadiabatic continuation and the adiabatic
continuation. Since the adiabatic continuation preserves ex-
pectation values, this will give an estimate in the error in the
expectation values. We now do this carefully.

The proof of Eq. �23� involves defining an additional op-
erator and using triangle inequalities. We define

Ṽl�s� = S� exp�− �
0

s

ds��
0

�

d��
i

exp	− ��/tqi
�2/2


�	ũs�
i+�i�� − H.c.
� , �A1�

where now tqi
may depend on i and we define ũs

i+�i�� by
ũs

i�t�=us
i�t�exp	−�t / tqi

�2 /2
, again using the tqi
which depend

on i.
We then pick tqi

= tq for d�i ,O��2l, and tqi
= tq

+c1	d�i ,O�−2l
 otherwise. Define Ol�s�= Ṽl�s�OṼl�s�†.

Thus, Ṽl�s� has a tqi
which increases the further one gets

from operator O. While the operator Ṽ�s� would create local

excitations everywhere acting on a ground state, Ṽl�s� only
creates local excitations near O.

Using a triangle inequality,

���low,s�Q0�s�O�s�Q0�s�† − Oadiab�s���low,s��

� ���low,s�Q0�s�O�s�Q0�s�† − Q0�s�Ol�s�Q0�s�†��low,s��

+ ���low,s�Q0�s�Ol�s�Q0�s�† − Oadiab�s���low,s�� .

The difference between Ṽl�s� and Ṽ�s� is the excitations far

from O. That is, if for small s Ṽ�s�V�s�†=1+s�ie
i+¯ and

Ṽl�s�V�s�†=1+s�iel
i+¯, then el

i and ei differ only for i far
from O. However, for i far from O,
the ei commute through O �as discussed physically before�
and so it is possible to bound the difference
���low,s�Q0�s�O�s�Q0�s�†−Q0�s�Ol�s�Q0�s�†��low,s��. Pre-
cisely, to bound the first difference, we note that the differ-
ence between the definition of Ol�s� and O�s� has to do with
terms us

i with sites i which are at least a distance 2l from O.
Using the locality bound, one can bound the commutator of
O�s� and Ol�s� with ũs

i for these sites. This gives �O�s�
−Ol�s���c3�s�, where

c3�s� = X3 �
j,d�i,j��2l

max„exp	− d�j,O�/	C
,

exp	− �d�j,O�/lqj
�2/2
… , �A2�

for some constant X3 and where lqj
is of order c1tqj

.
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We now bound the difference ���low,s�Q0�s�Ol�s�Q0�s�†

−Oadiab�s���low,s��. To do this, it suffices to bound

���low,s�Q0�s�Ṽl�s�− ��low,s�V�s��. This is equal to

���low,0��V�s�†Q0�s�Ṽl�s�− ��low,0�. The operator

Ṽl�s� is equal to S� exp�−�0
sds�	�s�Ṽl�s��
Ṽl�s��†.

This equals V�s�S� exp�−�0
sds�V�s��†�	�s�Ṽl�s��
Ṽl�s��†

− 	�s�V�s��
V�s��†V�s�. Thus,

V�s�†Q0�s�Ṽl�s� = 	V�s�†Q0�s�V�s�


�S� exp�− �
0

s

ds�V�s��†el�s��V�s��� ,

�A3�

where

el�s�� = 	�s�Ṽl�s��
Ṽl�s��†V�s�� − 	�s�V�s��
V�s��†.

�A4�

We have grouped the operators V�s�†Q0�s�V�s� together in
Eq. �A3� for a reason: the matrix Q0�s� is an operator be-
tween the low-energy states of Hs so therefore the operator
V�s�†Q0�s�V�s� is an operator between the low-energy
states of H0. Now we turn to the exponential
S� exp�−�0

sds�V�s��†el�s��V�s��. We want to show that this
operator is also equal, up to some bounded error, to an op-
erator between the low-energy states of H0.

Define Phigh to project onto the high-energy states of H0.
Then, we can pick Q0�s� such that

���low,0V��s�†Q0�s�Ṽl�s� − ��low,0�

� �
0

s

ds����low,0V��s��†el
i�s��V�s��Phigh�� , �A5�

We will bound the integral of Eq. �A5� below; combining
this bound with Eq. �A2� will give Eq. �23�.

Using linear perturbation theory,

	�s�V�s��
V�s��† = − �
0

�

d�	us
+�i�� − H.c.
 + P , �A6�

where P only has nonvanishing matrix elements between
states of the same energy: Pab=0 if Ea�Eb.

The error el�s�=−P+�iel
i�s� where

el
i�s� = − �

0

�

d��exp	− ��/tqi
�2/2
ũs

i+�i�� − us
i+�i�� − H.c. .

�A7�

For s=0, el
i�s�=el

i defined above.
We now bound the projection into the high-energy sector

���low,s��el
i�s��Phigh�. We can show by performing some

elementary integrations27 that, for any eigenstate �a,s
with energy Ea�� / tqi

2 ,

���low,s�exp	− ��/tqi
�2/2
ũs

i+�i�� − us
i+�i����a,s��

� exp	− ��/tqi
�2/2
 exp	− �tqi

Ea�2/2
��us
i�0a� ,

where ��us
i�0a� is the absolute value of the matrix ele-

ment of us
i between states �low,s and �a,s. Similarly, for

Ea� / tqi

2 , ���low,s�exp	−�� / tqi
�2 /2
ũs

i+�i��−us
i+�i����a,s��

�exp	−�Ea
��us
i�0a�. Integrating over � and summing over

states �a outside the sector of ground states, using the bound
on the density of states, we have

���low,sel
i�s�Phigh��2 �� dE ��E���K/E�2 exp	− �tqi

E�2


+ Ktqi
exp	− �tqi

E�2/2
��2��2.

�A8�

Summing over sites i and using Eq. �A5� we obtain the

bound ���low,0��V�s�†Q0�s�Ṽl�s�− ��low,0��c2�s� where we
define

c2�s� = s�
i
�� dE ��E���K/E�2 exp	− �tqi

E�2


+ Ktqi
exp	− �tqi

E�2/2
�2�2�1/2

. �A9�

This completes the calculation.
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